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Editorial
by Friedrich Leisch

Another year is over and it is time for change in the
editorial board of R News. Thomas Lumley will take
over as Editor-in-Chief for 2004, and Paul Murrell
will join him and Doug Bates as board members.

Three years ago, in the editorial of issue 1/1, Kurt
Hornik and I outlined possible topics for articles in
the newsletter; I am pleased to say that issue 3/3 cov-
ers all of these types of topics and much more.

This issue starts with an introductory guide on
dimension reduction for data mapping, followed by
two articles on applications that describe how R can
be used as a simulation tool in empirical ecology and
for the analysis of student achievements over time.
Of interest to many users is creation of web pages
from within R, the topic of the R2HTML package arti-
cle. For programmers and those interested in getting
a little bit more out of R we have a Programmer’s
Niche column on regular expressions, an introduc-
tion to a new debugging facility, and an introduction
to the lmeSplines package.

Certainly one of the key strengths of R is the pack-
aging system. We now have about 300 packages on
CRAN and another 50 in the Bioconductor reposi-
tory, and the lists keep growing faster and faster. This
wealth of packages can have a down side. In my ex-

perience the distinction between a “package” and a
“library” or why it is hard to install a “source” pack-
age on Windows are confusing issues, especially for
beginners. This issue’s Help Desk column clarifies
this vocabulary and has many upseful tips on how
to make your R installation easier to maintain.

At the Technische Universität Wien we are
eagerly anticipating the first R users conference,
useR! 2004, which will be held here in May. Over
the last few years we had several developer confer-
ences but this will be the first meeting primarily for
those interested in using R for data analysis without
necessarily writing software (although, in S, a soft-
ware user often quickly becomes a developer). Sev-
eral R core members will give keynote lectures on im-
portant features of R; in addition we hope to attract
a large number of contributions from which we can
compile an attractive program. In some sense this
will be a conference version of R News, with bits and
pieces for all R users from novices to seasoned pro-
grammers.

Looks like 2004 will be another good year for the
R project. Best wishes to everyone!

Friedrich Leisch
Technische Universität Wien, Austria
Friedrich.Leisch@R-project.org
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Dimensional Reduction for Data Mapping
A practical guide using R

by Jonathan Edwards and Paul Oman

Introduction

Techniques that produce two dimensional maps
of multi-variate data are of increasing importance,
given the recent advances in processing capability,
data collection and storage capacity. These tech-
niques are mostly used in an exploratory capacity, to
highlight relationships within the data-set, often as a
precursor to further analysis. An example usage on
a data-set of shape descriptors is given in Edwards
et al. (2003). There are many statistical approaches
to this problem, and this article serves as an initial
overview and practical guide to their application in
R. A small comparative study is also presented, to
highlight the ease with which the analysis can be per-
formed, and to demonstrate the capabilities of sev-
eral of the more established techniques. The inter-
ested reader is directed to Ripley (1996) for thorough
treatments and derivations.

Principal component analysis

Principal Component Analysis (PCS, Pearson, 1901)
is the most widely used general dimension reduc-
tion technique, and can easily be applied to mapping
multi-variate data. PCA is a centring (to mean), scal-
ing (to variance) and rotation (to principal axes) pro-
duced by an orthogonal linear transform (equation 1)
of the data ({x}n

i=1 ∈ RD), with the aim of generating
a series of uncorrelated variables (y).

y = UT(x− x̄) (1)

A standard solution to finding UT, and hence y,
is the spectral decomposition (Σ = UΛUT) of the co-
variance matrix 1 (Σ = IE((x− x̄)(x− x̄)T)), whereΛ

is the diagonal eigenvalue matrix, with eigenvalues
ordered λ1 ≥ λ2 ≥ . . . ≥ λp. For dimension re-
duction to dimension L (for mapping, normally 2),
PCA has the desirable property that in a linear sense,
the largest variance is explained by the first L com-
ponents. Due to its ubiquity and also because it
forms a basis for other approaches, many packages
implement PCA. In practice they mainly rely on the
base routines of svd and eigen to perform eigen-
decomposition 2. The author’s preferred implemen-
tations are the prcomp and princomp (with formula
interface) functions supplied by the mva package

(The interested reader should also examine the ade4
package). These functions make the application of
PCA to dataframes a trivial task. The following lines
of R code perform PCA on the data-set g54 (which
is used as data in all the proceeding examples, see
section “data generation” at the end of this article for
details):

> out.pca <- prcomp(g54[,1:4])

If we want to use correlations instead of covari-
ances, scaling is required, so the function call be-
comes prcomp(g54[,1:4], scale=TRUE).

The mapping process is then simply the plotting
of the first two principal components. This can be
performed using a biplot, or via the standard plot
call

> plot(out.pca$x[,1:2],

+ main ="prcomp")

see Figure 1.

Multi-dimensional scaling

Multi-Dimensional Scaling (MDS) is a method of em-
bedding the distance information of a multi-variate
data-set, in a reduced dimension L, by seeking a
set of vectors ({x̂}n

i=1 ∈ RL) that reproduce these
distances. One of the advantages of this direct ap-
proach is that an arbitrary distance metric can be
used in the original multi-variate domain. Both met-
ric and non-metric approaches to MDS have been de-
veloped. Metric MDS aims to embed the distance
directly in to the mapping domain. The classical
analytical approach (Gower, 1966) (often referred to
as Principal Co-ordinate Analysis (PCoA)) utilises
the first two components of the spectral decompo-
sition of the distance matrix (UΣ

1
2 generates the co-

ordinates) to explain the maximal distance. If Eu-
clidean distance is used then this approach is equiva-
lent to covariance based PCA (see (Webb, 2002) page
346). Sammon mapping (Sammon jnr, 1969) is a more
commonly used approach. A distortion measure (in
MDS parlance referred to as Stress) is used to com-
pare the data-set distances with an equal number of
randomly distributed, two-dimensional points in the
mapping space. The Stress measure S is represented
by,

Ssam =
1

∑i< j d2
i j

∑
i< j

(di j − d̂i j)2

di j
(2)

1Correlation can also be used if one requires scaled variables in x
2These techniques are O(D3) (Carreira-Perpinan, 1997, page 10). It appears that MATLAB versions of these functions allow the user to

select the number of eigenvectors/values calculated (Nabney, 2001, page 230), the author is interested in how these approaches might be
adopted in R.
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Figure 1: Maps of the Gaussian5 data-set (5 multivariate Gaussian clusters in 4-dimensional space)

di j is the distance vectors i and j,d̂ is the estimated
distance in dimension L. Ssam is minimised using
an appropriate iterative error minimisation scheme,
Sammon proposed a pseudo-Newtonian method
with a step size, α normally set to 0.3. Ripley ((Rip-
ley, 1996) page 309) discusses a crude but extremely
effective line search for step size, which appears to
significantly enhance the optimisation process.

Non-Metric MDS produces a map that main-
tains the rank of distances within the original data-
set. The most widely known approach is due to
Kruskal (Kruskal, 1964) which uses a similar iterative
Stress function minimisation to the Sammon map,
the stress function

Skruskal =

√√√√∑i< j(di j − d̂i j)2

∑i< j d̂2
i j

(3)

which is again minimised, using a suitable gradient
descent technique.

