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Abstract. Recent progress on defining abstract trace semantics for
coalgebras rests upon two observations: (i) coalgebraic bisimulation for
deterministic automata coincides with trace equivalence, and (ii) the
classical powerset construction for automata determinization instantiates
the generic idea of lifting a functor to the Eilenberg-Moore category of an
appropriate monad T. We take this approach one step further by rebasing
the latter kind of trace semantics on the novel notion of T-observer,
which is just a certain natural transformation of the form F → GT , and
thus allowing for elimination of assumptions about the structure of the
coalgebra functor. As a specific application of this idea we demonstrate
how it can be used for capturing trace semantics of push-down automata.
Furthermore, we show how specific forms of observers can be used for
coalgebra-based treatment of internal automata transitions as well as
weak bisimilarity of processes.

1 Introduction

Perhaps the most impressive and productive category-theoretic archetypes adap-
ted by theoretical computer science are the notions of coalgebra and computational
monad. Whereas computational monads are typically used for sakes of denota-
tional semantics in order to encapsulate, i.e. internalize a computational effect,
and thus make it invisible, coalgebras are better known for their extroverted
character, exhibited by their tendency to actively interact with the outside.

As is usually the case, except oversimplified, one needs both kinds of features:
a way to hide some information, but also a possibility to stay reactive. Generic
trace semantics for coalgebras, originated in [11], can be viewed as an attempt
to resolve the mismatch between internal and external behaviours of coalgebras
by means of the generic notion of a trace, provided one treats nondeterminism
as a sort of intrinsic effect to be abstracted away from. More recently in [13],
it has been ascertained that generic traces naturally appear in a generalization
of the powerset construction for nondeterministic automata by identifying the
powerset functor as a monad and abstracting away from it. In view of the latter
work, the distinction between coalgebraic behaviours and traces can be explained
most easily by the core example of nondeterministic automata as follows. A
nondeterministic automaton is presented by a coalgebra of the functor FPω
where Pω stands for finite powersets and F is the deterministic automata functor
2× --A. The universal arrow from such a coalgebra to the final coalgebra νFPω
captures behaviours, while traces are obtained as behaviours of the determinized
version of the original automaton. The underlying property involved here is a



fact, known from experience: for deterministic automata, trace equivalence and
behavioural equivalence coincide. Notably, the theory does not explain why this
is the case. Moreover, the obtained trace semantic becomes rigidly bound to
the syntactic form of the functor, which limits the application power of the
construction drastically.

In this work, which is heavily based on [13] as well as on the more recent [28],
we attempt to push the existing development forward in two respects. First, we
generalise the framework by introducing the concept of a T-observer, which is a
natural transformation of the form

F → GT

with G subject to a distributive law π : TG→ GT. This will allow us to detach
from any assumptions about the shape of the coalgebra functor; Therefore, we
shall see how this helps to naturally define trace semantics of push-down automata
(and thus refine the earlier attempt from [28]). Second, we establish the notion of T-
observer as a generic phenomenon, arising from a natural adjoint construction. The
latter, somewhat surprisingly, suggests a distinction between real-time observers,
viewing only the current transition of the system, and lookahead observers, viewing
potentially infinite sequence of transitions starting from the current one on.

Paper organization. In Sections 2 and 3 we give the necessary preliminaries on
coalgebras and (computational) monads; Moreover, in the latter we introduce a
stack monad and its nondeterministic counterpart and give operational character-
izations for them. In Section 4 we introduce the crucial notion of a T-observer and
then, in Section 5, reesteblish it by a category-theoretic argument. Sections 6, 7
and 8 contain the main corpus of examples: internal actions of automata, weak
bisimilarity, pushdown automata, and reactive programs with side-effects.

2 Systems and (final) coalgebras

In general, one can sensibly speak about a system as of something sequentially
evolving in time while changing its internal state and possibly interacting with the
outer world. The notion of coalgebra is known to provide a suitable mathematical
abstraction, basically, as general as that.

Given a category C (typically the category Set of sets and functions) and
an endofunctor F : C → C, an F -coalgebra is any morphism of the form
f : X → FX. The object X it often referred to as the state space of f . For
a fixed F , F -coalgebras form a category, which we denote as coalgF (C), with
morphisms being the morphisms of the state spaces, subject to coherence with
the coalgebra structure as follows: for f : X → FX and g : Y → FY , h : X → Y
is an F -morphism iff gh = (Fh)f . A terminal object in the category of F -
coalgebras, called a final coalgebra, (whose state space is) often denoted as νF ,
if it exists, plays a critical role in the theory of systems: given an F -coalgebra
f : X → FX, the terminal morphism f̂ : X → νF produces behaviours of
the system, i.e. the complete characterization of its evolution for every chosen
initial state s : 1→ X. States with the same behaviour are called behaviourally
equivalent. For weak pullback preserving functors on Set, behavioural equivalence
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is known to capture the core notion of strong bisimilarity, stemming from the
realm of process algebra [26]

We now recap two quite representative examples (see e.g. [13]): deterministic
(DA) and nondeterministic (NA) automata.

Example 1 (DA). Let FX = 2×XA be an endofunctor over Set with finite A,
understood as an alphabet of atomic symbols. A coalgebra of this functor has the
form 〈o, t〉 : X → 2×XA. With X being finite 〈o, t〉 represents a deterministic
automaton: o : X → 2 models the acceptance condition, equivalently a subset of
final states; and t : X → XA, whose uncurried version has the profile X×A→ X,
models the transition function.

The final coalgebra has as the state space the set of all formal languages
over A, i.e. νF = 2A

∗
. This can be equipped with the F -coalgebra structure by

the isomorphism:
ι : 2A

∗
' 21+A×A

∗
' 2× (2A

∗
)A.

