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ABSTRACT
Graph databases have become a common infrastructure com-
ponent. Yet existing systems either operate on offline snap-
shots, provide weak consistency guarantees, or use expensive
concurrency control techniques that limit performance.

In this paper, we introduce a new distributed graph data-
base, called Weaver, which enables efficient, transactional
graph analyses as well as strictly serializable ACID transac-
tions on dynamic graphs. The key insight that allows Weaver
to combine strict serializability with horizontal scalability
and high performance is a novel request ordering mecha-
nism called refinable timestamps. This technique couples
coarse-grained vector timestamps with a fine-grained timeline
oracle to pay the overhead of strong consistency only when
needed. Experiments show that Weaver enables a Bitcoin
blockchain explorer that is 8× faster than Blockchain.info,
and achieves 10.9× higher throughput than the Titan graph
database on social network workloads and 4× lower latency
than GraphLab on offline graph traversal workloads.

1. INTRODUCTION
Graph-structured data arises naturally in a wide range of

fields that span science, engineering, and business. Social
networks, the world wide web, biological interaction networks,
knowledge graphs, cryptocurrency transactions, and many
classes of business analytics are naturally modeled as a set
of vertices and edges that comprise a graph. Consequently,
there is a growing need for systems which can store and
process large-scale graph-structured data.

Correctness and consistency in the presence of changing
data is a key challenge for graph databases. For example,
imagine a graph database used to implement a network
controller that stores the network topology shown in Fig. 1.
When the network is undergoing churn, it is possible for a
path discovery query to return a path through the network
that did not exist at any instant in time. For instance, if
the link (n3, n5) fails, and subsequently the link (n5, n7)
goes online, a path query starting from host n1 to host n7
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may erroneously conclude that n7 is reachable from n1, even
though no such path ever existed.

Providing strongly consistent queries is particularly chal-
lenging for graph databases because of the unique charac-
teristics of typical graph queries. Queries such as traversals
often read a large portion of the graph, and consequently
take a long time to execute. For instance, the average degree
of separation in the Facebook social network is 3.5 [8], which
implies that a breadth-first traversal that starts at a random
vertex and traverses 4 hops will likely read all 1.59 billion
users. On the other hand, typical key-value and relational
queries are much smaller; the NewOrder transaction in the
TPC-C benchmark [7], which comprises 45% of the frequency
distribution, consists of 26 reads and writes on average [21].
Techniques such as optimistic concurrency control or dis-
tributed two-phase locking result in poor throughput when
concurrent queries try to read large subsets of the graph.

Due to the unique nature of typical graph-structured data
and queries, existing databases have offered limited sup-
port. State-of-the-art transactional graph databases such
as Neo4j [6] and Titan [9] employ heavyweight coordination
techniques for transactions. Weakly consistent online graph
databases [11, 15] forgo strong semantics for performance,
which limits their scope to applications with loose consistency
needs and requires complicated client logic. Offline graph
processing systems [26, 3, 41, 53] do not permit updates to
the graph while processing queries. Lightweight techniques
for modifying and querying a distributed graph with strong
consistency guarantees have proved elusive thus far.

Weaver1 is a new online, distributed, and transactional
graph database that supports efficient graph analyses. The
key insight that enables Weaver to scalably execute graph
transactions in a strictly serializable order is a novel technique
called refinable timestamps. This technique uses a highly scal-
able and lightweight timestamping mechanism for ordering
the majority of operations and relies on a fine-grained time-
line oracle for ordering the remaining, potentially-conflicting
reads and writes. This unique two-step ordering technique
with proactive timestamping and a reactive timeline oracle
has three advantages.

First, refinable timestamps enable Weaver to distribute the
graph across multiple shards and still execute transactions
in a scalable fashion. There are some applications and work-
loads for which sharding is unnecessary [43]. However many
applications support a large number of concurrent clients and

1http://weaver.systems, https://github.com/dubey/weaver
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Figure 1: A graph undergoing an update which creates (n5, n7)
and deletes (n3, n5) concurrently with a traversal starting at n1. In
absence of transactions, the query can return path (n1, n3, n5, n7)
which never existed.

operate on graphs of such large scale, consisting of billions of
vertices and edges [61, 34, 46], that a single-machine archi-
tecture is infeasible. For such high-value applications [11, 54]
it is critical to distribute the graph data in order to balance
the workload and to enable highly-parallel in-memory query
processing by minimizing disk accesses.

Second, refinable timestamps reduce the amount of co-
ordination required for execution of graph analysis queries.
Concurrent transactions that do not overlap in their data
sets can execute independently without blocking each other.
Refinable timestamps order only those transactions that over-
lap in their read-write sets, using a combination of vector
clock ordering and the timeline oracle.

Third, refinable timestamps enable Weaver to store a multi-
version graph by marking vertices and edges with the time-
stamps of the write operations. A multi-version graph lets
long-running graph analysis queries operate on a consistent
version of the graph without blocking concurrent writes. It
also allows historical queries which run on past, consistent
versions of the graph.

Overall, this paper makes the following contributions:
• It describes the design of an online, distributed, fault-

tolerant, and strongly consistent graph database that
achieves high performance and enables ACID transac-
tions and consistent graph queries.

• It details a novel, lightweight ordering mechanism called
refinable timestamps that enables the system to trade
off proactive synchronization overheads with reactive
discovery of ordering information.

• It shows that these techniques are practical through
a full implementation and an evaluation that shows
that Weaver scales well to handle graphs with over a
billion edges and significantly outperforms state-of-the-
art systems such as Titan [9] and GraphLab [26] and
applications such as Blockchain.info [1].

2. APPROACH
Weaver combines the strong semantics of ACID transac-

tions with high-performance, transactional graph analyses.
In this section, we describe the data and query model of the
system as well as sample applications.

2.1 Data Model
Weaver provides the abstraction of a property graph, i.e.

a directed graph consisting of a set of vertices with directed
edges between them. Vertices and edges may be labeled with
named properties defined by the application. For example,
an edge (u, v) may have both “weight=3.0” and “color=red”
properties, while another edge (v, w) may have just the

begin_weaver_tx ()
photo = create_node ()
own_edge = create_edge(user , photo)
assign_property(own_edge , "OWNS")
for nbr in permitted_neighbors:

access_edge = create_edge(photo , nbr)
assign_property(access_edge , "VISIBLE")

commit_weaver_tx ()

Figure 2: A Weaver transaction which posts a photo in a social
network and makes it visible to a subset of the user’s friends.

“color=blue” property. This enables applications to attach
data to vertices and edges.

2.2 Transactions for Graph Updates
Weaver provides transactions over the directed graph ab-

straction. These transactions comprise reads and writes on
vertices and edges, as well as their associated attributes. The
operations are encapsulated in a weaver_tx block and may
use methods such as get_vertex and get_edge to read the
graph, create/delete_vertex and create/delete_edge to
modify the graph structure, and assign/delete_properties

to assign or remove attribute data on vertices and edges.
Fig. 2 shows the code for an update to a social network that
posts content and manages the access control for that content
in the same atomic transaction.