All the MDS techniques discussed above (includ-
ing Ripley’s adaptive step-size optimisation scheme)
are supported in R as a part of the mva and MASS
packages (classical MDS (cmdscale), Sammon map-
ping (sammon) and non metric MDS (isoMDS)). Ad-
ditionally, a further implementation of the Sammon
map is available in the multiv package, however, this
appears to be less numerically stable. All the MDS
functions utilise a distance matrix (normally gener-
ated using the function dist) rather than a matrix or
data.frame, hence there is considerable flexibility to

employ arbitrary distance measures. Although the
function’s defaults are often adequate as a first pass,
the two iterative techniques tend to require a more
forceful optimisation regime, with a lower “desired”
stress, and more iterations, from a random initial
configuration, to achieve the best mapping. The R
code below performs all three mapping techniques,
using the more rigorous optimisation strategy

> dist.data <- dist(g54[,1:4])

> out.pcoa <- cmdscale(dist.data)

> randstart <- matrix(runif(nrow(g54[,1:4])*2),

+ nrow(g54[,1:4]),2)

> out.sam <- sammon(dist.data,y=randstart,

+ tol=1e-6,niter=500)

> out.iso <- isoMDS(dist.data,y=randstart,

+ tol=1e-6,maxit=500)

Again, plotting can be done with the standard R plot-
ting commands.

> plot(out.pcoa, main="cmdscale")

> plot(out.sam$points), ,ylab="",xlab="",

+ main=paste("sammon s=",as.character(

+ round(out.sam$stress,4))))

> plot(out.iso$points,xlab="",ylab="",

+ main=paste("IsoMDS, s=",

+ as.character(round(out.iso$stress,4))))

It is also worthwhile to produce a distortion plot
(see Figure 2), this plots the original distances against
the mapped distances, and can be used to assess the
accuracy of distance reproduction in L.
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> plot(as.matrix(dist.data),

+ as.matrix(dist(out.sam$points)),

+ main="Distortion plot: Sammon map",

+ ylab="2d distance",xlab="nd distance")
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Figure 2: Distortion plot for the Gaussian5 data-set.
Note pch=20 was used.

Figure 3: SOM of the Gaussian5 data-set.

The self organising map

The Self Organising Map (SOM) (Kohonen, 1982) is a
variation on the K-means algorithm, which generates
a map (typically a hexagonal lattice) of topologically
arranged cluster centroids. The algorithm proceeds
in the same manner as K-means with a winner-takes-
all approach to updating the centroids (mi where i is
some positional reference). The update rule is

mi(t + 1) = mi(t) + hci[x(t)−mi(t)] (4)

Neighbourhoods hci are normally calculated as hci =
α(t) if iεN else 0, where N is a set of centroids in
proximity to the “winning” centroid. α is the learn-
ing rate, which is decreased to schedule the optimi-

sation of the map. There are two packages that im-
plement SOM’s, som and class. These packages both
appear to be interfaces to the standard SOMPAK C
library (Kohonen et al., 1996).

Once the map has settled, several visualisation
approaches can be applied (see (Vesanto, 1999) for
overview). The most straightforward method in R
(suggested in (Ripley, 1996)) is to allocate, via near-
est neighbour search, each example in the data-set to
a cluster centre. The following R code, using class
(adapted from the SOM help file in R) produces a SOM
and maps it using the nearest neighbour approach
(see Figure 3):

> gr <- somgrid(topo = "hexagonal",

+ xdim=5,ydim=5)

> out.som <- SOM(g54[,1:4], gr, alpha =

+ list(seq(0.05, 0, len = 1e4),

+ seq(0.02, 0, len = 1e5)),

+ radii = list(seq(8, 1, len = 1e4),

+ seq(4, 1, len = 1e5)))

> plot(out.som$grid, type = "n")

> symbols(out.som$grid$pts[, 1],

+ out.som$grid$pts[, 2],

+ circles = rep(0.4, 25),

+ inches = FALSE, add = TRUE)

> bins <- as.numeric(knn1(out.som$codes,

+ g54[,1:4], 0:24))

> points(out.som$grid$pts[bins, ] +

+ rnorm(nrow(g54), 0, 0.1),

+ col=classcol[rep(1:5,e=15)],pch=20)

Independent component analysis
and projection pursuit

Independent Component Analysis (ICA) (Jutten and
Hérault, 1991) and Projection Pursuit (Huber, 1985)
are variations on classical factor analysis incorporat-
ing a search for maximally “Interesting” projections.
ICA takes the general form

x = Gs (5)

where G is the mixing matrix, and s ∈ RL<D are the
latent variables.

The task then is to find G which satisfies the
above equation, and maximises an “interestingness”
function on s, I(s). Predictably, given the subjectiv-
ity of the term “interesting”, there are many forms
of I(s), exponents of ICA and Projection Pursuit
both agree that an important aspect is deviation from
Gaussianity. Originally algorithms focused on max-
imising kurtosis based measurements, as these can
be efficiently calculated. However, this approach is
not robust to outliers, and hence a variety of other
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approaches have been suggested (see (Hyvärinen,
1999b) for discussion on why non-Gaussianity is in-
teresting, weaknesses of kurtosis and survey of alter-
native “interestingness” functions). A standard ro-
bust approach, which has been discussed in the lit-
erature of both Projection Pursuit and ICA, is to es-
timate (via approximation) the minimum mutual in-
formation via maximisation of the negentropy.

J(s) = (IE f (s)− IE f (v))2 (6)

where v is a standard Normal r.v, and f is f (u) =
log cosh a1u (a1 ≥ 1 is a scaling constant). This
method is used in the fastICA implementation of
ICA (Hyvärinen, 1999a), and can be applied and
plotted by the following R function calls:

> out.ica <- fastICA(g54[,1:4], 2,

+ alg.typ = "deflation",

+ fun = "logcosh", alpha = 1,

+ row.norm = FALSE, maxit = 200,

+ tol =0.0001)

again, the first two components (out.ica$[,1:2])are
plotted. XGobi and Ggobi (Swayne et al., 1998) are
additional methods of performing Projection Pur-
suit, which although not strictly a part of R can be
called using the functions in the R interface pack-
age Rggobi. This has less flexibility than a tradi-
tional R package, however there are some attractive
features that are worth considering for exploratory
multi-variate analysis, particularly the grand tour ca-
pability, where the data-set is rotated along each of
it’s multivariate axes.

A small comparative study

−4 −2 0 2 4

−1
.0

−0
.5

0.
0

0.
5

1.
0

prcomp

−10 −5 0 5 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

cmdscale

−4 −2 0 2 4

−1
0

−5
0

5
10

sammon s= 0

−4 −2 0 2 4 6

−5
0

5

isoMDS, s= 0

−1.0 −0.5 0.0 0.5 1.0

−1
.5

−0
.5

0.
5

1.
0

1.
5

fastICA

Figure 4: Maps for the Line data-set.

Data-set n,s c Description
Line 9,9 x line in 9d

Helix 3,30 x 3d spiral
Gaussian54 4,75 X 5 Gaussians in a 4d simplex

Iris 4,150 X classic classifier problem

Table 1: The data sets, n, s are dimension and size.