Now the final map f̂ generated by f = 〈o, t〉 sends every state x of the automaton
to the language accepted by f at this state.

The functor 2× --A plays a particular role in trace semantics. We denote it by
LA and call (formal) language functor, which name is suggested by the form of
the final coalgebra νLA. We shall, when appropriate, treat the elements 0, 1 of 2
as truth values ⊥ and > correspondingly.

Example 2 (NA). In order to switch to the nondeterministic case it suffices
to take the functor by FX = 2 × Pω(X)A. The transition function of an NA
〈c, t〉 : X → 2 × Pω(X)A now becomes equivalent to a finitary relation over
X × A × X. The state space of the final F -coalgebra consists of all finitely-
branching trees whose nodes are labelled either by ⊥ or by > and whose edges
are labelled by action names from A, modulo a suitable bisimilarity relation.

As indicated above, although DA and NA recognize the same languages, coalgebra-
driven behavioural equivalences diverge for them.

3 Monads, theories, and effects

Monads play a crucial role in denotational semantics, for they capture the very
essence of various side-effects, most prominently their composability [19, 18]. Mon-
ads are also known to be successfully applied in coalgebra-based formalisations
of systems, although in a somewhat restricted way. The underlying philosophy
of this paper is to identify monads with computational effects in spirit of [19].
In accordance to this we view e.g. nondeterministic automata as those featuring
nondeterminism as a side-effect, etc.

Given a Cartesian category C, i.e. a category with finite Cartesian products
(including the empty one, which is the terminal object), a monad T can be given by
a so-called Kleisli triple (T, η, --†) consisting of an endomap T : Ob (C)→ Ob (C);
a family of morphisms ηA : A→ TA; and an operator sending any f : A→ TB
to f† : TA→ TB, called Kleisli lifting. These data are subject to the equations

η†A = id, f†ηA = f, (f†g)† = f†g†.
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Intuitively, T is used to form a type of computations TA with outcomes of type
A; Therefore ηA injects a value into a trivial computation returning that value
and --† lifts a morphism f : A→ TB over values to a morphism f† : TA→ TB
over computations.

It can be shown that T from the definition of the Kleisli triple can be
lifted to an endofunctor and ηA is natural in A, which leads us to an equivalent
definition of a monad, customary in the category theory: A monad T is given by an
endofunctor T and two natural transformations η : Id→ T and µ : T 2 → T called
unit and multiplication respectively, subject to standard commutativity diagrams
(see e.g. [16]). A monad T is strong if it has strength, a natural transformation
τA,B : A×TB → T (A×B), which is well-behaved w.r.t. the monad structure [19].
Strength is a natural technical condition ensuring that the monad is suitable for
multivariable computations. If strength exists then it is unique up to natural
isomorphism. Moreover, for Cartesian closed categories strength is equivalent to
enrichment [15]; Therefore, every monad over Set is strong. We agree that all
the monads in remainder of this paper are strong.

The definition of a monad by a Kleisli triple naturally suggests the idea of
the Kleisli category CT, the category whose objects are the same as those of C
and whose morphisms from CT(A,B) are those from C(A, TB); The identity
morphisms of CT are thus given by ηA : A→ TA and the composition of f : B →
TC with g : A→ TB is the so-called Kleisli composition: f �g = f†g. Morphisms
of CT are sometimes called Kleisli morphisms. In terms of computational effects,
the Kleisli category is precisely the category of side-effecting morphisms w.r.t.
C. In particular, one can “include” C in CT by postcomposing every morphism
f : A→ B with ηB . The obtained functor has a right adjoint and as such gives
rise to a monad, which happens to be the original monad T. This provides one
of the two extremal solutions to the question, if any monad is generated by
an adjunction. The other solution, known as Eilenberg-Moore construction, is
obtained by involving the so-called Eilenberg-Moore category CT, i.e. the category
of algebras of the monad T. Such algebras are simply morphisms f : TA → A
satisfying certain coherence conditions [16]. The Kleisli category CT can be
faithfully embedded into CT as the subcategory of free algebras, which gives rise
to a functor F T

em : C→ CT that has a right adjoint GT
em : CT → C and therewith

again yields the original monad T.

Plain dualization of the monadic universe brings about comonads and a whole
bunch of associated concepts, which we do not elaborate here (but see [30]). We
note, however, that the Eilenberg-Moore category CoalgK(C) of a comonad K
consists of Eilenberg-Moore K-coalgebras. The latter category is not the same as
coalgK(C) with K being the functorial part of K, but closely related to it. In
particular, CoalgK(C) is a full subcategory of coalgK(C).

Examples of computationally relevant monads include the following.

Example 3 (Computational monads). We assume that the category C pos-
sesses sufficient structure to makes sense of what follows.

– Exception monad: TX = X + E where E is an object of exceptions. One
obtains the partiality monad by taking E = 1.
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– Powerset monad: TX = PX where P is a covariant powerset functor. Some
variants of it are P? for non-empty subsets; Pκ for subsets of cardinality
strictly less then κ with a regular cardinal κ (e.g. finite powerset Pω); etc.

– Multiset monad: TX = {m : X → N | |supp(m)| < ω} where N stands for
the set of natural numbers including 0.

– Subdistribution monad: TA =
{
d : A → [0, 1] |

∑
x∈A d(x) ≤ 1

}
where d

ranges over subprobability distributions, deviating from probability distribu-
tions in that they might sum up to less than 1.

– Store monad:1 TX = (X×S)S where S is a global store often identified with
V L, a space of maps from locations L to values V .