2.3 Node Programs for Graph Analyses
Weaver also provides specialized, efficient support for a

class of read-only graph queries called node programs. Sim-
ilar to stored procedures in databases [24], node programs
traverse the graph in an application-specific fashion, reading
the vertices, edges, and associated attributes via the node

argument. For example, Fig. 3 describes a node program
that executes BFS using only edges annotated with a spec-
ified edge property. Such queries operate atomically and
in isolation on a logically consistent snapshot of the graph.
Weaver queries wishing to modify the graph must collate the
changes they wish to make in a node program and submit
them as a transaction.

Weaver’s node programs employ a mechanism similar
to the commonly used scatter-gather approach [41, 3, 26]
to propagate queries to other vertices. In this approach,
each vertex-level computation is passed query parameters
(prog_params in Fig. 3) from the previous hop vertex, sim-
ilar to the gather phase. Once a node program completes
execution on a given vertex, it returns a list of vertex handles
to traverse next, analogous to the scatter phase. A node
program may visit a vertex any number of times; Weaver
enables applications to direct all aspects of node program
propagation. This approach is sufficiently expressive to cap-
ture common graph analyses such as graph exploration [1],
search algorithms [5], and path discovery [54].

Many node programs are stateful. For instance, a traversal
query may store a bit per vertex visited, while a shortest path
query may require state to save the distance from the source
vertex. This per-query state is represented in Weaver’s node
programs by node.prog_state. Each active node program
has its own state object that persists within the node object
until the node program runs to completion throughout the
graph. As a node program traverses the graph, the applica-
tion can create prog_state at other vertices and propagate
it between vertices using the prog_params. This design en-
ables applications that implement a wide array of graph
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node_program(node , prog_params):
nxt_hop = []
if not node.prog_state.visited:
for edge in node.neighbors:
if edge.check(prog_params.edge_prop):
nxt_hop.append ((edge.nbr ,prog_params))

node.prog_state.visited = true
return nxt_hop

Figure 3: A node program in Weaver which executes a BFS
query on the graph.

algorithms. Node program state is garbage collected after
the query terminates on all servers (§ 4.5).

Since node programs are typically long-running, it is a
challenge to ensure that these queries operate on a consistent
snapshot of the graph. Weaver addresses this problem by
storing a multi-version graph with associated timestamps.
This enables transactional graph updates to proceed without
blocking on node program reads.

3. REFINABLE TIMESTAMPS
The key challenge in any transactional system is to en-

sure that distributed operations taking place on different
machines follow a coherent timeline. Weaver addresses this
challenge with refinable timestamps, a lightweight mechanism
for achieving a rough order when sufficient and fine-grained
order when necessary.

3.1 Overview
At a high level, refinable timestamps factor the task of

achieving a strictly serializable order of transaction execution
into two stages. The first stage, which assigns a timestamp
to each transaction, is cheap but imprecise. Any server in
the system that receives the transaction from a client can as-
sign the timestamp, without coordinating with other servers.
There is no distributed coordination, resulting in high scal-
ability. However, timestamps assigned in this manner are
imprecise and do not give a total order between transactions.

The second stage resolves conflicts that may arise during
execution of transactions with imprecise timestamps. This
stage is more expensive and less scalable but leads to a precise
ordering of transactions. The system resorts to the second
stage only for a small subset of transactions, i.e. those that
are concurrent and overlap in their read-write sets.

The key benefit of using refinable timestamps, compared
to traditional distributed locking techniques, is reduced co-
ordination. The proactive stage is lightweight and scalable,
and imposes very little overhead on transaction processing.
The system pays the cost of establishing a total order only
when conflicts arise between timestamped operations. Thus,
refinable timestamps avoid coordinating transactions that
do not conflict.

This benefit is even more critical for a graph database
because of the characteristics of graph analysis queries: long
execution time and large read set. For example, a breadth-
first search traversal can explore an expansive connected com-
ponent starting from a single vertex. Refinable timestamps
execute such large-scale reads without blocking concurrent,
conflicting transactions.

3.2 System Architecture
Weaver implements refinable timestamps using a timeline

coordinator, a set of shard servers and a backing store. Fig. 4
depicts the Weaver system architecture.

Shard 1

Shard 2

Shard 3

Client

Client

Gatekeeper

Timeline Coordinator Shard Servers

Gatekeeper

Gatekeeper

Timeline Oracle

Client

Client

Cluster
Manager

Backing
Store

Figure 4: Weaver system architecture.

Shard Servers: Weaver distributes the graph by partition-
ing it into smaller pieces, each of which is stored in memory
on a shard server. This sharding enables both memory stor-
age capacity and query throughput to scale as servers are
added to the system. Each graph partition consists of a
set of vertices, all outgoing edges rooted at those vertices,
and associate attributes. The shard servers are responsible
for executing both node programs and transactions on the
in-memory graph data.
Backing Store: The backing store is a key-value store
that supports ACID transactions and serves two purposes.
First, it stores the graph data in a durable and fault-tolerant
manner. When a shard server fails, the graph data that
belongs to the shard is recovered from the backing store.
Second, the backing store directs transactions on a vertex
to the shard server responsible for that vertex by storing
a mapping from vertices to associated shard servers. Our
implementation uses HyperDex Warp [21] as the backing
store.
Timeline Coordinator: The critical component behind
Weaver’s strict serializability guarantees is the timeline coor-
dinator. This coordinator consists of a user-configured num-
ber of gatekeeper servers for coarse timestamp-based ordering
and a timeline oracle for refining these timestamps when
necessary (§ 3.3, § 3.4). In addition to assigning timestamps
to transactions, the gatekeepers also commit transactional
updates to the backing store (§ 4).
Cluster Manager: Weaver also deploys a cluster manager
process for failure detection and system reconfiguration. The
cluster manager keeps track of all shard servers and gate-
keepers that are currently part of the Weaver deployment.
When a new gatekeeper or shard server boots up, it registers
its presence with the cluster manager and then regularly
sends heartbeat messages. If the cluster manager detects
that a server has failed, it reconfigures the cluster according
to Weaver’s fault tolerance scheme (§ 4.3).

