
Towards Indexing Schemes for Self-Tuning DBMS

Kai-Uwe Sattler Eike Schallehn Ingolf Geist
Department of Computer Science and Automation Department of Computer Science

TU Ilmenau University of Magdeburg
P.O. Box 100565, D-98684 Ilmenau, Germany P.O. Box 4120, D-39016 Magdeburg, Germany

k.sattler@computer.org {eike,geist }@iti.cs.uni-magdeburg.de

Abstract

Index tuning as part of database tuning is the task of se-
lecting and creating indexes with the goal of reducing query
processing times. However, in dynamic environments with
various ad-hoc queries it is difficult to identify potentially
useful indexes in advance. In this paper, based on previ-
ous research regarding automatic index creation at runtime
we point out the need for new indexing schemes suitable for
self-tuning. Based on problems with previous approaches
we describe the key concepts, which are sparse and partial
indexing, usage-balanced instead of data-balanced struc-
tures, and dynamic resource assignment. We illustrate the
approach by a simple index structure, which provides adapt-
ability as well as improved access characteristics. Further-
more, we will outline key tasks to introduce according con-
cepts in future DBMS.

1. Introduction

Today’s enterprise database applications are often char-
acterized by a large volume of data and high demand with
regard to query response time and transaction throughput.
Besides investing in new powerful hardware, database tun-
ing plays an important role for fulfilling the requirements.
However, database tuning requires a thorough knowledge
about system internals, data characteristics, applications,
and the query workload. Among others index selection is a
main tuning task. Here, the problem is to decide how queries
can be supported by creating indexes on certain columns.
This requires to balance between the benefit of an index
and the loss caused by space consumption and maintenance
costs.

While such considerations have been an integral part of
physical database design for a long time and are well stud-
ied, most often this results in a very high complexity and
tremendous efforts required to provide an efficient solution

for a given application. During recent years the need for sys-
tem support on this task became obvious. The paper is struc-
tured according to implications from our research and can
be divided into the following three sections.

Static index management and recommendation
(Section 2): the current state of the art within commer-
cial DBMS includes index wizards or advisors, which
help in analyzing single queries or complete work-
loads and deriving the recommendation of an in-
dex configuration for a given application. This is done
by solving an optimization problem based on cost es-
timations for query processing with potential sets of
index candidates. Nevertheless, this task remains a re-
sponsibility of the system designer or administrator
and has to be carried out frequently to adjust to chang-
ing usage, data, and environment.

Dynamic index management and autonomous tuning
(Section 3): in our previous research we inves-
tigated whether this task can be carried out au-
tonomously and continuously during runtime. For
this purpose, we implemented a component gath-
ering and updating statistics based on which deci-
sions about changing the current index configura-
tion can be made. This approach was implemented
and showed very encouraging results during evalua-
tion. Despite the overall positive results, we received
some critical feedback about the involved over-
head and lack of control of the system behavior during
query processing.

Dynamic self-tuning index structures (Section 4): as a
possible consequence of the previous drawbacks, we
currently consider moving the task of index tuning one
step down, i.e. from the level of index configurations
down to the indexes themselves. If the indexes could in
some way adjust to their usage, e.g. grow with increas-
ing or shrink with decreasing numbers of accesses, this
would lead to a much more fine-grained control of self-
tuning within the system.



We will conclude the paper by giving an overview of re-
lated work in Section 5 and, finally, describing conclusions
in Section 6.

2. Static Index Management and Recommen-
dation

Though index design is not very complicated for small or
medium-sized schemas and rather static query workloads,
it can be quite difficult in scenarios with explorative ana-
lysis and many ad-hoc queries where the required indexes
cannot be foreseen. A particular example scenario is OLAP
where business intelligence and/or ROLAP tools produce
queries as a result of an information request initiated by a
user. These tools produce sequences of statements includ-
ing creating and building tables, inserts, and queries [9].