To illustrate the capabilities of the above tech-
niques (SOMs were not included as there are prob-
lems visualising geometric structures) a series of ex-
ample maps have been generated using the data-sets
from Sammon’s paper (Sammon jnr, 1969)(see Ta-
ble 1) 3. These data-sets are used as they are easily
understood and contrast the mapping performance.
Interpretation of these results is fairly objective, for
the geometric functions one requires a sensible repro-
duction, for data-sets with class information (labeled
’c’ in the table) a projection that maintains cluster in-
formation is desirable. For the iterative MDS tech-
niques I will admit repeating the mapping process a
few times (maximum 4!).
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Figure 5: Maps for the Helix data-set.

Results

Line Figure 4, all techniques generate a line, apart
from Non-Metric MDS which has greater free-
dom in the positioning of points, and hence
produces a somewhat “wavy” line.

Helix Figure 5, this is an excellent data-set for a
comparative study as the data is easily under-
stood, and each algorithm gives a different in-
terpretation. At a fundamental level the non-
metric MDS (isoMDS) approach gives the cor-
rect interpretation since the helix is expressed
in it’s most “compressed” form. This approach
has done too well! and isn’t using all of the
available dimensions. Of the other mapping
techniques, most capture the sinusoidal vari-

3The non-linear helix data-set described in Sammon’s paper has been omitted from this study as the results are similar to the those for
the Helix data-set
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ation (especially PCA), and hence subjectively
present a better “story”.

Gaussian5 Figure 1, again this data is excellent for
highlighting the power of MDS techniques. If
a reasonable minima can be found - MDS tech-
niques offer a significant advantage in main-
taining clustering information. One of the main
characteristics of a cluster is that members tend
to be relatively close together, hence MDS, fun-
damentally a distance based approach, has a
greater capacity to maintain this relationship.

Iris Figure 6, there appears to be only minor differ-
ence in the maps produced. Of note perhaps
is the tighter clustering in the MDS based ap-
proaches.
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Figure 6: Maps of the Iris data-set.

Summary

As the results of the above study show, R is an excel-
lent tool to perform dimension reduction and map-
ping. The mva package in particular provides an ex-
cellent set of classical approaches which often give
the most revealing results, particularly when data
contains class information. fastICA and the SOM
function from class provide a welcome addition to
the repertoire, even if they are perhaps aimed more
at alternative problems. Clearly, there is scope to ex-
tend the number of projection pursuit indices, in line
with those implemented in XGobi.

Dimensional reduction is an extremely active
area of research, mainly within the Neural Network
community. Few comparative practical studies of
the application of recent techniques to mapping exist
(particularly between newer techniques and “classi-
cal” MDS approaches), hence there is no strong in-
dication of what might be usefully ported to R. A
free MATLAB implementation of many of the newer
techniques (Probabilistic Principal Component Anal-
ysis (Tipping and Bishop, 1997) (PPCA) mixtures of
PPCA (Tipping and Bishop, 1999), Generative Topo-
graphic Mapping (GTM) (Bishop et al., 1998) and
NeuroScale (Tipping and Lowe, 1998)), with excel-
lent supporting documentation is provided by the
NETLAB package (Nabney, 2001). This highlights
some of the advances that have yet to appear in
R, most notably techniques that are derived from
a Bayesian prospective. Further notable omissions
are Local Linear Embedding (Saul and Roweis, 2003)
and Isomap (Tenenbaum et al., 2000) which gener-
ate a series of local representations, which are then
linked together into a global mapping.

Data generation

The data-sets used in this study were generated us-
ing the following functions:

helix <- function( size = 30 )
{
# input : size, sample size
# output: 3d helix

t <- 0:(size-1)
z <- sqrt(2)/2*t
y <- sin(z)
x <- cos(z)
cbind(x,y,z)

}

gauss54 <- function ( s=15 , sig=0.02 )
{
# input : s, sample size (per Gaussian)
# sigma, cluster _covariance_
# output: 5 4d Gaussian clusters

simp4d <- matrix( c(0,0,0,0,1,0,
0, 0, 1/2, sqrt(3)/2, 0, 0, 1/2,
sqrt(3)/6 ,sqrt(2/3),0 ,1/2 ,sqrt(3)/6 ,
sqrt(2)/(4*sqrt(3)),sqrt(5/8))
,5,4,byrow=T)
#simplex4d can easily be checked
#using 'dist'

rbind(
mvrnorm(simp4d[1,],S=diag(4)*sig,n=s),
mvrnorm(simp4d[2,],S=diag(4)*sig,n=s),
mvrnorm(simp4d[3,],S=diag(4)*sig,n=s),
mvrnorm(simp4d[4,],S=diag(4)*sig,n=s),
mvrnorm(simp4d[5,],S=diag(4)*sig,n=s))
}
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l9 <- matrix(rep(1:9,9),9,9)
h30 <- helix()
#g54, last column is class label
g54 <- cbind(gauss54(),rep(1:5,e=15))
#iris data is a standard data-set
data(iris)
#check for duplicates else
#distance algorithms 'blow up'

iris.data <- unique(iris[,1:4])
iris.class <- iris[row.names(iris.data),5]
#some colours for the maps
classcol <- c("red","blue","green",
"black","yellow")
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R as a Simulation Platform in Ecological
Modelling
Thomas Petzoldt

Introduction

In recent years, the R system has evolved to a mature
environment for statistical data analysis, the devel-
opment of new statistical techniques, and, together
with an increasing number of books, papers and on-
line documents, an impressing basis for learning,
teaching and understanding statistical techniques
and data analysis procedures.

Moreover, due to its powerful matrix-oriented
language, the clear interfaces and the overwhelming
amount of existing basic and advanced libraries, R
became a major platform for the development of new
data analysis software (Tierney, 2003).

Using R firstly for post-processing, statistical
analysis and visualization of simulation model re-
sults and secondly as a pre-processing tool for exter-
nally running models the question arose, whether R
can serve as a general simulation platform to imple-
ment and run ecological models of different types,
namely differential equation and individual-based
models.

From the perspective of an empirical ecologist,
the suitability of a simulation platform is often
judged according to the following properties:

1. learning curve and model development time,

2. execution speed,

3. readability of the resulting code,

4. applicability to one special model type only or
to a wide variety of simulation methods,

5. availability of libraries, which support model
development, visualization and analysis of
simulation results,

6. availability of interfaces to external code and
external data,

7. portability and licensing issues.

While questions 5 to 7 can be easily answered
in a positive sense for the R system, e.g. portabil-
ity, free GNU Public License, the availability of ex-
ternal interfaces for C, Fortran and other languages
and numerous methods to read and write external
data, the remaining questions can be answered only
with some practical experience. As a contribution, I
present some illustrative examples on how ecological

models can be implemented within R and how they
perform. The documented code, which can be easily
adapted to different situations will offer the reader
the possibility to approach their own questions.

Examples

The examples were selected to show different types
of ecological models and possible ways of implemen-
tation within R. Although realism and complexity
are limited due to the intention to give the full source
code here, they should be sufficient to demonstrate
general principles and to serve as an onset for fur-
ther work1.