Often, different effects can be combined, e.g. the nondeterministic store monad
TX = P(X × S)S , the Java monad [12] TA = S ⇀ S ×A+ E ×A, etc.

For certain monads, especially those involved in coalgebraic trace semantics,
it is customary to consider their presentation, based on algebraic theories. For
example, the finite powerset monad Pω can be considered as generated by the
algebraic theory featuring two operations /0 and +, subject to the axioms of
bounded semi-latices (i.e. semi-lattices with a bottom element). The object PωX
is then identified with the free bounded semi-lattice over X. More recently, it
has been shown how the store monad can be presented by an algebraic theory,
which example we consider in more detail.

Consider the store S of the form V n with natural n. This corresponds to a
computational model of n locations that can be filled with the elements of V .
Let the underlying category be Set and assume, for simplicity, V to be finite.
We consider the family of operations:

lookupi : XV → X updatei,v : X → X

parametrized by i ∈ n and v ∈ V . The intuitive meaning of them is as follows:
lookupi(x1, . . . , xV ) reads the location i and depending on the value discovered,
returns the corresponding argument; updatei,v(x) updates the location i with v
and returns x. These two operations can be viewed as elementary commands,
while the terms composed from them can be viewed as programs over these
commands. A complete set of axioms for lookup and update is provided in [24];
Moreover the following result is proven.

Proposition 4. [24] The axioms for lookup and update from [24] identify an
equational theory generating the store monad over V n.

The approach to computational effects sketched above is developed mainly in a
series of work by Plotkin and Power [21, 22, 23] and scales rather well as far as
to any strong monad over a complete and cocomplete Cartesian closed C [5].

Various forms of memory organization naturally call for various algebraic
theories. We conclude this section by giving two novel characterisation results in
spirit of Proposition 4 for stack-like stores. Analogously to lookup and update we

1 We avoid the term “state monad” to prevent confusion with coalgebraic states.
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introduce pop : XS+1 → X and pushi : X → X, with S = {s1, . . . , sn} denoting
a finite alphabet of stack elements. The idea is as follows:

– pop(x1, . . . , xn, y) results in y if the stack is empty; Otherwise it removes the
top element of it and results in xi where si ∈ S is the removed stack element.

– pushi(x) pushes si ∈ S onto the stack and returns x.

We postulate the following axioms:

pushi(pop(x1, . . . , xn, y)) = xi (1)

pop(push1(x), . . . , pushn(x), x) = x (2)

pop(x1, . . . , xn, pop(y1, . . . , yn, z)) = pop(x1, . . . , xn, z) (3)

The stack monad is the submonad of the store monad (--×S∗)S∗ with every TX
consisting of those 〈r, t〉 : S∗ → X × S∗ for which there is a natural n ≥ 0 such
that whenever w, u ∈ S∗ with |u| > n,

t(u · w) = t(u) · w r(u · w) = t(u)

In other words, TX captures exactly those operations 〈r, t〉, which may only
access the stack up to a certain depth n where n is associated with 〈r, t〉 and
independent from the stack content.

Proposition 5. The algebraic theory of pushi and pop with the axioms (1)–(3)
is equivalent to the stack monad over Set.

A more advanced theory accommodating stacks together with finite nondeter-
minism will be needed in Section 7 in order to give a coalgebraic account of
push-down automata. It is obtained by adding binary + and nullary ∅, to the
signature of operations {pushi | i ≤ n} ∪ {pop} used above and by completing
the axioms (1)–(3) with the following new identities:

(x+ y) + z = x+ (y + z) x+ y = y + x x+ ∅ = x+ x = x (4)

pop(∅) = ∅ (5)

push(∅, . . . ,∅,∅) = ∅ (6)

pop(x+ x′) = pop(x) + pop(x′) (7)

push(x1 + x′1, . . . , xn + x′n, y + y′) = push(x1, . . . , xn, y) +

push(x′1, . . . , x
′
n, y
′) (8)

Here (4) are the obvious axioms of bounded semi-lattices whereas the laws (5)–(8)
express commutativity of stack operations and nondeterminism over each other as
computational effects. In other words, the theory for (1)–(8) is the tensor product
of the theory for stacks (1)–(3) and the theory for finite nondeterminism (4)
(see [10] for more details). The corresponding nondeterministic stack monad is
the submonad of the nondeterministic store monad Pω(--×S∗)S∗ so that every
TX consists of those f : S∗ → Pω(X × S∗) for which there is a natural n ≥ 0
such that for all w, u ∈ S∗ whenever |u| > n,

f(u · w) = {〈x, v · w〉 | 〈x, v〉 ∈ f(u)}.
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Proposition 6. The algebraic theory of push, pop, ∅ and + with the axioms (1)–
(8) is equivalent to the nondeterministic stack monad over Set.

The latter proposition is essentially a consequence of the analysis of the structure
of powermonads given in [8], which are tensor products of monads with variants
of the powerset monad.

4 Trace semantics via observation

We consider here a monad T and a pair of endofunctors F , G over a category C
having sufficient structure to interpret the constructions being discussed.

As indicated previously, process-like bisimilarity is rather well captured by
coalgebraic behavioural equivalence. Proper treatment of trace equivalence, how-
ever, turns out to be a rather more delicate issue and a seemingly prevailing
approach to tackle it, originated in [11], is to assume F to be a composite func-
tor and capture trace equivalence using the same finality argument in another
category with a functor obtained as a syntactic component of F . One concrete
implementation of this idea is to assume F to be of the form TG and obtain
the trace semantics in the Kleisli category CT for a lifting GT of G, equivalently
given by a distributivity law π : GT→ TG [9]. A more recent approach, pursued
in [13], follows similar lines with TG replaced by GT , the Kleisli category CT
by the Eilenberg-Moore category CT and the distributive law GT → TG by a
distributive law TG→ GT. We stick to this latter style of semantics further on.