The most current releases of the major commercial
DBMS such as Oracle10g, IBM DB2 Version 8, and SQL
Server 2000 provide (limited) support for this scenario.
They include so-called index wizards which are able to an-
alyze a workload (in terms of costs of previously performed
queries) and – based on some heuristics – derive recom-
mendations for index creation. This is implemented using
virtual indexes that are not physically created but only con-
sidered during query optimization in a “what if” manner.
Though these tools utilize workload information collected
at runtime they still work in design mode. That means, the
DBA has to decide about index creation and index creation
is completely separated from query processing. The draw-
back of this approach with respect to the above mentioned
scenarios is that queries are dynamically generated – even-
tually on temporary tables – and therefore an offline work-
load analysis is rather difficult.

Another drawback of index advisors results from the ap-
proach of analyzing a workload once over a fixed period of
time and create a static index configuration based on this
observation. In many applications database usage changes
over time, e.g. over longer periods due to adjustments to
changing work processes, with new applications working
on the same data set, or frequent changes like seasonal us-
age or towards the end of business quarters. Furthermore, a
collected workload is very likely incomplete and biased by
the impact of collecting the workload on a not fully opti-
mized database. In addition, the necessity of index config-
uration changes may be triggered by changes of the hard-
ware involved, like CPUs, main memory, and disks contain-
ing the database. All this renders the index tuning task as an
ongoing process with a continuous need of DBA interac-
tion. Index advisors do not change this, they just minimize
the required human input of expert knowledge.

3. Dynamic Index Management and Au-
tonomous Tuning

Our previous work regarding autonomous query-driven
index tuning is based on the introduced concepts of static
index recommendation, but in addition proposes the au-
tonomous adjustment of index configurations during run-
time. The overall approach and architecture is outlined
in [13] while in [14] the full details and evaluation results
are given.

Processing Index-building Queries

At first, we will sketch the overall process of execut-
ing index-building queries. The main objective of our ap-
proach is to improve the execution times of (possible fu-
ture) queries by creating useful indexes automatically. As
creating indexes without limits could exhaust the available
database space, we assume an index pool – an index space
of limited size acting as a persistent index cache. The size
of this pool is configured by the DBA as a system param-
eter. Based on this assumption a query is processed as fol-
lows:

(1) For a given query Q the potentially useful indexes are
determined.

(2) For query Q a cost-optimized query plan is derived.
(3) The query Q is re-optimized using the virtual indexes

based on step (1).
(4) The profits of sets of virtual indexes are computed as

the difference of the costs of the plans from step (2)
and from step (3). The index set with the highest profit
is called index recommendation and is used to update
a global index configuration where cumulative profits
of all indexes (both materialized and virtual) are main-
tained. From this index configuration we have finally
to decide about: creating indexes from the virtual index
set, and replacing other indexes from the index pool if
there is not enough space for the newly created indexes.

The above discussion about processing queries leaves out
several important issues. First, it should be noted that step
(2) and (3) can be merged. An optimizer based on the usual
dynamic programming approach can consider relation ac-
cess via virtual indexes in the first iteration. The only re-
quired modifications to the optimization algorithm are to
generate access plans with virtual indexes if a table scan op-
erator was chosen and to not prune a plan if only plans with
virtual indexes are better. Thus, the result of the optimiza-
tion step consists of at least two plans: a plan without vir-
tual indexes and one or more plans using virtual indexes.

A second issue is the “self-interest” of a query. If we con-
sider only the best plan generated in step (3) we are able to



find only an index set contributing to the current query Q
because we try to maximize the benefit of this query (lo-
cal optimization). If we would consider all index sets from
step (2) that provide a positive profit or at least no high loss,
we could create indexes that are possibly useful in the fu-
ture (i.e. for other queries), too. However, this global opti-
mization requires to consider more index sets.

Finally, under the assumption of a space-limited index
pool it can be necessary to replace existing indexes in the
pool by other indexes if the new virtual indexes promise a
higher benefit than the old one. For this purpose, different
strategies are possible. Beside classical replacement strate-
gies which have been developed over the past years (e.g.
LRU, LFU), the profit of an index can be taken into ac-
count. However, this requires to maintain statistics about
global profits, e.g. by monitoring and cumulating local prof-
its of an index for different queries.

