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The Minimum Area Spanning Tree Problem

Paz Carmi∗ Matthew J. Katz†

Abstract

We define and study the Minimum Area Spanning
Tree (mast) problem. Given a set P of n points in
the plane, find a spanning tree T of P of minimum
area, where the area of a spanning tree is the area
of the union of the n − 1 disks whose diameters are
the edges in T . We prove that the minimum span-
ning tree of P is a constant-factor approximation for
mast. We then apply this result to obtain a constant-
factor approximation for the Minimum Area Range
Assignment (mara) problem and for the Minimum
Area Connected Disk Graph (macdg) problem. The
former problem is a variant of the power assignment
problem in radio networks, and the latter problem is
a related natural problem.

1 Introduction

We introduce and study the Minimum Area Spanning
Tree (mast) problem. Given a set P of n points in
the plane, find a spanning tree of P of minimum area,
where the area of a spanning tree T of P is defined
as follows. For each edge e in T draw the disk whose
diameter is e. The area of T is then the area of the
union of these n − 1 disks. Although this problem
seems natural (see also applications below), we are
not aware of any previous work on this problem.
One of the main results of this paper (presented in

Section 2) is that the minimum spanning tree of P is
a constant-factor approximation for mast. This is an
important property of the minimum spanning tree as
is shown below. (See, e.g., [3, 5] for background on
the minimum spanning tree.)
We apply the result above to two problems from a

class of problems that has received considerable at-
tention. The first problem is a variant of the power
assignment problem (also called the range assignment
problem). Let P be a set of n points in the plane,
representing n transmitters-receivers (or transmitters
for short). In the standard version of the power as-
signment problem one needs to assign transmission
ranges to the transmitters in P, so that (i) the result-
ing communication graph is strongly connected (that
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is, the graph in which there exists a directed edge
from pi ∈ P to pj ∈ P if and only if pj lies in the disk
Dpi is strongly connected, where the radius of Dpi is
the transmission range, ri, assigned to pi), and (ii)
the total power consumption (i.e., the cost of the as-
signment of ranges) is minimal, where the total power
consumption is

∑
pi∈P area(Dpi).

The power assignment problem is known to be NP-
hard (see Kirousis et al. [6] and Clementi et al. [2]).
Kirousis et al. [6] also obtain a 2-approximation for
this problem, based on the minimum spanning tree of
P, and this is the best approximation known.
Consider now the variant of the power assignment

problem where the second requirement above is re-
placed by (ii’) the area of the union of the disks
Dp1 , . . . , Dpn is minimal. We refer to this problem
as the Minimum Area Range Assignment (mara)
problem. In general, the presence of a foreign re-
ceiver (whether friendly or hostile) in the region
Dp1∪· · ·∪Dpn is undesirable, and the smaller the area
of this region, the lower the probability that such a
foreign receiver is present. In Section 3 we prove that
the range assignment of Kirousis et al. (that is based
on the minimum spanning tree) is also a constant-
factor approximation for mara.
Another related and natural problem for which we

obtain a constant-factor approximation (in the full
version of this paper) is the following. Let P be a
set of n points in the plane. For each point p ∈ P,
draw a disk Dpi of radius 0 or more, such that, (i) the
resulting disk graph is connected (that is, the graph
in which there exists an edge between pi ∈ P and
pj ∈ P if and only if Dpi ∩Dpj %= ∅ is connected), and
(ii) the area of the union of the disks Dp1 , . . . , Dpn is
minimal. We refer to this problem as the Minimum
Area Connected Disk Graph (macdg) problem. (See,
e.g., [4, 7] for background on intersection graphs and
disk graphs in particular.)
A potentially interesting property concerning the

area of the minimum spanning tree that is obtained
as an intermediate result in Section 2 is that the depth
of the arrangement of the disks corresponding to the
edges of the minimum spanning tree is bounded by
some constant. Notice that this property does not
follow immediately from the fact that the degree of
the minimum spanning tree is at most 6, as is shown
in Figure 2.
Finally, all the above results hold in any fixed di-

mension d (with obvious modifications).
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Figure 1: A minimum spanning tree is not necessarily
a minimum area spanning tree. (a) The minimum
spanning tree. (b) A minimum area spanning tree.

2 mst is a constant-factor approximation for mast

Let T be any spanning tree of P. For an edge e
in T , let D(e) denote the disk whose diameter is
e. Put D(T ) = {D(e) | e is an edge in T },

⋃
T =⋃

e∈T D(e), and σT =
∑

e∈T area(D(e)). Let mst

be a minimum spanning tree of P. mst is not nec-
essarily a solution for the Minimum Area Spanning
Tree (mast) problem; see Figure 1. In this section we
prove that mst is a constant-factor approximation for
mast, that is, area(

⋃
mst

) = O(area(
⋃

opt
)), where

opt is an optimal spanning tree, i.e., a solution to
mast.

q

Figure 2: A spanning tree T of degree 3, and a point
q (in the interior of a cell of the arrangement of the
disks in D(T )) of depth O(n).