Differential equations

The implementation of first-order ordinary differ-
ential equation models (ODEs) is straightforward
and can be done either with an integration algo-
rithm written in pure R, for example the classical
Runge-Kutta 4th order method, or using the lsoda
algorithm (Hindmarsh, 1983; Petzold, 1983), which
thanks to Woodrow Setzer are both available in the
odesolve-library. Compared to other simulation
packages this assortment is still relatively limited but
should be sufficient for Lotka-Volterra type and other
small and medium scale ecological simulations.

As an example I present the implementation of
a recently published Lotka-Volterra-type model (Bla-
sius et al., 1999; Blasius and Stone, 2000), the con-
stant period – chaotic amplitude (UPCA) model. The
model consists of three equations for resource u, her-
bivorous v, and carnivorous w animals:

du
dt

= au−α1 f1(u, v) (1)

dv
dt

= −bv +α1 f1(u, v)−α2 f2(v, w) (2)

dw
dt

= −c(w− w∗) +α2 f2(v, w) (3)

where f1, f2 represent either the Lotka-Volterra
term fi(x, y) = xy or the Holling type II term
fi(x, y) = xy/(1 + kix) and w∗ is an important stabi-
lizing minimum predator level when the prey popu-
lation is rare.

To run the model as an initial value simulation
we must provide R with (1) the model written as an
R-function, (2) a parameter vector, (3) initial (start)
values, and (4) an integration algorithm.

1Supplementary models and information are available on http://www.tu-dresden.de/fghhihb/petzoldt/modlim/
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After loading the required libraries, the model
equations (the Holling equation f and the derivatives
model), can be written very similar to the mathemat-
ical notation. To make the code more readable, the
state vector xx is copied to named state variables and
the parameters are extracted from the parameter vec-
tor parms using the with-environment. The results of
the derivative function are returned as list.

library(odesolve)

library(scatterplot3d)

f <- function(x, y, k){x*y / (1+k*x)} #Holling II

model <- function(t, xx, parms) {

u <- xx[1]

v <- xx[2]

w <- xx[3]

with(as.list(parms),{

du <- a * u - alpha1 * f(u, v, k1)

dv <- -b * v + alpha1 * f(u, v, k1) +

- alpha2 * f(v, w, k2)

dw <- -c * (w - wstar) + alpha2 * f(v, w, k2)

list(c(du, dv, dw))

})

}

As a next step, three vectors have to be de-
fined: the times vector for which an output value
is requested, the parameter vector (parms), and the
start values of the state variables (xstart) where the
names within the vectors correspond to the names
used within the model function.

times <- seq(0, 200, 0.1)

parms <- c(a=1, b=1, c=10,

alpha1=0.2, alpha2=1,

k1=0.05, k2=0, wstar=0.006)

xstart <- c(u=10, v=5, w=0.1)

Now the simulation can be run using either rk4
or lsoda:

out <- as.data.frame(lsoda(xstart, times,

model, parms))

This should take only two seconds on a standard
computer and finally we can plot the simulation re-
sults as time series or state trajectory (fig. 1):

par(mfrow=c(2,2))

plot(times, out$u, type="l", col="green")

lines(times, out$v, type="l", col="blue")

plot(times, out$w, type="l", col="red")

plot(out$w[-1], out$w[-length(out$w)], type="l")

scatterplot3d(out$u, out$v, out$w, type="l")

Of course, similar results can be obtained with
any other simulation package. However, the great
advantage using a matrix oriented language like R
or Octave2 is, that the core model can be easily inte-
grated within additional simulation procedures. As

an example a bifurcation (Feigenbaum)-diagram of
the chaotic amplitude of the predator population can
be computed. First a small helper function which
identifies the peaks (maxima and minima) of the time
series is needed. Within a vectorized environment
this can be implemented very easily by selecting all
those values which are greater (resp. lower for min-
ima) as their immediate left and right neighbours:

peaks <- function(x) {

l <- length(x)

xm1 <- c(x[-1], x[l])

xp1 <- c(x[1], x[-l])

x[x > xm1 & x > xp1 | x < xm1 & x < xp1]

}

As a next step the integration procedure is in-
cluded within a main loop which increments the
variable parameter b, evaluates the peaks and up-
dates the plot:

plot(0,0, xlim=c(0,2), ylim=c(0,1.5),

type="n", xlab="b", ylab="w")

for (b in seq(0.02,1.8,0.02)) {

parms["b"] <- b

out <- as.data.frame(lsoda(xstart, times,

model, parms, hmax=0.1))

l <- length(out$w) %/% 3

out <- out[(2*l):(3*l),]

p <- peaks(out$w)

l <- length(out$w)

xstart <- c(u=out$u[l], v=out$v[l], w=out$w[l])

points(rep(b, length(p)), p, pch=".")

}

After a stabilization phase only the last third of
the detected peaks are plotted to show the behavior
“at the end” of the time series. The resulting bifurca-
tion diagram (fig. 2) shows the dependence of the
amplitude of the predator w in dependence of the
prey parameter b which can be interpreted as emigra-
tion parameter or as predator independent mortality.
The interpretation of this diagram is explained in de-
tail by Blasius and Stone (2000), but from the techni-
cal viewpoint this simulation shows, that within the
matrix-oriented language R the integration of a sim-
ulation model within an analysis environment can
be done with a very small effort of additional code.
Depending on the resolution of the bifurcation dia-
gram the cpu time seems to be relatively high (sev-
eral minutes up to one hour) but considering that in
the past such computations were often done on su-
percomputers, it should be acceptable on a personal
computer.

2http://www.octave.org
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Figure 1: Simulation of an UPCA model, top left: resource (green) and prey (blue), top right: predator, bottom
left: predator with lagged coordinates, bottom right: three dimensional state trajectory showing the chaotic
attractor.
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Figure 2: Bifurcation diagram for the predator w in
dependence of prey parameter b.

Individual-based models

In contrast to ODE models, which in most cases
work on an aggregated population level (abundance,
biomass, concentration), individual based models
are used to derive population parameters from the
behavior of single individuals, which are commonly
a stochastic sample of a given population. During the
last decade this technique, which is in fact a creative

collection of discrete event models, became widely
used in theoretical and applied ecology (DeAngelis
and Gross, 1992, and many others). Among them are
very different approaches, which are spatially aggre-
gated, spatially discrete (grid-based or cellular au-
tomata), or with a continuous space representation
(particle diffusion type models).

Up to now there are different simulation tools
available, which are mostly applicable to a rela-
tively small class of individual-based approaches,
e.g. SARCASim3 and EcoBeaker4 for cellular au-
tomata or simulation frameworks like OSIRIS (Mooij
and Boersma, 1996). However, because the ecologi-
cal creativity is higher than the functionality of some
of these tools, a large proportion of individual-based
models is implemented using general-purpose lan-
guages like C++ or Delphi, which in most cases, re-
quires the programmer to take care of data input and
output, random number generators and graphical vi-
sualization routines.

A possible solution of this tradeoff are matrix ori-
ented languages like Matlab5 (for individual-based
models see Roughgarden, 1998), Octave or the S lan-
guage. Within the R system a large collection of
fundamental statistical, graphical and data manipu-

3http://www.collidoscope.com/ca/
4http://www.ecobeaker.com/
5http://www.mathworks.com/
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lation functions is readily available and therefore it
is not very difficult to implement individual-based
models.