The query processing described above is to some lim-
ited extent supported by current database management sys-
tems. Virtual indexes, existing for instance in Oracle, allow
the “as if”-runs of the optimizer as in step (3) to check the
usefulness of indexes without materializing them. Relying
on such a virtual optimization, we still have to find possibly
applicable index sets. The DB2 optimizer goes one step fur-
ther by providing index recommendations covering most of
steps (1) to (3).

Cost Model

For dealing with costs and benefits of indexes as part
of automatic index creation we have to distinguish between
materialized and virtual (i.e. currently not materialized) in-
dexes. Note, that we do not consider explicitly created in-
dexes such as primary indexes defined by the schema de-
signer. Furthermore, we assume that statistics for both kind
of indexes (virtual/materialized) are computed on demand:
When a certain index is considered for the first time, statis-
tical information about it is obtained.

A set of indexes i1, . . . , in which are used for process-
ing a query Q is called index set and denoted by I. The set
of all virtual indexes of I is virt(I), the set of all materi-
alized indexes is mat(I). Let be cost(Q) the cost for exe-
cuting query Q using only existing indexes and cost(Q, I)
the cost of processing Q using in addition indexes from I.
Then, the profit of I for processing query Q is simply

profit(Q, I) = cost(Q) − cost(Q, I)

Obviously, if virt(I) = ∅ then profit(Q, I) = 0.
In order to evaluate the benefit of creating certain in-

dexes for other queries or to choose among several possi-
ble indexes for materialization we have to maintain infor-
mation about them. Thus, we collect the set of all material-

ized and virtual indexes considered so far in the index cata-
log D = {i1, . . . , ik}. Here, for each index i the following
information is kept:

• i.benefit is the benefit, i.e. the cumulative profit, of the
index,

• i.type ∈ {0, 1} denotes the type of index, with i.type =
1, if i is materialized and 0 otherwise,

• i.size is the size of the index, which is estimated based
on the typical parameters available as databases statis-
tics, e.g. the attribute size and the number of tuples in
the relation.

The profit of an index set according to a query can be
calculated in different ways, as outlined in the following.
However, as we used the DB2 system for our evaluation,
we could use the optimizer and recommended virtual in-
dexes. For evaluation purposes we used the following tech-
nique to extract cost estimations of queries for different in-
dex configurations:

1. compute the costs for the query without any indexes
except for primary key indexes via the EXPLAIN
mode,

2. derive a recommended index set via the RECOM-
MEND INDEXES mode,

3. compute the cost for the recommended index set.

This way, we cannot only derive the potential profit of an in-
dex set, but the advisor mode of the DB2 optimizer also pro-
vides statistical information such as the cardinality and the
number of leaf nodes that allow a precise estimation of the
index size required for our strategies. Note that we use the
cost model of the underlying DBMS. Thus, we can guar-
antee that our profit estimations are as accurate as the esti-
mated query costs.

The subset of D comprising all materialized indexes is
called index configuration C = mat(D). For such a config-
uration

size(C) =
∑

i∈C

i.size ≤ MAX SIZE

holds, i.e., the size of the configuration is less or equal the
maximum size of the index pool.

By maintaining cumulative profit and cost information
about all possible indexes we are able to determine an index
configuration optimal for a given (historical) query work-
load. Assuming this workload is also representative for the
near future, the problem of index creation is basically the
problem of finding an index configuration Cnew which max-
imizes the overall benefit:

max
∑

i∈Cnew

i.benefit



This can be achieved by materializing virtual indexes (i.e.
add them to the current configuration) and/or replace exist-
ing indexes. In order to avoid thrashing, a replacement is
performed only if the difference between the benefit of the
new configuration Cnew and the benefit of the current config-
uration Ccurr is above a given threshold. Here, the benefit of a
configuration is computed by benefit(C) =

∑
i∈C

i.benefit.
In addition, we have to take into account the cost building
the new indexes costbuild(i) which appear as negative profit:

benefit(Cnew) − benefit(Ccurr) −∑

i∈virt(Cnew)

costbuild(i) > MIN DIFF

Considering the cumulative profit of an index as a crite-
rion for decisions about a globally optimal index configura-
tion raises an issue related to the historic aspects of the gath-
ered statistics. Assuming that future queries are most sim-
ilar to the most recent workload, because database usage
changes in a medium or long term, the statistics have to rep-
resent the current workload as exactly as possible. Less re-
cently gathered statistics should have less impact on build-
ing indexes for future use. Therefore, we applied an aging
strategy for cumulative profit statistics based on an idea pre-
sented by O’Neil et al. in [11].