3.3 Proactive Ordering by Gatekeepers
The core function of gatekeepers is to assign to every trans-

action a timestamp that can scalably achieve a partial order.
To accomplish this, Weaver directs each transaction through
any one server in a bank of gatekeepers, each of which main-
tains a vector clock [23]. A vector clock consists of an array
of counter values, one per gatekeeper, where each gatekeeper
maintains a local counter as well as the maximum counter
value it has seen from the other gatekeepers. Gatekeepers
increment their local clock on receipt of a client request, at-
tach the vector clock to every such transaction, and forward
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Figure 5: Refinable timestamps using three gatekeepers. Each
gatekeeper increments its own counter for a transaction and pe-
riodically announces its counter to other gatekeepers (shown by
dashed arrows). Vector timestamps are assigned locally based
on announcements that a gatekeeper has collected from peers.
T1〈1, 1, 0〉 ≺ T2〈3, 4, 2〉 and T3〈0, 1, 3〉 ≺ T4〈3, 1, 5〉. T2 and T4

are concurrent and require fine-grain ordering only if they conflict.
There is no need for lockstep synchrony between gatekeepers.

it to the shards involved in the transaction.
Gatekeepers ensure that the majority of transaction time-

stamps are directly comparable by exchanging vector clocks
with each other every τ milliseconds. This proactive com-
munication between gatekeepers establishes a happens-before
partial order between refinable timestamps. Fig. 5 shows
how these vector clocks can order transactions with the help
of these happens-before relationships. In this example, since
T1 and T2 are separated by an announce message from gate-
keeper 0, their vector timestamps are sufficient to determine
that T1〈1, 1, 0〉 ≺ T2〈3, 4, 2〉 (X ≺ Y denotes X happens
before Y, while X � Y denotes either X ≺ Y or X = Y).

Unfortunately, vector clocks are not sufficient to establish
a total order. For instance, in Fig. 5, transactions T2 (with
timestamp 〈3, 4, 2〉) and T4 (with timestamp 〈3, 1, 5〉) cannot
be ordered with respect to each other and need a more
refined ordering if they overlap in their read-write sets (we
denote this as T2 ≈ T4). Since transactions that enter the
system simultaneously through multiple gatekeepers may
receive concurrent vector clocks, Weaver uses an auxiliary
service called a timeline oracle to put them into a serializable
timeline.

3.4 Reactive Ordering by Timeline Oracle
A timeline oracle is an event ordering service that keeps

track of the happens-before relationships between transac-
tions [20]. The timeline oracle maintains a dependency graph
between outstanding transactions, completely independent
of the graph stored in Weaver. Each vertex in the depen-
dency graph represents an ongoing transaction, identified
by its vector timestamp, and every directed edge represents
a happens-before relationship. The timeline oracle ensures
that transactions can be reconciled with a coherent timeline
by guaranteeing that the graph remains acyclic.

The timeline oracle carries out this task with a simple API
centered around events, where an event corresponds to a
transaction in Weaver. Specifically, it provides primitives to
create a new event, to atomically assign a happens-before
relationship between sets of events, and to query the order
between two or more events.

Weaver’s implementation of the timeline oracle comprises
such an event-oriented API backed by an event dependency
graph that keeps track of transactions at a fine grain [20].
The service is essentially a state machine that is chain repli-
cated [62] for fault tolerance. Updates to the event depen-
dency graph, caused by new events or new dependencies,
occur at the head of the chain, while queries can execute on

any copy of the graph. This results in a high-performance
implementation that scales up to ∼6M queries per second
on a 12 8-core server chain.

Weaver uses this high-performance timeline oracle to es-
tablish an order between concurrent transactions which may
overlap in their read or write sets. Strictly speaking, such
transactions must have at least one vertex or edge in common.
Since discovering fine-grained overlaps between transaction
operations can be costly, our implementation conservatively
orders any pair of concurrent transactions that have a shard
server in common. When two such transactions are commit-
ting simultaneously, the server(s) committing the transac-
tions send an ordering request to the timeline oracle. The
oracle either returns an order if it already exists, or estab-
lishes an order between the transactions. To maintain a
directed acyclic graph corresponding to the happens-before
relationships, it ensures that all subsequent operations follow
this order.

Establishing a fine-grained order on demand has the sig-
nificant advantage that Weaver will not order transactions
that cannot affect each other, thereby avoiding the over-
head of the centralized oracle for these transactions (§ 4.1,
§ 4.2). Such transactions will commit without coordination.
Their operations may interleave, i.e. appear non-atomic to
an omniscient observer, but this interleaving is benign be-
cause, by definition, no clients can observe this interleaving.
The only transactions that need to be ordered are those
whose interleaving may lead to an observable non-atomic or
non-serializable outcome.

3.5 Discussion
Weaver’s implementation of refinable timestamps combines

vector clocks with a timeline oracle. Alternatively, the gate-
keepers in Weaver could assign a loosely synchronized real
timestamp to each transaction, similar to TrueTime [17].
Both techniques ensure a partial order. However TrueTime
makes assumptions about network synchronicity and commu-
nication delay, which are not always practical, even within
the confines of a datacenter. Synchronicity assumptions
interfere with debugging, and maybe violated by network
delays under heavy load and systems running in virtualized
environments. Further, a TrueTime system synchronized
with average error bound ε̄ will necessarily incur a mean
latency of 2ε̄. While TrueTime makes sense for the wide area
environment for which it was developed, Weaver uses vector
clocks for its first stage.

Irrespective of implementation, refinable timestamps rep-
resent a hybrid approach to timeline ordering that offers
an interesting tradeoff between proactive costs due to pe-
riodic synchronization messages between gatekeepers, and
the reactive costs incurred at the timeline oracle. At one
extreme, one could use the timeline oracle for maintaining
the global timeline for all requests, but then the throughput
of the system would be bottlenecked by the throughput of the
oracle. At the other extreme, one could use only gatekeepers
and synchronize at such high frequency so as to provide no
opportunity for concurrent timestamps to arise. But this
approach would also incur too high an overhead, especially
under high workloads. Weaver’s key contribution is to reduce
the load on a totally ordering timeline oracle by layering on a
timestamping service that manages the bulk of the ordering,
and leaves only a small number of overlapping transactions
to be ordered by the oracle. This tradeoff ensures that the
scalability limits of a centralized timeline service [20] are
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extended by adding gatekeeper servers. Weaver’s design pro-
vides a parameter τ—the clock synchronization period—that
manages this tradeoff.

The clock synchronization period can be adjusted dynam-
ically based on the system workload. Initially, when the
system is quiescent, the gatekeepers do not need to synchro-
nize their clocks. As the rate of transactions processed by the
different gatekeepers increases, the gatekeepers synchronize
clocks more frequently to reduce the burden on the timeline
oracle. Beyond a point, the overhead of synchronization itself
reduces the throughput of the timestamping process. We
empirically analyze how the system can discover the sweet
spot for τ in § 6.

4. IMPLEMENTATION AND
CORRECTNESS

Weaver uses refinable timestamps for ordering transactions.
However, because node programs potentially have a very
large read set and long execution time, Weaver processes
node programs differently from read-write transactions.

4.1 Node Programs
Weaver includes a specialized, high-throughput implemen-

tation of refinable timestamps for node program execution.
A gatekeeper assigns a timestamp Tprog and forwards the
node program to the appropriate shards. The shards exe-
cute the node program on a version of the in-memory graph
consistent with Tprog by comparing Tprog to the timestamps
of the vertices and edges in the multi-version graph and only
reading the portions of the graph that exist at Tprog. In case
timestamps are concurrent, the shard requests for an order
from the timeline oracle.