Individual-based population dynamics

The population dynamics of a Daphnia (water flee)
population is shown here as an example. Daphnia
plays an important role for the water quality of lakes
(e.g. Benndorf et al., 2001), can be held very easily
in the laboratory and the transparent skin makes it
possible to observe important life functions using the
microscope (e.g. food in the stomach or egg numbers
in the brood pouch), so the genus Daphnia became an
outstanding model organism in limnology, compara-
ble to Drosophila in genetic research.

Figure 3: Parthenogenetic life cycle of Daphnia.

Under normal circumstances the life cycle of
Daphnia is asexual (parthenogenetic) and begins with
one new-born (neonate) female which grows up to
the size of maturity (fig. 3). Then a number of asex-
ual eggs are deposited into the brood pouch (spawn-
ing) which then grow up to neonates and which are
released after a temperature-dependent time span
into the free water (hatching). There are several ap-
proaches to model this life cycle in the literature (e.g.
Kooijman, 1986; Gurney et al., 1990; Rinke and Pet-
zoldt, 2003). Although the following is an absolutely
elementary one which neglects food availability and
simplifies size-dependent processes, it should be suf-
ficient to demonstrate the principal methodology.

For the model we take the following assumptions
(specified values taken from Hülsmann and Weiler
(2000) and Hülsmann (2000)):

• The egg depelopment time is a function of
water temperature according to Bottrell et al.
(1976).

• Neonates have a size of 510 µm and the size of
maturity is assumed to be 1250 µm.

• Juvenile length growth is linear with a growth
rate of 83 µm d−1 and due to the reproductive
expense the adult growth rate is reduced to
80% of the juvenile value.

• The clutch size of each individual is taken ran-
domly from an observed probability distribu-
tion of the population in Bautzen Reservoir
(Germany) during spring 1999.

• The mortality rate is set to a fixed size-
independent value of 0.02 d−1 and the maxi-
mum age is set to a fixed value of 30 d.

The implementation consists of six parts. After
defining some constants, the vector with the cumu-
lative distribution of the observed egg-frequencies,
the simulation control parameters (1) and necessary
helper functions, namely a function for an inverse
sampling of empiric distributions (2), the life func-
tions (3) of Daphnia: grow, hatch, spawn and die
are implemented. Each individual is represented as
one row of a data frame inds where the life func-
tions either update single values of the individuals
or add rows via rbind for each newborn individual
(in hatch) or delete rows via subset for dead indi-
viduals. With the exception of the hatch function
all procedures are possible as vectorized operations
without the need of loops.

Now the population data frame is created (4) with
some start individuals either as a fixed start popula-
tion (as in the example) or generated randomly. The
life loop (5) calls each life function for every time step
and, as the inds data frame contains only one actual
state, collects the desired outputs during the simula-
tion, which are analysed graphically or numerically
immediately after the simulation (6, see fig. 4). The
example graphics show selected population statis-
tics: the time series of abundance with an approx-
imately exponential population growth, the mean
length of the individuals as a function of time (in-
dicating the presence of synchronized cohorts), the
frequency distribution of egg numbers of adult indi-
viduals and a boxplot of the age distribution.

Additionally or as an alternative it is possible to
save logfiles or snapshot graphics to disk and to anal-
yse and visualise them with external programs.

#===============================================

# (1) global parameters

#===============================================

# cumulative egg frequency distribution

eggfreq <- c(0.39, 0.49, 0.61, 0.74,

0.86, 0.95, 0.99, 1.00)

son <- 510 # um

primipara <- 1250 # um

juvgrowth <- 83 # um/d

adgrowth <- 0.8*juvgrowth # um/d

mort <- 0.02 # 1/d

temp <- 15 # deg C

timestep <- 1 # d

steps <- 40

#

# template for one individual

newdaphnia <- data.frame(age = 0,

size = son,
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eggs = 0,

eggage = 0)

#===============================================

# (2) helper functions

#===============================================

botrell <- function(temp) {

exp(3.3956 + 0.2193 *

log(temp)-0.3414 * log(temp)^2)

}

# inverse sampling from an empiric distribution

clutchsize <- function(nn) {

approx(c(0,eggfreq), 0:(length(eggfreq)),

runif(nn), method="constant", f=0)$y

}

#===============================================

# (3) life methods of the individuals

#===============================================

grow <- function(inds){

ninds <- length(inds$age)

inds$age <- inds$age + timestep

inds$eggage <- ifelse(inds$size > primipara,

inds$eggage + timestep, 0)

inds$size <- inds$size + timestep *

ifelse(inds$size < primipara,

juvgrowth, adgrowth)

inds

}

die <- function(inds) {

subset(inds,

runif(inds$age) > mort & inds$age <= 30)

}

spawn <- function(inds) {

# individuals with size > primipara

# and eggage==0 can spawn

ninds <- length(inds$age)

neweggs <- clutchsize(ninds)

inds$eggs <- ifelse(inds$size > primipara

& inds$eggage==0,

neweggs, inds$eggs)

inds

}

hatch <- function(inds) {

# individuals with eggs

# and eggage > egg development time hatch

ninds <- length(inds$age)

newinds <- NULL

edt <- botrell(temp)

for (i in 1: ninds) {

if (inds$eggage[i] > edt) {

if (inds$eggs[i] > 0) {

for (j in 1:inds$eggs[i]) {

newinds <- rbind(newinds,

newdaphnia)

}

}

inds$eggs[i] <- 0

inds$eggage[i] <- 0

}

}

rbind(inds, newinds)

}

#===============================================

# (4) start individuals

#===============================================

inds <- data.frame(age = c(7, 14, 1, 11, 8,

27, 2, 20, 7, 20),

size = c(1091, 1339, 618, 1286,

1153, 1557, 668, 1423,

1113, 1422),

eggs = c(0, 0, 0, 5, 0,

3, 0, 3, 0, 1),

eggage = c(0, 0, 0, 1.6, 0,

1.5, 0, 1.7, 0, 1.2))

#===============================================

# (5) life loop

#===============================================

sample.n <- NULL

sample.size <- NULL

sample.eggs <- NULL

sample.agedist <- NULL

for (k in 1:steps) {

print(paste("timestep",k))

inds <- grow(inds)

inds <- die(inds)

inds <- hatch(inds)

inds <- spawn(inds)

sample.n <- c(sample.n,

length(inds$age))

sample.size <- c(sample.size,

mean(inds$size))

sample.eggs <- c(sample.eggs,

inds$eggs[inds$size >

primipara])

sample.agedist <- c(sample.agedist,

list(inds$age))

}

#===============================================

# (6) results and graphics

#===============================================

par(mfrow=c(2,2))

plot(sample.n, xlab="time (d)",

ylab="abundance", type="l")

plot(sample.size, xlab="time (d)",

ylab="mean body length (ţm)", type="l")

hist(sample.eggs, freq=FALSE, breaks=0:10,

right=FALSE, ylab="rel. freq.",

xlab="egg number", main="")

time <- seq(1,steps,2)

boxplot(sample.agedist[time],

names=as.character(time), xlab="time (d)",

ylab="age distribution (d)")