Criteria for Index Selection

As described before, it is easy to decide whether a query
can locally benefit from a certain index configuration by
quantifying the profit of feasible index combinations us-
ing virtual optimization. In order to globally decide about
an optimal index configuration for future queries, the infor-
mation about possible profits has to be gathered, condensed
and maintained to best represent the current workload of the
system, and finally based on these information a decision
has to be made if an index configuration can be changed at
a certain point in time.

While processing a query Q the statistics must be up-
dated by adding profits to each involved index. At this point
we considered various strategies for assigning profits to
each index involved. One alternative relates to the fact, that
there may be various combinations of indexable attributes
yielding a profit during virtual optimization. In this case,
we can either add profits for all minimal index sets Ii yield-
ing a profit, or dd only profits for the minimal index set that
is locally optimal, i.e. yields the most profit, where an index
set Ii is minimal, if there is no index set Ij ⊂ Ii yielding
the same profit. While the former yields a more complete
picture of possible gains of certain index configurations, the
latter introduces less overhead while over large workloads
still providing a reasonable approximation of configuration
benefits.

So far we have focused on the analysis of a given query
and how to maintain statistics of data gathered from virtual
optimization. Now the question arises: is it necessary to up-
date the materialized index configuration? If an index set I
can replace a subset Irepl ⊆ C = mat(D) of the currently
materialized index configuration, such that

benefit(C ∪ I \ Irepl) − benefit(C) −∑

i∈virt(I)

costbuild(i) > MIN DIFF ∧

size(C ∪ I \ Irepl) < MAX SIZE

holds, indexes in Irepl can be dropped and those in I can be
created. These conditions allow only improvements of the
index configurations according to the current workload and
conforming to our requirements regarding index space, and
the criterion to avoid thrashing. For choosing I from locally
beneficial index sets we considered two strategies: from the
beneficial index sets choose only the locally optimal index
set, or check all beneficial index sets for a possibly globally
optimal configuration.

The replacement index set Irepl is computed using the
currently materialized index set C = mat(D) applying a
greedy approach. To do this, we sort C ascending to a re-
placement criterion and choose the least beneficial indexes,
until our space requirements are fulfilled. As replacement
criteria we considered the number of references for an in-
dex, the cumulative profit of an index, and the ratio of
profit per query or reference of an index. Now, if the found
replacement candidate is significantly less beneficial than
the index set we investigate for a possible materialization,
the index configuration can either be changed during query
execution as described or scheduled to be changed later on.

In our implementation and experiments we only consid-
ered strategies based on locally optimal index sets. First of
all, the number of indexes which have to be taken into ac-
count during processing is much smaller and therefore this
approach has a significant lower overhead. Secondly, this
strategy can be easily implemented on top of index recom-
mendation facilities provided by commercial DBMS such
as the index advisor of DB2, which recommends only the
best index set for a given query or workload respectively.

4. Dynamic Self-tuning Index Structures

The approach for self-tuning index configurations de-
scribed in the previous section provides a solution for con-
tinuous tuning on the level of index configurations, where
configurations are a set of common index structures. In this
section we will motivate our current research approach, that
moves the solution of the problem at hand to the level of the
index structures. Though the impact on DBMS implementa-
tions is quite severe in this case, we will illustrate that more



efficient and more organic solutions can be realized by re-
thinking the kind of indexes used in DBMS.

Motivation for new Index Structures

While indexing in databases using derivatives of B-
Trees, R-Trees, Grid Files, Tries, and many others has been
applied successfully for years, obviously these index struc-
tures were not conceived having self-tuning in mind. This is
for the following reasons.