When the timeline oracle receives an ordering request for
a node program and a committed write from a shard, it
returns the pre-established order between these transactions
to the shard, if one exists. In cases where a pre-established
order does not exist, because gatekeepers do not precisely
order transactions, the oracle will prefer arrival order. This
order is then established as a commitment for all time; the
timeline oracle will record the happens-before relationship
and ensure that all subsequent queries from all shard servers
receive responses that respect this commitment.

Because arrival order may differ on different shard servers,
care must be taken to ensure atomicity and isolation. For
example, in a näıve implementation, a node program P may
arrive after a transaction T on shard 2, but before T on shard
1. To ensure consistent ordering, Weaver delays execution
of a node program at a shard until after execution of all
preceding and concurrent transactions.

In addition to providing consistent ordering for transac-
tions, the timeline oracle ensures that transitive ordering
is maintained. For instance, if T1 ≺ T2 and T2 ≺ T3 is
pre-established, then an order query between T1 and T3

will return T1 ≺ T3. Furthermore, because transactions are
identified by their unique vector clocks, the timeline oracle
can infer and maintain implicit dependencies captured by
the vector clocks. For example, if the oracle first orders
〈0, 1〉 ≺ 〈1, 0〉 and subsequently a shard requests the order
between 〈0, 1〉 and 〈2, 0〉, the oracle will return 〈0, 1〉 ≺ 〈2, 0〉
because 〈0, 1〉 ≺ 〈1, 0〉 ≺ 〈2, 0〉 due to transitivity.

4.2 Transactions
Transactions, which contain both reads and writes, re-

sult in updates to both the in-memory graph at the shard
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GK 2
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T
1
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T
2
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T
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<2,2,1>
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T
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Figure 6: Each shard server maintains a queue of transactions per
gatekeeper and executes the transaction with the lowest timestamp.
When a group of transactions are concurrent (e.g. T3, T4, and T5),
the shard server consults the timeline oracle to order them.

servers and the fault-tolerant graph stored in the backing
store. Weaver first executes the transaction on the backing
store, thereby leveraging its transactional guarantees to check
transaction validity. For example, if a transaction attempts
to delete an already deleted vertex, it aborts while executing
on the backing store. After the transaction commits success-
fully on the backing store, it is forwarded to the shard servers
which update the in-memory graph without coordination.

To execute a transaction on the backing store, gatekeepers
act as intermediaries. Clients buffer writes and submit them
as a batch to the gatekeeper at the end of a transaction,
and the gatekeeper, in turn, performs the writes on the
backing store. The backing store commits the transaction if
none of the data read during the transaction was modified
by a concurrent transaction. HyperDex Warp, the backing
store used in Weaver, employs the highly scalable acyclic
transactions protocol [21] to order multi-key transactions.
This protocol a form optimistic concurrency control that
enables scalable execution of large volumes of transactions
from gatekeepers.

Gatekeepers, in addition to executing transactions on the
backing store, also assign a refinable timestamp to each trans-
action. Timestamps are assigned in a manner that respects
the order of transaction execution on the backing store. For
example, if there are two concurrent transactions T1 and T2

at gatekeepers GK1 and GK2 respectively, both of which
modify the same vertex in the graph, Weaver guarantees that
if T1 commits before T2 on the backing store, then T1 ≺ T2.
To this end, Weaver stores the timestamp of the last update
for each vertex in the backing store. In our example, if T1

commits before T2 on the backing store, then the last update
timestamp at the graph vertex will be T1 when GK2 at-
tempts to commit T2. Before committing T2, GK2 will check
that T1 ≺ T2. If it so happens that the timestamp assigned
by GK2 is smaller, i.e. T2 ≺ T1, then GK2 will abort and
the client will retry the transaction. Upon retrying, GK2

will assign a higher timestamp to the transaction.
While gatekeepers assign refinable timestamps to trans-

actions and thereby establish order, shard servers obey this
order. To do so, each shard server has a priority queue of in-
coming transactions for each gatekeeper, prioritized by their
timestamps (Fig. 6). Shard servers enqueue transactions
from gatekeeper i on its i-th gatekeeper queue. When each
gatekeeper queue is non-empty, an event loop at the shard
server pulls the first transaction Ti off each queue i and exe-
cutes the earliest transaction out of (T1, T2, . . . , Tn). In case
a set of transactions appear concurrent, such as (T3, T4, T5)
in Fig. 6, the shard servers will submit the set to the timeline
oracle in order to discover and, if necessary, assign an order.
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Weaver’s implementation of refinable timestamps at shard
servers has correctness and performance subtleties. First, in
order to ensure that transactions are not lost or reordered
in transit, Weaver maintains FIFO channels between each
gatekeeper and shard pair using sequence numbers. Sec-
ond, to ensure the system makes progress in periods of light
workload, gatekeepers periodically send NOP transactions
to shards. NOP transactions guarantee that there is always
a transaction at the head of each gatekeeper queue. This
provides an upper-bound on the delay in node program exe-
cution, set by default to 10µs in our current implementation.
Finally, since ordering decisions made by the timeline oracle
are irreversible and monotonic, shard servers can cache these
decisions in order to reduce the number of ordering requests.

Shard servers also maintain the in-memory, multi-version
distributed graph by marking each written object with the
refinable timestamp of the transaction. For example, an
operation that deletes an edge actually marks the edge as
deleted and stores the refinable timestamp of the deletion in
the edge object.

4.3 Fault Tolerance
Weaver minimizes data that is persistently stored by only

storing the the graph data in the backing store. In response
to a gatekeeper or shard failure, the cluster manages spawns
a new process on one of the live machines. The new process
restores corresponding graph data from the backing store.
However, restoring the graph from the backing store is not
sufficient to ensure strict serializability of transactions since
timestamps and queues are not stored at the backing store.

Weaver implements additional techniques to ensure strict
serializability. A transaction that has committed on the
backing store before failure requires no extra handling: the
backup server will read the latest copy of the data from the
backing store. Transactions that have not executed on the
backing store, as well as all node programs, are reexecuted
by Weaver with a fresh timestamp after recovery, when
resubmitted by clients. Since partially executed operations
for these transactions were not persistent, it is safe to start
execution from scratch. This simple strategy avoids the
overhead of execution-time replication of ordering metadata
such as the gatekeeper queues at shards and pays the cost of
reexecution on rare server failures.

Finally, in order to maintain monotonicity of timestamps
on gatekeeper failures, a backup gatekeeper restarts the
vector clock for the failed gatekeeper. To order the new
timestamps with respect to timestamps issued before the fail-
ure, the vector clocks in Weaver include an extra epoch field
which the cluster manager increments on failure detection.
The cluster manager imposes a barrier between epochs to
guarantee that all servers move to the new epoch in unison.

The cluster manager and the timeline oracle are fault-
tolerant Paxos [37] replicated state machines [55].

4.4 Proof of Correctness
In this section, we prove that Weaver’s implementation of

refinable timestamps yields a strictly serializable execution
order of transactions and node programs. We structure the
proof in two parts—the first part shows that the execution
order of transactions is serializable, and the second part
shows that the execution order respects wall-clock ordering.
We assume that the timeline oracle correctly maintains a
DAG of events that ensures that no cycles can arise in the
event dependency graph [20].