Particle diffusion models

In individual based modelling two different ap-
proaches are used to represent spatial movement:
cellular automata and continuous coordinates (diffu-
sion models). Whereas in the first case movement is
realized by a state-transition of cells depending on
their neighbourhood, in diffusion models the indi-
viduals are considered as particles with x and y coor-
dinates which are updated according to a correlated
or a random walk. The movement rules use polar co-
ordinates with angle (α) and distance (r) which can
be converted to cartesian coordinates using complex
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Figure 4: Results of an individual-based Daphnia model: exponential growth of abundance (top left), fluctu-
ation of the mean body length indicating synchronised hatching (top right), simulated egg counts of adult
individuals (bottom left), boxplot of age distribution as a function of time (bottom right).
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numbers or sine and cosine transformation, what is
essentially the same. Changes in direction are real-
ized by adding a randomly selected turning angle to
the angle of the time step before. An angle which is
uniformly distributed within the interval (0, 2π) re-
sults in an uncorrelated random walk, whereas an
angle of less than a full circle or a non-uniform (e.g.
a normal) distribution leads to a correlated random
walk. To keep the individuals within the simulation
area either a wrap around mode or reflection at the
borders can be used.

The example shows a diffusion example with a
coordinate system of x, y = (0, 100) and an area
of decreased movement speed in the middle y =
(45, 55), which can be interpreted as refugium (e.g. a
hedge within a field for beatles), a region of increased
food availability (the movement speed of herbivo-
rous animals is less while grazing than foraging) or
as a diffusion barrier (e.g. reduced eddy diffusion
within the thermocline of stratified lakes).

The implementation is based on a data frame of
individuals (inds) with cartesian coordinates (x,y)
and a movement vector given as polar coordinates
(a, r), the movement rules and the simulation loop.

The simulation runs fast enough for a real-time
visualization of several hundred particles and gives
an impression, how an increased abundance within
refugia or diffusion barriers, observed very often in
the field, can be explained without any complicated
or intelligent behavior, solely on the basis of random
walk and variable movement speed (fig. 5). This
model can be extended in several ways and may in-
clude directed movement (sedimentation), reproduc-
tion or predator-prey interactions6. Furthermore, the
principle of random walk can be used as a starting
point for more complex theoretical models or, com-
bined with population dynamics or bioenergetical
models, as models of real-world systems (e.g. Hölker
et al., 2002).

#===============================================

# simulation parameters and start individuals

#===============================================

n <- m <- 100 # size of simulation area

nruns <- 2000 # number of simulation runs

nind <- 100 # number of inds

inds <- data.frame(x = runif(nind)*n,

y = runif(nind)*m,

r = rnorm(nind),

a = runif(nind)*2*pi)

#===============================================

# Movement

#===============================================

move <- function(inds) {

with(inds, {

## Rule 1: Refugium

speed <- ifelse(inds$y > 45

& inds$y < 55, 0.2, 2)

## Rule 2: Random Walk

inds$a <- a + 2 * pi / runif(a)

dx <- speed * r * cos(a)

dy <- speed * r * sin(a)

x<-inds$x + dx

y<-inds$y + dy

## Rule 3: Wrap Around

x<-ifelse(x>n,0,x)

y<-ifelse(y>m,0,y)

inds$x<-ifelse(x<0,n,x)

inds$y<-ifelse(y<0,m,y)

inds

})

}

#===============================================

# main loop

#===============================================

for(i in 1:nruns) {

inds <- move(inds)

plot(inds$x, inds$y, col="red", pch=16,

xlim=c(0, n), ylim=c(0, m),

axes=FALSE, xlab="", ylab="")

}
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Figure 5: State of the particle diffusion model after
2000 time steps.

Cellular automata

Cellular automata (CA) are an alternative approach
for the representation of spatial processes, widely
used in theoretical and applied ecological modelling.
As one of the most fundamental systems the well-
known deterministic CA “Conway’s Game of Life”
(Gardner, 1970) is often used as an impressive simu-
lation to show, that simple rules can lead to complex
behavior. To implement a rectangular CA within R,
a grid matrix (z), state transition rules implemented
as ifelse statements and the image plot function are
the essential building blocks. Furthermore a function
(neighbourhood) is needed, which counts the num-
ber of active (nonzero) cells in the neighbourhood of
each cell. In the strict sense only the eight adjacent
cells are considered as neighbours, but in a more gen-
eral sense a weighted neighbourhood matrix can be
used. The neighbourhood count has to be evaluated
for each cell in each time step and is therefore a com-
putation intensive part, so the implementation as an

6see supplementary information
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external C-function was necessary and is now avail-
able as part of the experimental simecol package.

Using this, Conway’s Game of Life can be imple-
mented with a very short piece of code. Part (1) de-
fines the grid matrix with a set of predefined or ran-
dom figures respectively, and part (2) is the life loop,
which contains only the call of the neighbourhood
function, the state transition rules and the visualiza-
tion. The simulation is much slower than specialized
Conway-programs (20 s on an AMD Athlon 1800+
for the example below) but still fast enough for real-
time animation (0.2 s per time step). Approximately
85% of the elapsed time is needed for the visualiza-
tion, only 3% for the neighbourhood function and the
rest for the state transition rules.

Figure 6: Initial state of matrix z before the simu-
lation (left) and state after the first simulation step
(right) .

However, despite the slower simulation speed
it is a great advantage of this implementation, that
state matrices and transition rules are under full
control of the user and that the system is com-
pletely open for extension towards grid-based mod-
els with an ecological background. Furthermore the
neighbours-function of the simecol-package allows
the use of a generalized neighbourhood via a weight
matrix to implement e.g. random or directed move-
ment of animals, seed dispersal, forest fire propaga-
tion or epidemic models.

library(simecol)

#===============================================

# (1) start individuals

#===============================================

n <- m <- 80

z <- matrix(0, nrow=n, ncol=m)

z[40:45,20:25] <-1 # filled square 6x6 cells

z[51:70,20:21] <-1 # small rectangle 20 x 2 cells

z[10:12,10] <-1 # short bar 3x1 cells

z[20:22,20:22] <- c(1,0,0,0,1,1,1,1,0) # glider

z[1:80,51:80] <-round(runif(2400)) # random

image(z, col=c("wheat", "navy"), axes=FALSE)

#===============================================

# (2) life loop

#===============================================

for (i in 1:100){

nb <- eightneighbours(z)

## survive with 2 or 3 neighbours

zsurv <- ifelse(z > 0 & (nb == 2 | nb ==3), 1, 0)

## generate for empty cells with 3 neigbors

zgen <- ifelse(z == 0 & nb == 3, 1, 0)

z <- matrix((zgen + zsurv), nrow=n)

image(z, col=c("wheat","navy"),

axes=FALSE, add=TRUE)

}

Conclusions

The examples described so far, plus the experience
with R as data analysis environment for measure-
ment and simulation data, allows to conclude that
R is not only a great tool for statistical analysis and
data processing but also a general-purpose simula-
tion environment, both in research and especially in
teaching.

It is not only an advantage to replace a lot of dif-
ferent tools on the modelers PC for different types
of models, statistical analysis and data management
with one single platform. The main advantage lies in
the synergistic effects, which result from the combi-
nation and integration of these simulation models to-
gether with powerful statistics and publication qual-
ity graphics.