Data-balanced instead of access-balanced structure:
with current DBMS index structures data access is op-
timized for all existing values of a certain, possi-
bly multidimensional, range/domain. This is done to
achieve O(1) or O(log n) complexity for accessing
a single data unit, i.e. a page, tuple, object, etc. Nev-
ertheless, this is done not considering if the data unit
is accessed very often, rarely, or not at all. Hence, the
benefit of the index structure is greater for data ac-
cessed more frequently than for data accessed less of-
ten, though both come at the same price, i.e. used
system resources.

Coarse granularity of tuning: with current index struc-
tures it is either all or nothing: an index can be cre-
ated on an access path or not. Though the system may
benefit for instance from partial indexes as proposed
by Stonebraker in [16] or incomplete and sparse in-
dexes, this is not implemented in most current DBMS.
Furthermore, compared to the size the overall bene-
fit of an incomplete index grows with O(log size),
i.e. the bigger an index grows the more the gained
profit ∆benefit/∆size declines. Considering the often
tremendous disk space requirements, index structures
suitable for self-tuning should be able to grow or even
shrink on demand.

Unawareness of system resource usage: related to the
previously mentioned aspects, currently used index
structures are not suitable to consider space limitations
during runtime. Though index sizes can be estimated
very precisely before creation, the index itself can-
not comply to space restrictions during runtime, which
would be required to realize adaptive index configura-
tions.

A Simple Adaptable Binary Tree

To illustrate a possible approach and get an overview of
all the related issues we implemented a simple index struc-
ture based on a binary tree which adapts to its usage during
runtime, by

1. having a adjustable size, i.e. number of nodes, that
can be increased or decreased during runtime, which

results in a sparse tree with page containers as leaves,
and

2. being access-balanced, i.e. the tree is deeper for data
regions which are accessed more often to minimize
page accesses.

An example tree is sketched in Figure 1.

51

28

63

25 74

55

38

44

Root node with overall
page access statistics

Page container with local
page access statistics

Figure 1. An access-balanced binary tree

The sparse index has page containers as leaf nodes, con-
taining pages of tuples with keys of the value range speci-
fied by the tree. This way, currently data is organized by the
index. The implications for secondary indexes and multi-
dimensional indexing schemes are discussed later on. Nev-
ertheless, the current approach allows assigning system re-
sources to the tree by increasing or decreasing the allowed
number of nodes within the tree. The lookup in the tree
works as usual, whereas the lookup in the page containers
requires a sequential scan through the pages.

The reorganization and access-based balancing can only
be sketched roughly due to space limitations. In principle it
works as follows: the root node keeps track of all page ac-
cesses and the current size of the tree. Accordingly it com-
putes a balance

balance =
all page accesses

number of page containers

for all page containers. For the page containers pc the num-
ber of all pageAccesses(pc) is stored. If a leaf node with
two page containers pc1 and pc2 fulfills

pageAccesses(pc1) + pageAccesses(pc2) < balance

it is removed and added to a pool of free nodes, which is
maintained as a number of free nodes in the tree root. The
two page containers are merged and linked to the predeces-
sor in the tree. If the number of page accesses of a single
page container fulfills

pageAccesses(pc1) > 2 ∗ balance



and, furthermore, there are free nodes in the node pool avail-
able, a new node is inserted with the median key from the
container, and the container is split into two according new
containers. Growing the tree works simply by increasing
the free node pool variable and relying on the previously
sketched reorganization algorithms. Shrinking can be done
the same way, but also may be forced to immediately re-
gain resources by removing nodes and merging their page
containers having the least page accesses.

Currently, these reorganization as well as statistic up-
dates are performed during lookup operations. For reasons
discussed later on they may also be deferred to avoid con-
currency problems.

Based on this reorganization schema, the tree can adjust
to size restrictions as well as data usage, e.g. the example
tree in Figure 1 may index data with keys uniformly dis-
tributed in the range of 1 to 100, while accesses are nor-
mally distributed with a mean key value of 50, i.e. there are
far more accesses in the middle of the range. Therefore, the
tree is deeper towards this range and has smaller page con-
tainers to grant efficient lookup of often accessed data.