Strict Serializability 1. Let transactions T1, . . . , Tn

have timestamps t1, . . . , tn. Then the execution order of
T1, . . . , Tn in Weaver is equivalent to a serializable execution
order.

Proof. We prove the claim by induction on n, the number
of transactions in the execution.

Basis: The case of n = 1, the execution of a single trans-
action T1 is vacuously serializable.

Induction: Assume all executions with n transactions are
serializable in Weaver. Consider an execution of n+ 1 trans-
actions. Remove any one transaction from this execution,
say Ti, 1 ≤ i ≤ n+1, resulting in a set of n transactions. The
execution of these transactions has an equivalent serializable
order because of the induction hypothesis. We will prove that
the addition of Ti to the execution also yields a serializable
order by considering the ordering of Ti with an arbitrary
transaction Tj , 1 ≤ j ≤ n+ 1, i 6= j in three cases.

First, if both Ti and Tj are node programs, then their
relative ordering does not matter as they do not modify the
graph data.

Second, let Ti be a node program and Tj be a read-write
transaction. If Ti ≺ Tj , either due to vector clock ordering
or due to the timeline oracle, then the node program Ti

cannot read any of Tj ’s updates. This is because when Ti

executes at a vertex v, Weaver first iterates through the multi-
version graph data (i.e. vertex properties, out-edges, and
edge properties) associated with v, and filters out updates
that happen after ti (§ 4.1). If Tj ≺ Ti, then Weaver ensures
that Ti reads all updates, across all shards, due to Tj . This
is because node program execution is delayed at a shard
until the timestamp of the node program is lower than all
enqueued read-write transactions (§ 4.1).

Third, we consider the case when both Ti and Tj are
read-write transactions. Let Γx(Tk) denote the real time
of execution of transaction Tk at shard Sx. If ti < tj due
to vector clock ordering, then Γx(Ti) < Γx(Tj) ∀x. (§ 4.2).
Similarly if tj < ti then Γx(Tj) < Γx(Ti) ∀x. For the case
when ti ≈ tj , assume if possible that Ti and Tj are not
consistently ordered across all shards, i.e. Γa(Ti) < Γa(Tj)
and Γb(Tj) < Γb(Ti). When Tj executes at Sb, let T ′i be the
transaction that is in the gatekeeper queue corresponding
to Ti. T

′
i may either be the same as Ti, or T ′i ≺ Ti due to

sequence number ordering (§ 4.2). Since Γb(Tj) < Γb(T
′
i ),

we must have Tj ≺ T ′i . But since ti ≈ tj , it must also be
the case that t′i ≈ tj , and thus the decision Tj ≺ T ′i was
established at the timeline oracle. Thus we have:

Tj ≺ T ′i � Ti (1)

Now when Ti executes at Sa, let T ′j be the transaction in
the gatekeeper queue corresponding to Tj . By an argument
identical to the previous reasoning, we get:

Ti ≺ T ′j � Tj (2)

Eq. 1 and Eq. 2 yield a cycle in the dependency graph, which
is not permitted by the timeline oracle.

Since the execution of Ti is isolated with respect to the
execution of an arbitrary transaction Tj ∀j, 1 ≤ j ≤ n + 1,
we can insert Ti in the serial execution order of T1, . . . , Ti−1,
Ti+1, . . . , Tn+1 and obtain another serializable execution or-
der comprising all n+ 1 transactions.

Strict Serializability 2. Let transactions T1 and T2

have timestamps t1 and t2 respectively. If the invocation of
transaction T2 occurs after the response for transaction T1

is returned to the client, then Weaver orders T1 ≺ T2.
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Proof. When both T1 and T2 are read-write transactions,
then the natural execution order of the transactions on the
transactional backing store ensures that T1 ≺ T2. This is
because the response of T1 is returned to the client only
after the transaction executes on the backing store, and the
subsequent invocation of T2 will see the effects of T1.

Consider the case when the invocation of node program
T2 occurs after the response of transaction T1. If either
t1 < t2 or t2 < t1 by vector clock ordering, the shards will
order the node program and transaction in their natural
timestamp order. When t1 ≈ t1, the timeline oracle will
consistently order the two transactions across all shards. The
oracle will return a preexisting order if one exists, or order
the node program after the transaction (§ 4.1). By always
ordering node programs after transactions when no order
exists already, the timeline oracle ensures that node programs
never miss updates due to completed transactions.

Combining the two theorems yields that Weaver’s imple-
mentation of refinable timestamps results in a strictly serial-
izable order of execution of transactions and node programs.

4.5 Garbage Collection
Weaver’s multi-version graph data model permits multiple

garbage collection policies for deleted objects. Users may
choose to not collect old state if they wish to maintain a
multi-version graph with support for historic searches, or
they may choose to clean up state older than the earliest
operation still in progress within the system. In the latter
case, gatekeepers periodically communicate the timestamp of
the oldest ongoing node program to the shards. This allows
the shards to delete all versions older than the oldest node
program. Weaver uses a similar GC technique to clean up
the dependency graph of the timeline oracle.

4.6 Graph Partitioning and Caching
Graph queries often exhibit locality in their data access

patterns: a query that reads a vertex often also reads its
neighbors. Weaver leverages this by dynamically colocating
a vertex with the majority of its neighbors, using streaming
graph partitioning algorithms [58, 48], to reduce communica-
tion overhead during query processing.

In addition to locality in access patterns, graph analyses
can benefit from caching analysis results at vertices. For
example, a path query that discovers the path (V1, . . . , Vn)
can cache the (Vi, . . . , Vn) path at each vertex Vi. Weaver
enables applications to memoize the results of node programs
at vertices and to reuse the memoized results in subsequent
executions. In order to maintain consistency guarantees,
Weaver enables applications to invalidate the cached results
by discovering the changes in the graph structure since the
result was cached. Thus, in our previous example, whenever
any vertex or edge along the (V1, . . . , Vn) path is deleted, the
application can discard the cached value and reexecute the
node program.

The details of the partitioning and caching mechanisms are
orthogonal to the implementation of refinable timestamps
and are beyond the scope of this paper. Accordingly, we
disable both mechanisms in the system evaluation.

5. APPLICATIONS
Weaver’s property graph abstraction, together with strictly

serializable transactions, enable a wide variety of applications.
We describe three sample applications built on Weaver.

5.1 Social Network
We implement a database backend for a social network,

based on the Facebook TAO API [11], on Weaver. Facebook
uses TAO to store both their social network as well as other
graph-structured metadata such as relationship between sta-
tus updates, photos, ‘likes’, comments, and users. Applica-
tions attributes vertices and edges with data that helps render
the Facebook page and enable important application-level
logic such as access control. TAO supports billions of reads
and millions of writes per second and manages petabytes of
data [11]. We evaluate the performance of this social network
backend against a similar one implemented on Titan [9], a
popular open-source graph database, in § 6.2.