Definition 7 (T-distributivity). We call G T-distributive if there is a distribu-
tive law π : TG→ GT, in which case we call π a T-distributivity of G.

It is well-known that T-distributivities of G bijectively correspond to liftings GT

of G to CT, which can be expressed by the following commutative diagram

CT GT
//

GT
em

��

CT

GT
em

��
C

G // C

(9)

Moreover, as shown in [13], a GT -coalgebra in C gives rise to a GT-coalgebra
in CT and thus traces of the original coalgebra can be identified as behaviours
of the lifted GT-coalgebra in CT. Finally, application of the forgetful functor
GT
em : CT → C yields a trace semantics in the original category for, as turns out,

GT
em it sends the final GT-coalgebra exactly to a final G-coalgebra.

Example 8. [13] A standard example of the presented scenario is given by NA.
The language functor LA is Pω-distributive with π : PωLA → LAPω, for every
p ∈ PωLA given by

pr1(π(p)) = ∃m. 〈>,m〉 ∈ p, pr2(π(p)) = λa. {m(a) | 〈b,m〉 ∈ p}.

It can now be seen by coinduction that the induced transformation of LAPω-
coalgebras to LA-coalgebras implements automata determinization.
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As shown in [13], involving more sophisticated forms of nondeterminism, such as
captured by multisets and subdistributions, allows for a treatment of somewhat
less standard kinds of machines, such as generative probabilistic systems and
weighted automata.

We extend the outlined framework just one step further by introducing the
core concept of this paper.

Definition 9 (Real-time T-observer). Given a T-distributive functor G and
an endofunctor F , a real-time T-observer for F , F → GT is given by a natural
transformation δ : F → GT . Disregarding the reference to the original functor F ,
we call any natural transformations in this format a generic T-observer.

The term “real-time” here refers to the fact that the observer depends only on the
coalgebra functor, and hence the observation is always performed stepwise with
no way to delay until the next step. We elaborate on this further in Section 5.

Essentially, given an observer F → GT we can transform any F -coalgebra to
a GT-coalgebra and then simply apply the generalised powerset construction to
the result. However, we prefer to spell the details as they will be relevant for the
remaining presentation.

Note that an observer δ : F → GT gives rise to a natural transformation
δ∗ : TF → GT by the following composition:

δ∗ : TF
Tδ−−−−→ TGT

πT−−−−→ GT 2 Gµ−−−−→ GT (10)

where π is the T-distributivity of G. The intended use of T-observers is to provide
trace semantics for a coalgebra f : X → FX according to diagram

X

η

��

f // FX

η

��
TX

Tf //

ŝ
��

s

44TFX
δ∗ // GTX

Gŝ
��

νG
ι // GνG

(11)

Here, ι is the final coalgebra structure, s = δ∗(Tf) and ŝ is the universal
arrow induced by s. Given some a : 1 → X we call ŝηa the δ-trace of f at a.
This naturally generalizes the construction from [13] by taking F := GT and
δ := (Gµ)π. The DA and NA examples can now be treated on the same footing.

Example 10. Let FX = 2× (PωX)A be the NA-functor as in Example 8. The
generalised powerset construction from [13] amounts to the identity Pω-observer
F ' LAPω and therefore yields the expected trace semantics w.r.t. LA.

In case of the DA-functor FX = 2×XA we take as the Pω-observer LA(ηX) :
2 × XA → LAPωX where ηX is the unit of Pω and obtain the conventional
trace semantics, which does, of course, coincide with the canonical behavioural
equivalence.
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Proposition 11. To give an observer δ : F → GT is the same as to give a
natural transformation for the following pasting diagram:

C
F //

F T
em

��

C

F T
em

��

⇒

CT GT
// CT

(12)

5 Lookahead observers

We introduced the notion of a T-observer as a fairly modest generalization of an
existing device. Here, we would like to argue that this notion is in fact derivable
from some rather general category-theoretic considerations.

Let us consider a pair of categories C, D, a pair of endofunctors F , G over
them and the corresponding categories of coalgebras coalgF (C), coalgH(D). The
idea is: objects of coalgF (C) represent original systems of interest, while objects
of coalgH(D) represent systems of observable behaviours of the latter. It appears
reasonable to capture such kind of an observation scenario by a pair of functors

V : C → D and “V : coalgF (C) → coalgH(D) such that “V is a lifting of V , in
other words the diagram

coalgF (C)

UF
��

V̂ // coalgH(D)

UG
��

C
V // D

(13)

with UF , UG being the evident forgetful functors, commutes.
Suppose UF has a right adjoint RF . This gives rise to a cofree comonad F∞ on

F , explicitly, F∞X = νγ.(Fγ ×X) (see e.g. [30]). Since coalgF (C) is isomorphic

to the Eilenberg-Moore category CoalgF∞(C), an endofunctor “V on coalgF (C)
is equivalently an endofunctor on CoalgF∞(C). Furthermore, we have

Lemma 12. Provided F∞ exists, to give a lifting “V for V is the same as to give
a natural transformation

V F∞ → HV. (14)

Let us assume that the functor V : C→ D in (13) has a right adjoint R : D→ C
and let us therefore obtain a monad T = RV on C. Let K T

em : D→ CT be the
induced comparison functor. Suppose moreover that K T

em has a left adjoint L so
that, in summary, we have the following picture:

C
V

��

`
F T
em

��
`

D

R

CC

K T
em // CT

GT
em

[[

L

ii `
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where F T
em = K T

emV and R = GT
emK T

em. Since a composition of left (right) adjoints
is again a left (right) adjoint and a left (right) adjoint to a functor is uniquely
defined, also V = LF T

em and GT
em = RL.