For experimental evaluation we tested a similar scenario
of uniformly distributed data (100000 tuples, approx. 100
tuples per page, tree with 1000 nodes) and normally dis-
tributed exact match lookups.

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

0 200000 400000 600000 800000 1000000

N
um

be
r 

of
 a

cc
es

se
d 

pa
ge

s 
(c

um
ul

at
iv

e)

Number of queries

fully balanced
access-balanced

Figure 2. Comparison of page accesses

In Figure 2 the results for page accesses are shown. Be-
cause it would not make sense to compare our approach
to a dense index, we instead compare to an alternative
implementation of a fixed size tree without the automatic
access-based balancing, which is fully balanced from the
beginning. Though in both cases the complexity of a sin-
gle lookup remains in the order of O(log n), the access-
balanced tree outperforms the fully balanced tree with a lin-
ear factor because access to more often used data is more
efficient.

0

100

200

300

400

500

600

700

800

900

0 200000 400000 600000 800000 1000000

N
um

be
r 

of
 tr

ee
 r

eo
rg

an
iz

at
io

ns

Number of queries

Figure 3. Number of tree reorganizations

In Figure 3 we illustrate the number of tree reorganiza-
tions triggered by the number of exact match lookups. After
ca 100000 lookups the tree reaches a relatively stable struc-
ture with very few reorganizations required afterwards.

Nevertheless, we could not yet quantify the major ad-
vantage of the proposed approach: instead of choosing to
create indexes within a configuration or not, we now can
assign space to indexes where needed within a more com-
plex indexing schema. And, as discussed before, even small
indexes may provide a huge benefit. This way, having a
great number of those small indexes is preferable to hav-
ing a small number of very huge indexes. An evaluation of
these aspects, apart from solving the problems described in
the following, requires a real life scenario with multiple ta-
bles, columns, etc., e.g. the TPC benchmarks and a full im-
plementation of the global indexing schema. Because we
cannot build our test environment based on available DBMS
technology due to the strong difference of our approach, this
is a very complex task we are dealing with in our current re-
search.

Open Issues

It is quite obvious that there are a great number of open
problems and questions with the approach, which we are
currently trying to resolve. For our future work we will fo-
cus on the following aspects:

An overall indexing schema: the basic ideas outlined be-
fore mostly only refer to new indexes, which must be
the building blocks of an indexing schema covering the
task of index tuning for a full database, for instance by
deciding about whether a certain index makes sense at
all or assigning space resources to indexes. A simplis-
tic approach would be to support all indexable columns
with indexes, and control the tuning only via resource
assignment, e.g. the previously presented binary tree



also allows trees with size 0, i.e. no nodes and only a
list of pages.

Data structures suitable for DBMS storage: of course
binary trees are not the optimal choice for a DBMS in-
dex structure. Because we balance based on ac-
cess characteristics and not on the data distribu-
tion, the only interesting property of B-Trees is the
fixed node size that fits well with the storage man-
agement of a DBMS. If we want to support multiple
(or even all possible) access paths, the best solu-
tion are multidimensional index structures, such as
Grid Files or kdB-Trees. Nevertheless, these struc-
tures will have to be adjusted to be access-balanced
and to serve as sparse indexes to support resource as-
signment.

Index-organized data vs. secondary indexes: to support
multiple access paths in current DBMS most often sec-
ondary indexes are used. These can cause a tremen-
dous space overhead for sparse indexes, because possi-
bly very long lists of tuple identifiers are required even
for small indexes. To solve this issue, our current re-
search again focuses on multi-dimensional index struc-
tures which are used to organize data on secondary
storage similar to Grid Files. As an alternative we con-
sider Bitmap indexes, but for these the well-known
problems regarding the update granularity would have
to be resolved.