5.2 CoinGraph
Bitcoin [46] is a decentralized cryptocurrency that main-

tains a publicly-accessible history of transactions stored in
a datastructure called the blockchain. For each transaction,
the blockchain details the source of the money as well as
the output Bitcoin addresses. CoinGraph is a blockchain ex-
plorer that stores the transaction data as a directed graph in
Weaver. As Bitcoin users transact, CoinGraph adds vertices
and edges to Weaver in real time. CoinGraph uses Weaver’s
node programs to execute algorithms such as user clustering,
flow analyses, and taint tracking. The application currently
stores more than 80M vertices and 1.2B edges, resulting in a
total of ∼ 900 GB of annotated data in Weaver.

5.3 RoboBrain
RoboBrain [54] stores a knowledge graph in Weaver that

assimilates data and machine learning models from a variety
of sources, such as physical robot interactions and the WWW,
into a semantic network. Vertices correspond to concepts
and edges represent labeled relationships between concepts.
As RoboBrain incorporates potentially noisy data into the
network, it merges this data into existing concepts and splits
existing concepts transactionally. Weaver also enables Robo-
Brain applications to perform subgraph queries as a node
program. This allows ML researchers to learn new concepts
without worrying about data or model inconsistencies on
potentially petabytes of data [2].

5.4 Discussion
The common theme among these applications is the need

for transactions on dynamic graph structured data. For ex-
ample, if the social network backend did not support strictly
serializable transactions, it would be possible for reads to
see an inconsistent or out-of-date view of the graph, leading
to potentially serious security flaws such as access control
violations. Indeed, Facebook recently published a study of
consistency in the TAO database [40] which showed that in
a trace of 2.7B requests over 11 days, TAO served thousands
of stale reads that violate linearizability. Similarly, if Coin-
Graph were to be built on a non-transactional database, then
it would be possible for users to see a completely incorrect
view of the blockchain. This is possible because (1) the Bit-
coin protocol accepts new transactions in blocks and partially
executed updates can lead to an inconsistent blockchain, and
(2) in the event of a blockchain fork, a database that reads
a slightly stale snapshot may return incorrect transactions
from the wrong branch of the blockchain fork, leading to
financial losses.
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While it may be possible to build specialized systems for
some of these applications that relax the strict serializability
guarantees, we believe that providing transactional semantics
to developers greatly simplifies the design of such applica-
tions. Moreover, since semantic bugs are the leading cause
of software bugs [39], a well-understood API will reduce the
number of such bugs. Finally, Weaver is scalable and can
support high throughput of transactions (§ 6), rendering
weaker consistency models unnecessary.

6. EVALUATION
In this section, we evaluate the performance of refinable

timestamps in a Weaver implementation comprising 40K
lines of C++ code. Our evaluation shows that Weaver:
• enables CoinGraph to execute Bitcoin block queries 8×

faster than Blockchain.info [1] (§ 6.1);
• outperforms Titan [9] by 10.9× on social network work-

load [11] (§ 6.2) and outperforms GraphLab [26] by 4×
on node program workload (§ 6.3);
• scales linearly with the number of gatekeeper and shard

servers for graph analysis queries (§ 6.4);
• balances the tension between proactive and reactive

ordering overheads (§ 6.5).

6.1 CoinGraph
To evaluate the performance of CoinGraph we deploy

Weaver on a cluster comprising 44 machines, each of which
has two 4 core Intel Xeon 2.5 GHz L5420 processors, 16 GB
of DDR2 memory, and between 500 GB and 1 TB SATA
spinning disks from the same era as the CPUs. The machines
are connected with gigabit ethernet via a single top of rack
switch, and each machine has 64-bit Ubuntu 14.04 and the

get_edges 59.4%
Reads 99.8% count_edges 11.7%

get_node 28.9%
create_edge 80.0%

Writes 0.2% delete_edge 20.0%
Table 1: Social network workload based on Facebook’s TAO.
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Figure 9: Throughput on a mix of read and write transactions
on the LiveJournal graph. Weaver outperforms Titan by 10.9× on
a read-heavy TAO workload, and by 1.5× on a 75% read workload.
The numbers over each bar denote the number of concurrent
clients that issued transactions. Reactively ordered transactions
comprised 0.0013% of the TAO workload and 1.7% of the 75%
read workload.

latest version of Weaver and HyperDex Warp [21]. The
total data stored by CoinGraph comprises more than 1.2B
edges and occupies ∼ 900 GB on disk, which exceeds the
cumulative memory (704 GB). We thus implement demand
paging in Weaver to read vertices and edges from HyperDex
Warp in to the memory of Weaver shards to accommodate
the entire blockchain data.

We first examine the latency of single Bitcoin block query,
averaged over 20 runs. A block query is a node program in
Weaver that starts at the Bitcoin block vertex, and traverses
the edges to read the vertices that represent the Bitcoin
transactions that comprise the block. We calibrate Coin-
Graph’s performance by comparing with Blockchain.info [1],
a state-of-the-art commercial block explorer service backed
by MySQL [57]. We use their blockchain raw data API that
returns data identical to CoinGraph in JSON format.

The results (Fig. 7) show that the performance of block
queries is proportional to the number of Bitcoin transactions
in the block for both systems, but CoinGraph is significantly
faster. Blockchain.info’s absolute numbers in Fig. 7 should
be interpreted cautiously as they include overheads such as
WAN latency (about 0.013s) and concurrent load from other
web clients. The critical point to note is that CoinGraph
takes about 0.6–0.8ms per transaction per block, whereas
Blockchain.info takes 5–8ms per transaction per block. The
marginal cost of fetching more transactions per query is an or-
der of magnitude higher for Blockchain.info, due to expensive
MySQL join queries. Weaver’s lightweight node programs
enable CoinGraph to fetch block 350,000, comprising 1795
Bitcoin transactions, 8× faster than Blockchain.info.

We also evaluate the throughput of block queries supported
by CoinGraph. Fig. 8 reports the variation in throughput
of the system as a function of the block number. In this
figure, the data point corresponding to block x reports the
throughput, averaged over multiple runs, of executing block
node programs in CoinGraph for blocks randomly chosen
in the range [x, x+ 100]. Since each node program is reads
many vertices, Fig. 8 also reports the rate of vertices read
by the system. The system is able to sustain node programs
that perform 5,000 to 20,000 node reads per second.

6.2 Social network benchmark
We next evaluate Weaver’s performance on Facebook’s
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TAO workload [11] (Table 1) using a snapshot of the Live-
Journal social network [10] comprising 4.8M nodes and 68.9M
edges (1.1 GB). The workload consists of a mix of reads (node
programs in Weaver) and writes (transactions in Weaver)
that represent the distribution of a real social network ap-
plication. Since the workload consists of simple reads and
writes, this experiment stresses the core transaction ordering
mechanism. We compare Weaver’s performance to Titan [9],
a graph database similar to Weaver (distributed, OLTP)
implemented on top of key-value stores. We use Titan v0.4.2
with a Cassandra backend running on identical hardware.
We use a cluster of 14 machines similar to those in § 6.1.
Throughput: Fig. 9a shows the throughput of Weaver
compared to Titan. Weaver outperforms Titan by a factor
of 10.9×. Weaver also significantly outperforms Titan across
benchmarks that comprise different fractions of reads and
writes as shown in Fig. 9b.