Theorem 13. In the situation (13), suppose (i) UF has a right adjoint RF , (ii)
V has a right adjoint R and (iii) the comparison functor K T

em a has a left adjoint
L. Let H be an endofunctor D→ D such that GR ' RH with some G : C→ C.
Then

1. K T
emHL : CT → CT is a lifting of G to CT and thus G is T-distributive;

2. the rule sending any α : F∞ → GT to

V F∞
V α−−−−−→ V GRV

V ρV−−−−−→ V RHV
εHV−−−−−−→ HV

where ρ is the isomorphism HV ' V G and ε is the counit of the adjunction,
determines a one-to-one correspondence between T-observers F∞ → GT and
natural transformations (14).

Remark 14. While the conditions (i) and (iii) of Theorem 13 seem to be
relatively mild (e.g. (i) is fulfilled when F is accessible, (iii) is fulfilled when D
has coequalizers [1]), condition (ii) is essential. A somewhat unexpected source
of situations (13) satisfying (ii) are logical connections [20] used in coalgebraic
modal logic. These can be related to our view by instantiating D with Eop for
some E; Coalgebras over D would then be algebras over E. A detailed analysis of
the relation between observers and logical connections is subject to further work.

Theorem 13 inspires the following definition.

Definition 15 (Lookahead T-observer). A lookahead T-observer for F is a
real-time T-observer for F∞.

For every F -coalgebra f : X → FX we can form a F∞-coalgebra f ′ : X → F∞X
as the final arrow from 〈f, id〉 : X → FX × X to F∞X. In order to obtain a
δ-trace for f by means of a lookahead observer δ : F∞ → GT we just apply the
construction (11) to f ′ instead of f .

We clarify the distinction between real-time and lookahead observers by a
small example inspired by [14].

Example 16 (Infinite streams). Consider the following, perhaps slightly ar-
tificial, problem: Given an infinite stream over a set L, calculate the stream
obtained by missing out all those maximal finite segments of it, which consist
of a specified element a ∈ L, e.g. if the whole stream is an infinite repetition of
a then the original stream is returned. The functor FX = L ×X is known to
generate infinite streams exactly as we need. A real-time observer would then
have the format L× Id→ L×T , which is not suitable for it would not give a way
to access the next element of the stream as required unless the front one is a.

By comparison, consider a lookahead observer skipa : F∞ → F w.r.t. the
identity monad. Note that F∞X ' νγ. (Fγ×X) ' (L×X)∞, i.e. F∞X consists
of infinite streams over L×X. Hence we define

skipa[〈a, x1〉, 〈a, x2〉, . . . , 〈a, xn〉, 〈b, xn+1〉, . . .] = 〈b, xn+1〉,
skipa[〈a, x1〉, 〈a, x2〉, . . . , 〈a, xn〉, 〈a, xn+1〉, . . .] = 〈a, x2〉.

10



A coalgebra f : X → FX gives rise to a coalgebra f ′ : X → F∞X so that a
behaviour [a1, a2, . . .] of the original system carried out by a state x1 maps to
a behaviour [〈a1, x1〉, 〈a2, x2〉, . . .] of the transformed system where the second
components of the tuples protocol the intermediate states visited. It is now easy
to see that a skipa-trace of f at x : 1→ X is obtained from the corresponding
stream of behaviours as expected.

As noted in [14], examples like skipa, considered as such, carry a little of opera-
tional meaning, which fact indicates that restricting to real-time observers can
well be a reasonable idea. However, as we shall see, allowing for a lookahead pays
off as it immediately enables useful coalgebraic meta-constructions for a small
added price.

6 Internal actions

Consider the language functor LA+EX = 2 × XA+E where the actions are
partitioned into visible A and internal ones E. Applying the standard finality
argument produces traces over the whole set A+ E, which can be undesirable
because of the presence of internal actions. A real-time observer can not be
helpful to tackle this issue precisely because if we run into an internal action
we must drop it and hold up the output until a non-internal one occurs. As one
would expect, a suitable lookahead observer carries the necessary effect.

Let us note first that L∞A+EX ' νγ. (2×X × γA+E) ' (2×X)(A+E)∗ . Then
we define a lookahead observer δX : L∞A+EX → Pω1LAX by the expression

δ〈o, t〉 = {〈o(w), λa. t(w · a)〉 | w ∈ E∗}

Intuitively, we form partial runs of the original automaton over A + E corre-
sponding to the trace prefixes of the form τ1, τ2, . . . , τn, a with τi ∈ E, a ∈ A and
for every such run construct a one-step a-transition of the target automaton. As
it must, the target automaton becomes highly nondeterministic, hence the use of
the countable powerset functor Pω1. Determinization is ensured on the spot by
defining a Pω1-distributivity for LA as in Example 8.

It is not difficult to instantiate the presented idea to capture weak bisimilarity
of processes by reduction to strong bisimilarity [17]. Unfortunately, unlike the
case of linear traces, considered above, it appears to be impossible to eliminate
the internal action. This seems to be a consequence of the standard fact that
weak bisimilarity fails to be a congruence. However, we can make use of the
fact that two processes are weakly bisimilar iff they become strongly bisimilar
after saturating their state transitions by adjoining pre- and postfixes of chained
internal actions [6, 17]. Informally, this amounts to creating one a-transition in
the target system corresponding to a chain of transitions of the original system
labelled by τn, a, τm if a 6= τ , and one internal transition corresponding to a
chain of transitions labelled by τn. Here, τn and τm denote finite, possibly empty,
chains of the internal action τ .