Concurrency issues: concurrency issues can result from
keeping often updated statistics within the index struc-
tures. For instance, the points where statistics are kept
within the binary tree are marked grey in Figure 1.
Our goal is to isolate such hot spots as much as possi-
ble. On the other hand, the statistics do not necessarily
underly strong transaction requirements and therefore
can be managed by the DBMS separately. Further con-
currency problems relate to the reorganization of data
and index structures, which may also be triggered by
read-only accesses. A possible solution would be de-
ferred reorganizations.

Operations based on access-balanced index structures:
as a consequence of new index structures, index based
operations and their implementation have to be in-
vestigated. Simple examples would be range scans,
sorting and ordered scans, merge joins, etc.

Possibilities of extending commercial DBMS: because
the basic principles of the proposed approach are quite
oppositional to index management and usage in cur-
rent DBMS, the integration of according concepts in
commercial solutions will not be an easy task. There-
fore, we investigate the transfer of partial results,
for instance based on partial or multi-layered in-
dexes, into existing systems.

Evaluation: as pointed out before, the introduced concepts
require a thorough evaluation with a complex test en-
vironment. On the one hand, index structures must
be evaluated regarding the advantages of access-based
balancing as well as the overhead and speed of reorga-
nization. Finally, the concept of sparse indexing must
be evaluated separately to quantify the performance of
the overall indexing schema.

5. Related Work

Index tuning in general – whether carried out by experts,
supported by tools, or even accomplished autonomously by
the DBMS – always comprises the selection of an index
configuration providing the highest possible system effi-
ciency. Autonomous index tuning furthermore requires sup-
port for index replacement strategies.

The selection of an index configuration is an important
task of physical database design. However, this problem is
considered only during design time in literature and in cur-
rent practice, for overviews see [18, 8]. Our approach of
building indexes during query processing has some differ-
ent characteristics and challenges: early adaption to a cur-
rent workload, iterative update of the index statistics, index
replacement strategies, and possible usage of table scans of
a query for index building. Therefore, there are many sim-
ilarities to other self-tuning features of a database system,
for instance the cache and buffer management.

There are several academic approaches as well as
database products for advising index selections [4, 3, 12,
2, 15, 5]. A common approach is the analysis of a workload
given by the database administrator or by former queries
from a log file. Using this approach several techniques were
developed which use either a separate cost model or rely on
the optimizer estimates.

The works [3, 6] belong to the class of techniques which
make use of a separate cost model. Relying on a stand-alone
cost model has the important disadvantage, that the tool can-
not exactly estimate the real system behavior. In contrast,
an optimizer-based approach works directly with the sys-
tem’s estimations. The work of [6] also deals with adap-
tion to changing workloads at run time, but it is based on its
own cost model, in contrast our approach is based on opti-
mizer estimations.

An early realization of the optimizer-based approach
is described in [4]. This work describes the design tool
DBDSGN, which relies on the System R optimizer and
computes for a given workload an optimal index configu-
ration. This approach inspired the index wizards and advi-
sors of current database management systems [2, 17, 1].

The work described in [10] deals with view and index
selection in a data warehouse environment. It combines a
cost-based method with a set of rules of thumb. The cost-



based technique uses an A* algorithm, but it does not suf-
ficiently reduce the search space for real world scenarios,
which leads to the rule set. The authors of [5, 7] propose
another technique for index selection for OLAP. Here, in-
dexes are considered during the selection of materialized
views. The cost model is based on the estimated number
of returned rows of a query and is independent from the
optimizer. As an optimization algorithm the authors used
a greedy algorithm. The greedy behavior prevents the dis-
covery of index interaction, e.g. in a merge-join. Therefore,
Chaudhuri and Narasayya included in their index selection
an exhaustive search for the best configurations [2]. Fur-
thermore, the algorithm in [2] consists of two phases: enu-
merating possible configurations from every single query of
the workload and subsequently, selecting the final configu-
ration by using the mentioned combined greedy approach
with an optimizer-based cost model.

6. Conclusion

Index tuning is – among others – an important task for
fulfilling the query execution time requirements of modern
database applications. Today’s commercial database sys-
tems support this task with so-called index wizards or ad-
visors recommending indexes based on a given workload.