We begin by showing another interesting property
of mst, namely, that the depth of any point p in the
interior of a cell of the arrangement of the disks in
D(mst) is bounded by a small constant. This prop-
erty does not follow directly from the fact that the
degree of mst is bounded by 6; see Figure 2. Let
mstp be a minimum spanning tree for P ∪ {p}. We
need the following known and easy claim.

Claim 1 We may assume that there is no edge (a, b)
in mstp, such that, (a, b) is not in mst and both a
and b are points of P.

Proof. Assume there is such an edge (a, b) in mstp.
Consider the path in mst between a and b. At least
one of the edges along this path is not in mstp. Let
e be such an edge. |e| ≤ |(a, b)|, since otherwise (a, b)
would have been chosen by the algorithm that com-
puted mst (e.g., Kruskal’s minimum spanning tree al-
gorithm [1]). Therefore, we may replace the edge (a, b)
in mstp by e, without increasing the total weight of
the tree. �

An immediate corollary of this claim is that we may
assume that if e is an edge in mstp but not in mst,
then one of e’s endpoints is p.
The proof of the following lemma appears in the

full version of this paper.

Lemma 1 σmst ≤ 5 area(
⋃

mst
).

Remark. A more careful analysis allows one to re-
place the 5 in the statement of the lemma above by 4
or perhaps even by 3. However, for our purpose 5 is
good enough.
Let opt be an optimal spanning tree of P, i.e., a

solution to mast. We use opt to construct another
spanning tree, st, of P. Initially st is empty. Let
e1 be the longest edge in opt. Draw two concentric
disks C1 and C3

1 around the mid point of e1 of diame-
ters |e1| and 3|e1|, respectively. Compute a minimum
spanning tree of the points of P lying in C3

1 , using
Kruskal’s algorithm [1]. Whenever an edge is chosen
by Kruskal’s algorithm, it is immediately added to st.
See Figure 3. Let S1 denote the set of edges that have
been added to st in this (first) iteration.
Next, let e2 be the longest edge in opt, such that

at least one of its endpoints lies outside C3
1 . As for

e1, draw two concentric disks C2 and C3
2 around the

mid point of e2 of diameters |e2| and 3|e2|, respec-
tively. Apply Kruskal’s minimum spanning algorithm
to the points of P lying in C3

2 with the following mod-
ification. The next edge in the sorted list of potential
edges is chosen by the algorithm if and only if it is
not in st and its addition to st does not create a cy-
cle in st. Moreover, when an edge is chosen by the
algorithm it is immediately added to st; see Figure 4
(a) and (b). Let S2 denote the set of edges that have
been added to st in this iteration.

C1

C3
1

e1

Figure 3: st after choosing e1.
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Figure 4: st after choosing e1 and e2. (a) One of the
end points of e2 is in C3

1 . (b) Both endpoints of e2

are not in C3
1 .

In the i’th iteration, let ei be the longest edge in
opt, such that there is no path yet in st between
its endpoints. Draw two concentric circles Ci and C3

i

around the mid point of ei, and apply Kruskal’s min-
imum spanning tree algorithm with the modification
above to the points of P lying in C3

i . Let Si denote
the set of edges that have been added to st in this
iteration. The process ends when for each edge e in
opt there already exists a path in st between the
endpoints of e.

Claim 2 For each i, Si is a subset of the edge set of
the minimum spanning tree msti that is obtained by
applying Kruskal’s algorithm, without the modifica-
tion above, to the points in C3

i .

Proof. Let e be an edge that was added to st dur-
ing the i’th iteration. If e is not chosen by Kruskal’s
algorithm (without the modification above), it is only
because, when considering e, a path between its two
endpoints already exists in msti. But this implies
that e could not have been added to st, since, any
edge already in msti was either also added to st or
was not added since there already existed a path in
st between its two endpoints. Thus, when e was con-
sidered by the modified algorithm it should have been
rejected. We conclude that e must be in msti. �

Claim 3 st is a spanning tree of P.

Proof. Since only edges that do not create a cycle
in st were added to st, there are no cycles in st.

Also st is connected, since otherwise there still exists
an edge in opt that forces another iteration of the
construction algorithm. �

Let C denote the set of the disks C1, . . . , Ck, and
let C3 denote the set of the disks C3

1 , . . . , C
3
k , where k

is the number of iterations in the construction of st.

Claim 4 For any pair of disks Ci, Cj in C, i %= j, it
holds that Ci ∩ Cj = ∅.

Proof. Let Ci be any disk in C. We show that for
any disk Cj ∈ C such that j > i, Ci ∩ Cj = ∅. From
the construction of st it follows that |ej |, the diam-
eter of Cj , is smaller or equal to |ei|, the diameter
of Ci. Moreover, at least one of the endpoints of ej

lies outside C3
i (since if both endpoints of ej lie in

C3
i , then, by the end of the i’th iteration, a path con-
necting between these endpoints must already exist
in st). Therefore, Cj whose center coincides with the
mid point of ej , cannot intersect Ci. �

Claim 5 σst = O(area(
⋃

opt
)).