Let FX = Pω(X)Aτ be the functor of finitely-branching labelled transition
systems over finite Aτ = A∪{τ} [26]. Note that F∞X ' νγ. (Pω(γ)Aτ ×X). We
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define a lookahead observer πX : νγ. (Pω(γ)Aτ ×X) → Pω1(X)Aτ for F w.r.t.
the identity monad by expression:

π(t0)(a) =
⋃
{pr2(tn)(an) | t1 ∈ pr1(t0)(a0), . . . , tn ∈ pr1(tn−1)(an−1)}

where the union is taken over all sequences a1, . . . , an of the form τ, . . . , τ, a, τ,
. . . , τ if a 6= τ and τ, . . . , τ is a = τ .

The presented construction is the most straightforward one. As a result, the
obtained transition system receives an enormous number of junk τ -transitions.
A further optimisation for practical purposes should not be difficult, but would
demand for involving more sophisticated versions of the observer.

7 Push-down automata

We treat push-down automata analogously to NA by using the functor FX =
Pω(S∗)× Pω(X × S∗)A×S where A stands for the input alphabet and S stands
for the set of stack symbols. Given a finite set X, a coalgebra 〈o, t〉 : X → FX
captures the automaton carrying the following data:

Finite set of accepting configurations Acc ⊆ X × S∗ consisting of all such
pairs 〈x,w〉 ∈ X × S∗ that o(x)(w) = 1; Common possible choices for Acc
include [25]: {〈x,w〉 | x ∈ Fin}, {〈x,w〉 | w = ε}, {〈x,w〉 | x ∈ Fin,w = ε}, and
{〈x,w〉 | w = sw′, s ∈ S′} where Fin ⊆ X is a distinguished set of final states,
S′ ⊆ S is a distinguished set of stack symbols, and ε denotes the empty stack.

Transition function X × A × S → Pω(X × S∗) obtained by uncurrying t;
Here, the elements of an input triple 〈x, a, s〉 refer to a current state x, an input
alphabet symbol a and the current top stack symbol s, subject to removal. The
outcome of the transition function is a finite set of pairs 〈x′, w〉 where x′ is the
new state and w is a string of elements to be pushed onto the stack.

As already noticed in [28], transitions of a push-down automaton can be
considered as a nondeterministic side-effecting function w.r.t. the set of stacks
S∗ as underlying store, which suggests using the monad Pω(X × S∗)S∗ . Here, we
propose a nondeterministic version of the stack monad from Section 3 as a better
choice, for—as we have shown in Proposition 5—it is directly generated by the
stack operations. Let T be that monad henceforth.

Note that T does not appear as a subexpression of the expression defining F .
More importantly, operations encoded by F are only commands to be applied to
a stack and not ready stack transformers.

Due to an isomorphism FX ' Pω(S∗)× Pω(X × (S ×A× S∗)), behaviours
of F can be understood as finitely-branching trees, modulo bisimilarity, whose
nodes are annotated by finite sets of stacks and whose branches are labelled with
commands of either of two forms: (a; s/s1 . . . sn), (s/s1 . . . sn).

Let αX : Pω(X × S∗)S → TX be the natural transformation defined by the
clauses

α(f)(ε) = /0, α(f)(s · w) = {〈x, u · w〉 | 〈x, u〉 ∈ f(s)}.

12



This gives rise, in an obvious way, to a real-time T-observer δX : FX →
P(S∗) × (TX)A for F . Finally, we endow P(S∗) × --A with a T-distributivity
πX : T (P(S∗)×XA)→ P(S∗)× (TX)A by the equations:

pr1(π(p)) = {w ∈ S∗ | 〈w′′,m,w′〉 ∈ p(w), w′ ∈ w′′},
pr2(π(p)) =λa. λw. {〈m(a), w′〉 | 〈w′′,m,w′〉 ∈ p(w)},

which is in a perfect correspondence with [28]. The resulting traces are the
elements of the final coalgebra νγ. (P(S∗) × XA) ' P(A∗)S

∗
and are indeed

maps from the set of initial stack values to languages over A.
According to the standard definition (e.g. [25]), A has form A′ + 1 where

the adjoined element can be viewed as a special symbol for internal transitions
(otherwise the automaton is called real-time and captures precisely non-empty
context-free languages over A [25]), which results in the undesirable effect of
having the internal symbol in the traces. A solution to that would be to involve
a lookahead observer as in Section 6, which we do not spell out here.

8 Reactive programs with generic side-effects

Reactive coalgebra-based systems over generic side-effects encapsulated by a
monad appear in the literature in the form of coalgebraic component-based
frameworks [3] or as generic calculi for side-effecting processes [7]. Here, we sketch
the perspectives of defining observation-based semantics for systems of this kind.

Let (for simplicity) C = Set and consider coalgebras of the form

f : X → T (O ×X)I (15)

where T is a functorial part of a monad T, capturing some generic side-effect,
I is an input type, O is an output type. One way to look at a system of this
kind is as a generalized Mealy machine [28]—the latter would be obtained by
instantiating T with the identity monad.

Note that νγ. (O × γ)I ' νγ. (OI × γI) ' (OI)I
∗

= OI
+

where I+ stands
for nonempty lists over I. It is easy to see by induction that the function space
I+ → O can be considered as a subspace of stream transformers Iω → Oω formed
by so-called causal maps [27]: a map t : Iω → Oω is causal if t(s)(n) = t(s′)(n)
whenever s(i) = s′(i) for all i ≤ n; In other words, the n-th element of the output
stream t(s) depends only on the elements of s in the positions from the first one
up to the n-th. The latter definition of causality is the standard one, however,
the former one is more suitable for our generalization, which is as follows.