Being an interpreted language with a clear syn-
tax and very powerful functions, R is easier to learn
than other languages and allows rapid prototyping
and and interactive work with the simulation mod-
els. Due to the ability to use vectorized functions, the
execution speed is fast enough for non-trivial simu-
lations and for real-time animation of teaching mod-
els. In many cases the code is compact enough to
demonstrate field ecologists the full ecological func-
tionality of the models. Furthermore, within a work-
group where field ecologists and modellers use the
same computing environment for either statistical
data analysis or the construction of simulation mod-
els, R becomes a communication aid to discuss eco-
logical principles and to exchange ideas.
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Using R for Estimating Longitudinal
Student Achievement Models
by J.R. Lockwood1, Harold Doran and Daniel F. McCaf-
frey

Overview

The current environment of test-based accountability
in public education has fostered increased interest in
analyzing longitudinal data on student achievement.
In particular, “value-added models” (VAM) that
use longitudinal student achievement data linked
to teachers and schools to make inferences about
teacher and school effectiveness have burgeoned.
Depending on the available data and desired infer-
ences, the models can range from straightforward
hierarchical linear models to more complicated and
computationally demanding cross-classified models.
The purpose of this article is to demonstrate how R,
via the lme function for linear mixed effects models
in the nlme package (Pinheiro and Bates, 2000), can
be used to estimate all of the most common value-
added models used in educational research. After
providing background on the substantive problem,
we develop notation for the data and model struc-
tures that are considered. We then present a se-
quence of increasingly complex models and demon-
strate how to estimate the models in R. We conclude
with a discussion of the strengths and limitations
of the R facilities for modeling longitudinal student
achievement data.

Background

The current education policy environment of test-
based accountability has fostered increased interest
in collecting and analyzing longitudinal data on stu-
dent achievement. The key aspect of many such
data structures is that students’ achievement data
are linked to teachers and schools over time. This
permits analysts to consider three broad classes of
questions: what part of the observed variance in
student achievement is attributable to teachers or
schools; how effective is an individual teacher or
school at producing growth in student achievement;
and what characteristics or practices are associated
with effective teachers or schools. The models used
to make these inferences vary in form and complex-
ity, and collectively are known as “value added mod-
els” (VAM, McCaffrey et al., 2004).

However, VAM can be computationally demand-
ing. In order to disentangle the various influences on

achievement, models must account simultaneously
for the correlations among outcomes within students
over time and the correlations among outcomes by
students sharing teachers or schools in the current
or previous years. The simplest cases have student
outcomes fully nested within teachers and schools,
in which case standard hierarchical linear models
(Raudenbush and Bryk, 2002; Pinheiro and Bates,
2000) are appropriate. When students are linked to
changing teachers and/or schools over time, more
complicated and computationally challenging cross-
classified methods are necessary (Bates and DebRoy,
2003; Raudenbush and Bryk, 2002; Browne et al.,
2001). Although the lme function of the nlme library
is designed and optimized for nested structures, its
syntax is flexible enough to specify models for more
complicated relational structures inherent to educa-
tional achievement data.

Data structures

The basic data structures supporting VAM estima-
tion are longitudinal student achievement data Yk =
(Yk0, . . . , YkT) where k indexes students. Typically
the data represent scores on an annual standardized
examination for a single subject such as mathemat-
ics or reading, with t = 0, . . . , T indexing years.
For clarity, we assume that all students are from
the same cohort, so that year is coincident with
grade level. More careful consideration of the dis-
tinction between grade level and year is necessary
when modeling multiple cohorts or students who are
held back. We further assume that the scores rep-
resent achievement measured on a single develop-
mental scale so that Ykt is expected to increase over
time, with the gain scores (Ykt − Yk,t−1) represent-
ing growth along the scale. The models presented
here can be estimated with achievement data that are
not scaled as such, but this complicates interpreta-
tion (McCaffrey et al., 2004).

As noted, the critical feature of the data under-
lying VAM inference is that the students are linked,
over time, to higher-level units such as teachers and
schools. For some data structures and model spec-
ifications, these linkages represent a proper nesting
relationship, where outcomes are associated with ex-
actly one unit in each hierarchical level (e.g. out-
comes nested within students, who are nested within
schools). For more complex data, however, the

1This material is based on work supported by the National Science Foundation under Grant No. 99-86612. Any opinions, findings
and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.
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stuid schid y0.tchid y1.tchid y2.tchid y0 y1 y2

1 1 3 102 201 557 601 629
2 1 3 101 203 580 632 660
3 1 2 102 202 566 620 654

· · ·
287 4 14 113 215 590 631 667
288 4 14 114 213 582 620 644
289 4 13 113 214 552 596 622

· · ·

Table 1: Sample records from wdat

linkages represent a mixture of nested and cross-
classified memberships. For example, when students
change teachers and/or schools over time, the re-
peated measures on students are associated with dif-
ferent higher-level units. Complicating matters is
that some models may wish to associate outcomes
later in the data series with not only the current unit,
but past units as well (e.g. letting prior teachers af-
fect current outcomes).

Depending on the type of model being fit, the
data will need to be in one of two formats for
use by lme. In the first format, commonly called
“wide” or “person-level” format, the data are stored
in a dataframe where each student has exactly one
record (row), and repeated measures on that stu-
dent (i.e. scores from different years) are in dif-
ferent fields (columns). In the other form, com-
monly called “long” or “person-period” format, re-
peated measures on students are provided in sep-
arate records, with records from the same student
in consecutive, temporally ordered rows. Intercon-
version between these formats is easily carried out
via the reshape function. In some settings (partic-
ularly with fully nested data structures) making the
dataframe a groupedData object, a feature provided
by the nlme library, will simplify some model specifi-
cations and diagnostics. However, we do not use that
convention here because some of the cross-classified
data structures that we discuss do not benefit from
this organization of the data.

Throughout the article we specify models in
terms of two hypothetical dataframes wdat and ldat
which contain the same linked student achievement
data for three years in wide and long formats, re-
spectively. For clarity we assume that the outcome
data and all students links to higher level units are
fully observed; we discuss missing data at the end
of the article. In the wide format, the outcomes for
the three years are in separate fields y0, y1, and y2.
In the long format, the outcomes for all years are in
the field yt, with year indicated by the numeric vari-
able year taking on values of 0, 1 and 2. The student
identifiers and school identifiers for both dataframes
are given by stuid and schid, respectively, which we
assume are constant across time within students (i.e.
students are assumed to be nested in schools). For

the wide format dataframe, teacher identifiers are in
separate fields y0.tchid, y1.tchid, and y2.tchid
which for each student link to the year 0, 1 and 2
teachers, respectively. These fields will be used to
create the requisite teacher variables of the long for-
mat dataframe later in the discussion. All identi-
fiers are coded as factors, as this is required by some
of the syntax presented here. Finally, in order to
specify the cross-classified models, it is necessary to
augment ldat with a degenerate grouping variable
dumid that takes on a single value for all records in
the dataframe. This plays the role of a highest-level
nesting variable along which there is no variation in
the data. Sample records from the two hypothetical
dataframes are provided in Tables 1 and 2.