Proof. Recall that σst = ΣiσSi
, where σSi

=
Σe∈Si

area(D(e)). We first show by the sequence of
inequalities below that σSi

= O(area(Ci)).

σSi
≤1 σmsti

≤2 5 area(
⋃

msti

) =3 O(area(C3
i ))

=4 O(area(Ci)) .

The first inequality follows immediately from Claim 2.
The second inequality is true by Lemma 1. Consider
Equality 3. Since all edges in msti are contained in
C3

i , it holds that
⋃

msti
is contained in a disk that

is obtained by expanding C3
i by some constant fac-

tor. It follows that area(
⋃

msti
) = O(area(C3

i )) =
O(area(Ci)).
Therefore,

σst = ΣiσSi
= ΣiO(area(Ci)) .

But according to Claim 4, the latter expres-
sion is equal to O(area(

⋃
C)), and, since C is

a subset of D(opt), we conclude that σst =
O(area(

⋃
opt

)). �

We are now ready to prove the main result of this
section.

Theorem 2 mst is a constant-factor approximation
for mast, that is, area(

⋃
mst

) ≤ c · area(
⋃

opt
), for

some constant c.

Proof.

area(
⋃

mst

) ≤1 σmst ≤2 σst ≤3 c · area(
⋃

opt

) .
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pk

pj

D(pi, pj)

Dpi (pi, pj)

D3(pi, pj)

Dpj (pj , pk)

pi

Figure 5: (pi, pj) ∈ mst; D(pi, pj) ∈ D(mst);
Dpi(pi, pj),Dpj (pj , pk) ∈ ra; D3(pi, pj) ∈ D3(mst).

The first inequality is trivial. The second inequal-
ity holds for any spanning tree of P; that is, for any
spanning tree T , σmst ≤ σT . (Since if the lengths
|e| of the edges are replaced with weights π|e|2/2, we
remain with the same minimum spanning tree.) The
third inequality is proven in Claim 5. �

3 A constant-factor approximation for mara

mst induces an assignment of ranges to the points of
P. Let pi ∈ P and let ri be the length of the longest
edge in mst that is connected to pi, then the range
that is assigned to pi is ri. Put ra = {Dp1 , . . . , Dpn},
where Dpi is the disk of radius ri centered at pi. In
this section we apply the main result of the previous
section (i.e., mst is a constant-factor approximation
for mast), in order to prove that the range assign-
ment that is induced by mst is a constant-factor app-
roximation for the Minimum Area Range Assignment
(mara) problem. That is, (i) the corresponding (di-
rected) communication graph is strongly connected,
and (ii) the area of the union of the disks in ra is
bounded by some constant times the area of the union
of the transmission disks in an optimal range assign-
ment, i.e., a solution to mara.
The first requirement above was already proven by

Kirousis et al. [6], who showed that the range assign-
ment induced by mst is a 2-approximation for the
standard range assignment problem. Let opt

R de-
note an optimal range assignment, i.e., a solution to
mara. It remains to prove the second requirement
above.

Claim 6 area(
⋃

RA) ≤ 9 area(
⋃

mst
).

Proof. We define an auxiliary set of disks. For each
edge e in mst, draw a disk of diameter |3e| centered
at the mid point of e. Let D3(mst) denote the set
of these n − 1 disks; see Figure 5. We now observe
that area(

⋃
RA) ≤ area(

⋃
D3(mst)). This is true since

for each pi ∈ P, Dpi = Dpi(pi, pj) for some point

pj ∈ P that is connected to pi (in mst) by an edge,
and Dpi(pi, pj) is contained in the disk of D3(mst)
corresponding to the edge (pi, pj). Finally, clearly
area(

⋃
D3(mst)) ≤ 9 area(

⋃
mst

). �

Theorem 3 ra is a constant-factor approximation
for mara, that is, area(

⋃
ra
) ≤ c′ · area(

⋃
optR), for

some constant c′.

Proof. The proof is based on the observation that
the (directed) communication graph corresponding to
opt

R contains a spanning tree, and on the main result
of Section 2. Let p be any point in P. We construct
a spanning tree T of P as follows. For each point
q ∈ P, q %= p, compute a shortest (in terms of num-
ber of hops) directed path from q to p, and add the
edges in this path to T . Now make all edges in T
undirected. T is a spanning tree of P. For each edge
(pi, pj) in T , the disk D(pi, pj) is contained either in
the transmission disk of pi (in opt

R), or in the trans-
mission disk of pj (in opt

R). Hence,
⋃
T ⊆

⋃
optR .

The following sequence of inequalities completes the
proof. (opt denotes a solution to mast.)

area(
⋃
ra

) ≤1 9 area(
⋃

mst

) ≤2 9c · area(
⋃

opt

)

≤3 9c · area(
⋃
T
) ≤4 9c · area(

⋃
optR

) .

The first inequality follows from Claim 6; the second
inequality follows from Theorem 2; the third inequal-
ity follows from the definition of opt; the fourth in-
equality was shown above. �
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