Definition 17 (T-causality). Given a strong monad T over a category C with
finite products and coproducts such that any initial algebra X∗ = µγ. (1 +X×γ)
exists, we call a morphism t : I∗ → TO∗ T-causal if the diagram

I∗
t //

ιI ��

TO∗

TιO��
1 + I × I∗

id+ pr2 ��

T (1 +O ×O∗)
T (id+ pr2)��

1 + I∗
[η inl,(T inr)t] // T (1 +O∗)
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commutes where ιX : X∗ → 1 +X ×X∗ is the initial algebra structure on X∗.

It can be readily verified by induction that for C = Set with T being the identity
monad T-causality agrees with the standard definition.

We now proceed with defining a trace semantics for coalgebras of type (15).
Let R be the monad with the functorial part RX = T (O∗ ×X) and monadic
operations induced by the obvious monoidal structure on O∗. Then we define
a real-time R-observer δX : T (O ×X)I → TO∗ ×RXI and an R-distributivity
πX : R(TO∗ ×XI)→ TO∗ ×RXI by the expressions

δ(t) = 〈ηα, λx. T (β × id)(t(x))〉, (16)

π(t) =
(
let r = T (γ × id)µ(Tτ)t in 〈(T pr1)r, λx. T (id×at(x))r〉

)
(17)

where α : 1→ O∗, β : O → O∗, γ : O∗ ×O∗ → O∗ are the obvious operations for
creating the empty list, forming a single-element list from a given element and
for list concatenation correspondingly; τ is the strength of T; at(x) = λf. f(x);
the intermediate value r has T (O∗ ×XI) as the output type. This induces traces
for (15) as elements of νγ. (TO∗ × γI) ' (TO∗)I

∗
.

The idea behind the monad R is to collect the outputs from O while composing
the computational effects between iterations. The strength τ of the monad T
plays a crucial role in this process, as it allows for propagating the output
values downwards through the layers of T-computations. We can now relate to
T-causality as follows.

Proposition 18. Traces induced by (16)–(17) are T-causal.

9 Conclusions

We have laid down the foundations of a generic monad-based notion of observation
for systems represented by coalgebras. This notion establishes a bridge between
an implementation of a system and its observable behaviour, and therefore
provides a basic abstraction idiom for studying systems from the most general
perspective. Whereas, from the technical point of view, our development is only
a mild modification of the existing machinery, as we have shown, our notion of
observation has a universal character—under reasonable assumptions, it arises
from a fairly basic observation scenario. Every observer in our framework comes
with an associated generalized notion of trace, which can vary over a large
spectrum of equivalences refining the canonical notion of bisimilarity of the
original system. We have shown how the introduced notion of observation allows
for a smooth and concise treatment of such traditionally delicate examples
as internal actions, weak bisimilarity and pushdown automata. As a further
improvement of the latter case we have presented two versions of a stack monad
and operational characterizations for them in the spirit of Plotkin and Power.

Related work. This work descends from [13] as well as from the more recent [28]
where the generalized powerset construction was introduced. Natural transfor-
mations of the form TF → GT , which one can treat as a form of a T-observer
occasionally appear in [13] for sakes of relating Kleisli and Eilenberg-Moore styles
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of semantics. Insufficient expressivity of the standard distributive law argument
has been acknowledged in [29] in the specific case of the finitary subdistribution
monad Dω combined with the functor 1+A× --: Dω(1+A×X) only embeds into
[0, 1]× (DωX)A (and thus can be naturally regarded as an observer), unlike the
analogous case with Pω instead of Dω when an isomorphism would take place.

Future work. Format constraints applied to this note do not give a chance to
develop the presented theory to a sufficient extent. We would like to develop this
further along the following lines.

− Formal languages and machines. One objective of this paper was to improve
the coalgebraic treatment of push-down automata. We believe that an analogous
treatment of Turing machines should not be difficult, except that instead of
classical Turing machines one should involve reactive Turing machines presented
in [2] as a more coalgebra-friendly concept.
− Coalgebraic modal logic. As indicated in Remark 14, there is a technical

relation between observation scenarios (13) and logical connections. In view of
the classical relation between testing and observational semantics this may be not
a coincidence and should be studied in detail; The notion of a lookahead observer
may also suggest a way for a logical characterisation of the weak bisimulation,
by involving F∞-coalgebras derived from F -coalgebras.
− Rational fixpoints of functors. The notion of a regular language is known to

be nicely captured coalgebraically by a rational fixpoint ρLA of the language
functor LA by Milius and collaborators (see e.g. [4]). As expected, ρLA sits inside
the greatest fixpoint νLA of all formal languages. The question is, if the theory of
rational fixpoints can be extended (somehow) to other kinds of machines under
the presented observational treatment, e.g. to push-down automata.
− Notion of observation. We intend to study compositions of observation

scenarios (13), such as sequential and parallel ones, and their impact on the
monads underlying the corresponding observers. As we have seen, the notion of
trace equivalence, induced by an observer can be as fine as the usual bisimilarity.
We anticipate the introduction of a class of observers capturing linearity of traces
and a construction for generating such observers from a functor and a monad in
a universal manner analogously to forming tensors of monads with powersets [8].
Theorem 13 indicates that it might be reasonable to relax the definition of an
observer by rebasing it on pairs of adjoint functors and dropping T-distributivity.