In our previous research we argued that this support can
be further improved by a tight integration of query moni-
toring, index selection and building with the actual query
processing. Based on a cost model we presented differ-
ent strategies for identifying potentially beneficial indexes,
maintaining statistics on index profits and deciding about
indexes for creating and/or dropping. Furthermore, we dis-
cussed how this approach can be implemented on top of a
commercial DBMS providing basic facilities for index rec-
ommendation. Though, in our implementation we exploited
some special features of DB2 the approach basically can be
ported to other systems providing similar support for index
recommendation.

Finally, to overcome some problems with the previous
approach and provide a more natural solution we proposed
moving the index tuning problem from the configuration
layer to the index layer itself. For this purpose, we illus-
trated some advantages of the new approach based on a
simple, flexible, and access-balanced binary tree index. Be-
cause this is research work that started only recently, we
gave an overview of the issues to be considered for self-
tuning index structures.

References

[1] Oracle9i Database Online Documentation, Release 2 (9.2),
2002.

[2] S. Chaudhuri and V. R. Narasayya. An Efficient Cost-
Driven Index Selection Tool for Microsoft SQL Server. In
VLDB’1997, pages 146–155, 1997.

[3] S. Choenni, H. M. Blanken, and T. Chang. On the Selec-
tion of Secondary Indices in Relational Databases. DKE,
11(3):207 – 234, December 1993.

[4] S. J. Finkelstein, M. Schkolnick, and P. Tiberio. Physical
Database Design for Relational Databases. TODS, 13(1):91–
128, 1988.

[5] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman.
Index Selection for OLAP. In ICDE’1997, pages 208–219,
1997.

[6] M. Hammer and A. Chan. Index Selection in a Self-Adaptive
Data Base Management System. In SIGMOD’1976, pages
1–8, 1976.

[7] V. Harinarayan, A. Rajaraman, and J. D. Ullman. Imple-
menting Data Cubes Efficiently. In SIGMOD’1996, pages
205–216, 1996.

[8] IEEE. Bulletin of the Technical Committee on Data Engi-
neering, volume 22, June 1999.

[9] T. Kraft, H. Schwarz, R. Rantzau, and B. Mitschang. Coarse-
Grained Optimization: Techniques for Rewriting SQL State-
ment Sequences. In VLDB’2003, pages 488–499, 2003.

[10] W. Labio, D. Quass, and B. Adelberg. Physical Database De-
sign for Data Warehouses. In ICDE’1997, pages 277–288,
1997.

[11] E. J. O’Neil, P. E. O’Neil, and G. Weikum. The LRU-K
Page Replacement Algorithm For Database Disk Buffering.
In SIGMOD’1993, pages 297–306, 1993.

[12] S. Rozen and D. Shasha. A Framework for Automating Phys-
ical Database Design. In VLDB’1991, pages 401–411, 1991.

[13] K. Sattler, I. Geist, and E. Schallehn. QUIET: Continuous
Query-driven Index Tuning (Software Demonstration). In
VLDB’2003, pages 1129–1132, 2003.

[14] K. Sattler, E. Schallehn, and I. Geist. Autonomous query-
driven index tuning. In Proc. Int. Database Engineering and
Applications Symposium (IDEAS 2004), Coimbra, Portugal,
pages 439–448, July 2004.

[15] B. Schiefer and G. Valentin. DB2 Universal Database Per-
formance Tuning. Bulletin of the Technical Committee on
Data Engineering, 22(2):12–19, June 1999.

[16] M. Stonebraker. The case for partial indexes. Sigmod
Record, 18(4):4–11, Dec. 1989.

[17] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skel-
ley. DB2 Advisor: An Optimizer Smart Enough to Recom-
mend Its Own Indexes. In ICDE’2000, pages 101–110, Mar.
2000.

[18] G. Weikum, A. Mönkeberg, C. Hasse, and P. Zabback. Self-
tuning Database Technology and Information Services: From
Wishful Thinking to Viable Engineering. In VLDB’2002,
pages 20 – 31, 2002.