Titan provides limited throughput because it uses two-
phase commit with distributed locking in the commit phase
to ensure serializability [51]. Since it always has to pes-
simistically lock all objects in the transaction, irrespective
of the ratio of reads and writes, Titan gives nearly the same
throughput of about 2000 transactions per second across all
the workloads. Weaver, on the other hand, executes graph
transactions using refinable timestamps leading to higher
throughput for all workloads.

Weaver’s throughput decreases as the percentage of writes
increases. This is because the timeline oracle serializes con-
current transactions that modify the same vertex. Weaver’s
throughput is higher on read-mostly workloads because node
programs can execute on a snapshot of the graph defined by
the timestamp of the transaction.
Latency: Fig. 10 shows the cumulative distribution of the
transaction latency on the same social network workloads.
We find that node program execution has lower latency
than write transactions in Weaver because writes include
a transaction on the backing store. As the percentage of
writes in the workload increases, the latency for the requests
increases. In contrast, Titan’s heavyweight locking results in
higher latency even for reads.
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6.3 Graph analysis benchmark
Next, we evaluate Weaver’s performance for workloads

which involve more complicated, traversal-oriented graph
queries. Such workloads are common in applications such
as label propagation, connected components, and graph
search [5]. For such queries, we compare Weaver’s perfor-
mance to GraphLab [26] v2.2, a system designed for offline
graph processing. Unlike Weaver, GraphLab can optimize
query execution without concern for concurrent updates.
We use both the synchronous and asynchronous execution
engines of GraphLab. We use the same cluster as in § 6.2.

The benchmark consists of reachability queries on a small
Twitter graph [42] consisting of 1.76M edges (43 MB) between
vertices chosen uniformly at random. We implement the
reachability queries as breadth-first search traversals on both
systems. In order to match the GraphLab execution model,
we execute Weaver programs sequentially with a single client.

The results show that that, in spite of supporting strictly se-
rializable online updates, Weaver achieves an average traver-
sal latency that is 4× lower than asynchronous GraphLab and
9× lower than synchronous GraphLab. Fig. 11 shows that
the latency variation for this workload is much higher as com-
pared to the social network workload, because the amount
of work done varies greatly across requests. Synchronous
GraphLab uses barriers, whereas asynchronous GraphLab
prevents neighboring vertices from executing simultaneously—
both these techniques limit concurrency and adversely affect
performance. Weaver allows a higher-level of concurrency
due to refinable timestamps.

6.4 Scalability
To investigate how Weaver’s implementation of refinable

timestamps scales, we measure Weaver’s throughput on mi-
crobenchmarks with varying number of servers. We perform
the first set experiments on an Amazon EC2 cluster com-
prising 16 r3.2xlarge instances, each running Ubuntu 14.04
on an 8 core Intel Xeon E5-2670 (Ivy Bridge) processor, 61
GB of RAM, and 160 GB SSD storage. We perform this
experiment on the Twitter 2009 snapshot [34] comprising
41.7M users and 1.47B links (24.37 GB).

Fig. 12 shows the throughput of get_node node programs
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in Weaver with a varying number of gatekeeper servers. Since
these queries are local to individual vertices, the shard servers
do relatively less work and the gatekeepers comprise the
bottleneck in the system. Weaver scales to about 250,000
transactions per second with just 6 gatekeepers.

However, as the complexity of the queries increases, the
shard servers perform more work compared to the gatekeeper.
The second scalability microbenchmark, performed on a small
Twitter graph with 1.76M edges (43 MB) [42] using the same
cluster as § 6.2, measures the performance of the system on
local clustering coefficient node programs. These programs
require more work at the shards: each vertex needs to contact
all of its neighbors, resulting in a query that fans out to one
hop and returns to the original vertex. Fig. 13 shows that
increasing the number of shard servers, while keeping the
number of gatekeepers fixed, results in linear improvement
in the throughput for such queries.

The scalability microbenchmarks demonstrate that Weaver’s
transaction ordering mechanism scales well with additional
servers, and also describe how system administrators should
allocate additional servers based on the workload characteris-
tics. In practice, an application built on Weaver can achieve
additional, arbitrary scalability by turning on node program
caching (§ 4.6) and also by configuring read-only replicas of
shard servers if weaker consistency is acceptable, similar to
TAO [11]. We do not evaluate these mechanisms as they are
orthogonal to transaction ordering.

6.5 Coordination Overhead
Finally, we investigate the tension between proactive (gate-

keeper announce messages) and reactive (timeline oracle
queries) coordination in Weaver’s refinable timestamps im-
plementation. The fraction of transactions which are ordered
proactively versus reactively can be adjusted in Weaver by
varying the vector clock synchronization period τ .

To evaluate this tradeoff, we measured the number of
coordination messages due to both gatekeeper announces and
timeline oracle queries, as a function of τ , to order the same
number of transactions. Fig. 14 shows that for small values of
τ , the vector clocks are sufficient for ordering a large fraction
of the requests. As τ increases, the reliance on the timeline
oracle increases. Both extremes are undesirable and result
in high overhead—low values of τ waste gatekeeper CPU
cycles in processing announce messages, while high values
of τ cause increased latency to due extra timeline oracle
messages. An intermediate value represents a good tradeoff
leading to high-throughput timestamping with occasional
concurrent transactions consulting the timeline oracle.

7. RELATED WORK
Past work on distributed data storage and graph processing

can be roughly characterized as follows.
Offline Graph Processing Systems: Google’s Pregel [41]
computation paradigm has spurred a spate of recent sys-
tems [3, 53, 44, 26, 35, 52, 49, 64, 43, 14, 27, 68, 63, 12, 13,
4, 66, 65, 67, 60, 29, 32, 16] designed for offline processing
of large graphs. Such systems do not support the rich prop-
erty graph abstraction, transactional updates, and lookup
operations of a typical graph database.
Online Graph Databases: The Scalable Hyperlink Store
[45] provides the property graph abstraction over data but
does not support arbitrary properties on vertices and edges.
Trinity [56] is a distributed graph database that does not
support ACID transactions. SQLGraph [59] embeds property
graphs in a relational database and executes graph traversals
as SQL queries. TAO [11] is Facebook’s geographically dis-
tributed graph backend (§ 5.1). Titan [9] supports updates
to the graph and a vertex-local query model.

Centralized graph databases are suitable for a number
of graph processing applications on non-changing, static
graphs [43]. However, centralized databases designed for
online, dynamic graphs [6, 31, 36, 38] pose an inevitable
scalability bottleneck in terms of both concurrent query
processing and graph size. It is difficult to support the scale
of modern content networks [61, 11] on a single machine.
Temporal Graph Databases: A number of related sys-
tems [30, 15, 25] are designed for efficient processing of graphs
that change over time. Chronos [30] optimizes for spatial
and temporal locality of graph data similar to Weaver, but
it does not support ACID transactions.