Acknowledgements. The author wishes to thank Stefan Milius for a brief but
definite update on distributive laws for comonads. Thanks to Alexandra Silva,
Daniel Hausmann and anonymous referees for their valuable feedback.
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Appendix: Omitted Proof Details

Proof of Proposition 5

Let us refer to the theory axiomatized by the equations (1)–(3) as T . We need to
show that the category of free models of T in Set is isomorphic to the category
of free T-algebras.

For one thing, any TX can be turned into a T -algebra by putting

JpushaKTX(f)(w) = (let〈x,w′〉 = f(w) in 〈x, a · w′〉),
JpopKTX〈f1, . . . , fS , g〉(w) = (if w = ε theng(w) else let s · w′ = w in fs(w

′)).

We only need to prove that this algebra is the free one over X. First, show that
it is reachable from X, i.e. that every element f ∈ TX is represented by a term
depending on some x ∈ X. By definition, for every f ∈ TX there is an n such
that f(u · w) = f(u) · w, once |u| exceeds n and we proceed by induction over
that n.

Suppose, n = 0. Then f(s ·w) = f(s) ·w for any s ∈ S and w ∈ S∗. Therefore
f is represented by the term

pop(push∗f(1)(x), . . . , push∗f(S)(x), push∗f(ε))

where for every s1 · . . . · sn ∈ S∗, pushs1·...·sn(x) encodes the chained application
of push to x: pushsn(. . . pushs1(x) . . .).

Let n > 0. Then f(u · w) = f(u) · w, once |u| > n. For every s ∈ S let
fs(w) = f(s · w). By induction, every fs is representable by a term, say ts, for
fs(u · w) = f(s · u · w) = f(s · u) · w = fs(u) · w already when |u| > n− 1. It is
now easy to see that f is represented by the term JpopKTX(t1, . . . , tS , push

∗
f(ε)).

Finally, let us show that TX is free. Let p and q be two terms depending
on x such that JpKTX = JqKTX and let us show T ` p = q by induction over the
complexity of p and q. W.l.o.g. assume that both p and q are normalized by
using (1) as a rewrite rule. Therefore both p and q may only have occurrences of
push under pop but not the other way around. Consider the following cases.

– Both p and q are equal to x. Then we are done trivially.

– p = pop(t1, . . . , tS , t) and q = pop(t′1, . . . , t
′
S , t
′). We show by contradiction,

that the morphisms Jt1KTX , . . . , JtSKTX and Jt′1KTX , . . . , Jt′SKTX must be pair-
wise equal. Suppose, e.g. for some f and s, JtsKTX(f) 6= Jt′sKTX(f). Then, by
definition, JpKTX(λw. s ·f(w)) = JtsKTX(f) 6= Jt′sKTX(f) = JqKTX(λw. s ·f(w)),
contradiction. Finally, by (3), we can ensure t to be of the form push∗w(r).
Since JxKTX(λu.w) = Jpush∗w(r)KTX(λw. ε) = JpKTX(λu. ε) = JxKTX(λu. ε),
w may only be equal to ε and we are done by the induction hypothesis.

– p = pop(t1, . . . , tS , t) and q = x. Note that none of the ts can be equal to x
for JpKTX would diverge from JqKTX on λw. s · w. Since by (2), Jpop(t1, . . . ,
tS , t)KTX = Jpop(x, . . . , x, x)KTX we convert to the previous clause.

– p = pop(t1, . . . , tS , t) and q = push∗w(pushs(x)). The stack transformer corre-
sponding to q, given any stack, produces by all means a stack with the element
s on top. To have the same effect, p must have form r[pushs(x)/x] and JrKTX
must be equal Jpush∗w(x)KTX . We are done by induction hypothesis.
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– p = push∗w(x), q = push∗u(x). Applying the stack transformers corresponding
to p and q to the empty stack we obtain w and u as the new content of the
stack. Hence JpKTX = JqKTX implies w = u and we are done.

ut

Proof of Proposition 11

The claim follows from the following lemma under D = CT, R = GT
em, L = F T

em

and H = GT.

Lemma 19. Given categories C,D, endofunctors F,G : C → C, H : D → D
and an adjunction V a R : D→ C such that ρ : GR ' RH, let T be the generated
monad, i.e. T = RL. Then the correspondence sending every α : F → GT to

LF
Lα−−−−→ LGRL

LρL−−−−−→ LRHL
εHL−−−−−−→ HL

where ε is the counit of the adjunction L a R, relates one-to-one natural trans-
formations F → GT with natural transformations LF → HL.

Proof. For every X, using the adjointness of L and R,

HomC(FX,GTX) = HomC(FX,GRLX)

' HomC(FX,RHLX)

' HomC(LFX,HLX).

Spelling the details of the hom-set adjunction in terms of the unit-counit ad-
junction readily assures that the given isomorphisms agree with the definition
above.

Proof of Lemma 12

Let αX : V F∞X → HV F∞X be the image of the comultiplication F∞X →
F∞F∞X under “V . It is easy to verify that αX is natural in X. Moreover, applying
HV to the counit of F∞ and postcomposing the result with α yields a natural
transformation of the form (14).

Conversely, given a natural transformation α of the form (14), we can construct

a lifting “V of V , namely the one sending any coalgebra f : X → FX to“V (f) : V X → HVX obtained as the composition αXV (f̂) where f̂ : X → F∞X
is obtained from f by cofreeness of F∞. It is routinely verified that the given
correspondence is a bijection between natural transformations of the form (14)

and liftings “V of the functor V . ut

Proof of Theorem 13

1. Obvious.

2. Direct conclusion of Lemma 19.
ut
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