Kineograph [15] decouples updates from queries and exe-
cutes queries on a stale snapshot. It executes queries on the
last available snapshot of the graph while new updates are
delayed and buffered until the end of 10 second epochs. In
contrast, refinable timestamps enable low-latency updates
(§ 6.2, § 6.3) and ensure that node programs operate on the
latest version of the graph.
Consistency Models: Many existing databases support
only weak consistency models, such as eventual consistency [11,
40]. Weaver supports strictly serializable operations, as do
few other contemporary systems [17, 21, 6, 9].
Concurrency Control: Pessimistic two-phase locking [28]
ensures correctness and strong consistency but excessively
limits concurrency. Optimistic concurrency control tech-
niques [33] (OCC) are feasible in scenarios where the ex-
pected contention on objects is low and transaction size is
small. FaRM [19] uses OCC and 2PC with version numbers
over RDMA-based messaging. Graph databases that sup-
port queries that touch a large portion of the graph are not
well-served by OCC techniques.

Weaver leverages refinable timestamps to implement multi-
version concurrency control [50, 47], which enables long-
running graph algorithms to read a consistent snapshot of
the graph. Bohm [22] is a similar MVCC-based concur-
rency control protocol for multi-core settings which serializes
timestamp assignment at a single thread. Centiman [18]
introduces the watermark abstraction—the timestamp of
the latest completed transaction—over traditional logical
timestamps or TrueTime. Weaver uses a similar abstraction
for garbage collection (§ 4.5) and node programs (§ 4.1).
Deuteronomy [38] is a centralized, multi-core database that
implements MVCC using a latch-free transaction table.
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8. CONCLUSION
This paper proposed refinable timestamps, a novel, highly

scalable mechanism for achieving strong consistency in a dis-
tributed database. The key idea behind refinable timestamps
is to enable a coarse-grained ordering that is sufficient to
resolve the majority of transactions and to fall back on a
finer-grained timeline oracle for concurrent, conflicting trans-
actions. Weaver implements refinable timestamps to support
strictly serializable and fast transactions as well as graph
analyses on dynamic graph data. The power of refinable
timestamps enables Weaver to implement high-performance
applications such as CoinGraph and RoboBrain which exe-
cute complicated analyses on online graphs.
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[47] T. Neumann, T. Mühlbauer, and A. Kemper. Fast
Serializable Multi-Version Concurrency Control for
Main-Memory Database Systems. SIGMOD, pages
677-689, 2015.

[48] J. Nishimura and J. Ugander. Restreaming Graph
Partitioning: Simple Versatile Algorithms For
Advanced Balancing. KDD, pages 1106-1114, Aug.
2013.

[49] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L.
Zhou, and M. Haridasan. Managing Large Graphs on
Multi-Cores With Graph Awareness. USENIX ATC,
pages 41-52, June 2012.

[50] D. P. Reed. Naming And Synchronization in a
Decentralized Computer System. Massachusetts
Institute of Technology, Technical Report, 1978.

[51] M. A. Rodriguez and M. Broecheler.
http://www.slideshare.net/slidarko/titan-the-rise-of-
big-graph-data.

[52] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-Stream:

Edge-centric Graph Processing Using Streaming
Partitions. SOSP, pages 472–488, Nov. 2013.

[53] S. Salihoglu and J. Widom. GPS: A Graph Processing
System. SSDBM, July 2013.

[54] A. Saxena, A. Jain, O. Sener, A. Jami, D. K. Misra,
and H. S. Koppula. RoboBrain: Large-Scale Knowledge
Engine for Robots. Cornell University and Stanford
University, Technical Report, 2015.

[55] F. B. Schneider. Implementing Fault-Tolerant Services
Using the State Machine Approach: A Tutorial. ACM
Computing Surveys, 22(4), 1990.

[56] B. Shao, H. Wang, and Y. Li. Trinity: A Distributed
Graph Engine on a Memory Cloud. SIGMOD, pages
505-516, June 2013.

[57] P. Smith. Personal communication, 2015.

[58] I. Stanton and G. Kliot. Streaming Graph Partitioning
for Large Distributed Graphs. KDD, pages 1222-1230,
Aug. 2012.

[59] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G.
Hu, and G. T. Xie. SQLGraph: An Efficient
Relational-Based Property Graph Store. SIGMOD,
pages 1887-1901, 2015.

[60] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J.
McPherson. From ”Think Like a Vertex” to ”Think
Like a Graph”. PVLDB, 7(3):193-204, 2013.

[61] J. Ugander, B. Karrer, L. Backstrom, and C. Marlow.
The Anatomy of the Facebook Social Graph. CoRR,
abs/1111.4503, 2011.

[62] R. van Renesse and F. B. Schneider. Chain Replication
for Supporting High Throughput and Availability.
OSDI, pages 91-104, Dec. 2004.

[63] K. Wang, G. Xu, Z. Su, and Y. D. Liu. GraphQ: Graph
Query Processing with Abstraction
Refinement—Scalable and Programmable Analytics
over Very Large Graphs on a Single PC. USENIX ATC,
pages 387-401, July 2015.

[64] W. Xie, G. Wang, D. Bindel, A. Demers, and J.
Gehrke. Fast Iterative Graph Computation with Block
Updates. PVLDB, 6(14):2014–2025, 2013.

[65] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A
Block-Centric Framework for Distributed Computation
on Real-World Graphs. PVLDB, 7(14):1981-1992, 2014.

[66] D. Yan, J. Cheng, Y. Lu, and W. Ng. Effective
Techniques for Message Reduction and Load Balancing
in Distributed Graph Computation. WWW, pages
1307-1317, 2015.

[67] C. Zhou, J. Gao, B. Sun, and J. X. Yu. MOCgraph:
Scalable Distributed Graph Processing Using Message
Online Computing. PVLDB, 8(4):377-388, 2014.

[68] X. Zhu, W. Han, and W. Chen. GridGraph:
Large-Scale Graph Processing on a Single Machine
Using 2-Level Hierarchical Partitioning. USENIX ATC,
pages 375-386, July 2015.

863


	Introduction
	Approach
	Data Model
	Transactions for Graph Updates
	Node Programs for Graph Analyses

	Refinable Timestamps
	Overview
	System Architecture
	Proactive Ordering by Gatekeepers
	Reactive Ordering by Timeline Oracle
	Discussion

	Implementation and  Correctness
	Node Programs
	Transactions
	Fault Tolerance
	Proof of Correctness
	Garbage Collection
	Graph Partitioning and Caching

	Applications
	Social Network
	CoinGraph
	RoboBrain
	Discussion

	Evaluation
	CoinGraph
	Social network benchmark
	Graph analysis benchmark
	Scalability
	Coordination Overhead

	Related Work
	Conclusion
	References