stuid schid dumid year yt

1 1 1 0 557
1 1 1 1 601
1 1 1 2 629
2 1 1 0 580
2 1 1 1 632
2 1 1 2 660

· · ·
287 4 1 0 590
287 4 1 1 631
287 4 1 2 667
288 4 1 0 582
288 4 1 1 620
288 4 1 2 644

· · ·
Table 2: Sample records from ldat

Model specifications

In this section we consider three increasingly com-
plex classes of VAM, depending on the dimension
of the response variable (univariate versus multivari-
ate) and on the relational structure among hierarchi-
cal units (nested versus cross-classified). We have
chosen this organization to span the range of mod-
els considered by analysts, and to solidify, through
simpler models, some of the concepts and syntax
required by more complicated models. All of the
models discussed here specify student, teacher and
school effects as random effects. We focus on spec-
ification of the random effects structures, providing
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a discussion of fixed effects for student, teacher or
school-level characteristics in a later section. It is out-
side of the scope of this article to address the many
complicated issues that might threaten the validity of
the models (McCaffrey et al., 2004); rather we focus
on issues of implementation only. It is also outside of
the scope of this article to discuss the variety of func-
tions, both in R in general and in the nlme library in
particular, that can be used to extract relevant diag-
nostics and inferences from model objects. The book
by Pinheiro and Bates (2000) provides an excellent
treatment of these topics.

In specifying the statistical models that follow, for
clarity we use the same symbols in different mod-
els to draw correspondences among analogous terms
(e.g. µ for marginal means, ε for error terms) but
it should be noted that the actual interpretations of
these parameters will vary by model. Finally, we use
subscripts i, j, k to index schools, teachers and stu-
dents, respectively. To denote linkages, we use nota-
tion of the form m(n) to indicate that observations or
units indexed by n are associated with higher-level
units indexed by m. For example, j(k) denotes the
index j of the teacher linked to an outcome from stu-
dent k.

1. Nested univariate models

Though VAM always utilizes longitudinal student
level data linked to higher level units of teachers,
schools and/or districts, analysts often specify sim-
ple models that reduce the multivariate data to a
univariate outcome. They also reduce a potentially
cross-classified membership structure to a nested one
by linking that outcome with only one teacher or
school. Such strategies are most commonly em-
ployed when only two years of data are available,
though they can be used when more years are avail-
able, with models being repeated independently for
adjacent pairs of years. As such, without loss of gen-
erality, we focus on only the first two years of the
hypothetical three-year data.

The first common method is the “gain score
model” that treats Gk1 = (Yk1 − Yk0) as outcomes
linked to current year (year 1) teachers. The formal
model is:

Gk1 = µ +θ j1(k) +εk1 (1)

where µ is a fixed mean parameter, θ j1 are iid
N(0,σ2

θ1) random year one teacher effects and εk1 iid
N(0,σ2

ε1) year one student errors. Letting g1 denote
the gain scores, the model is a simple one-way ran-
dom effects model specified in lme by

lme(fixed=g1~1,data=wdat,random=~1|y1.tchid)

In the traditional mixed effects model notation Yk =
Xkβ + Zkθk + εk (Pinheiro and Bates, 2000), the
fixed argument to lme specifies the response and
the fixed effects model Xkβ, and the random argu-
ment specifies the random effects structure Zkθk. The

fixed argument in the model above specifies that the
gain scores have a grand mean or intercept common
to all observations, and the random argument spec-
ifies that there are random intercepts for each year
one teacher.

The other common data reduction strategy for
multivariate data is the “covariate adjustment”
model that regresses Yk1 on Yk0 and current year
teacher effects:

Yk1 = µ + βYk0 +θ j1(k) +εk1 (2)

This model is also easily specified by

lme(fixed=y1~y0,data=wdat,random=~1|y1.tchid)

As a matter of shorthand notation used throughout
the article, in both the fixed and random arguments
of lme, the inclusion of a covariate on the right side
of a tilde implies the estimation of the corresponding
intercept even though the +1 is not explicitly present.

Both of these models are straightforwardly ex-
tended to higher levels of nesting. For example, in
the covariate adjustment model Equation (2) it may
be of interest to examine what part of the marginal
teacher variance lies at the school level via the model:

Yk1 = µ + βYk0 +θ j1(k) +εk1

θ j1 = γi( j1) + e j1 (3)

with γi, e j1 and εk1 independent normal random
variables with means 0 and variances σ2

γ , σ2
e1 and σ2

ε1
respectively. Thusσ2

θ1 from the previous model is de-
composed into the between-school variance compo-
nent σ2

γ and the within-school variance component
σ2

e1. Using standard nesting notation for statistical
formulae in R this additional level of nesting is spec-
ified with

lme(fixed=y1~y0,data=wdat,
random=~1|schid/y1.tchid)

where the random statement specifies that there are
random intercepts for schools, and random inter-
cepts for year one teachers within schools.

2. Nested multivariate models

The next most complicated class of models directly
treats the longitudinal profiles Yk = (Yk0, . . . , YkT)
as outcomes, rather than reducing them to univari-
ate outcomes, and the challenge becomes modeling
the mean and covariance structures of the responses.
In this section we assume that the multivariate out-
comes are fully nested in higher level units; in the
hypothetical example, students are nested in schools,
with teacher links ignored (in actual data sets teacher
links are often unavailable). For multivariate model-
ing of student outcomes, it is common for analysts
to parameterize growth models for the trajectories
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of the outcomes, and to examine the variations of
the parameters of the growth models across students
and schools.

The class of models considered here is of the form

Ykt = µt + sit(k) +εkt (4)

where µt is the marginal mean structure, sit
are school-specific growth trajectories, and εkt are
student-specific residual terms which may them-
selves contain parameterized growth trajectories.
For clarity and conciseness we focus on a limited
collection of linear growth models only. Other lin-
ear growth models, as well as nonlinear models
specified with higher-order or piecewise polynomial
terms in time, can be specified using straightforward
generalizations of the examples that follow.

The first growth model that we consider assumes
that in Equation (4), µt = α + βt and sit = αi + βit.
This model allows each school to have its own lin-
ear growth trajectory through the random intercepts
αi and random slopes βi, which are assumed to be
bivariate normal with means zero, variances σ2

α and
σ2

β, and covariance σαβ. This model is specified as

lme(fixed=yt~year,data=ldat,
random=~year|schid)

Note that because the model is multivariate, the long
data ldat is necessary.

This model is probably inappropriate because it
assumes that deviations of individual student scores
from the school-level trajectories are homoskedastic
and independent over time within students. More
realistically, the student deviations εkt are likely to
be correlated within students, and potentially have
different variances across time. These features can
be addressed either through student-specific random
effects, or through a richer model for the within-
student covariance structure. To some extent there
is an isomorphism between these two pathways; the
classic example is that including random student in-
tercepts as part of the mean structure is equivalent to
specifying a compound symmetry correlation struc-
ture. Which of the two pathways is more appropriate
depends on the application and desired inferences,
and both are available in lme.

As an example of including additional random
student effects, we consider random student linear
growth so that εkt = γk + δkt + ξkt. Like (αi , βi) at
the school level, (γk, δk) are assumed to be bivariate
normal with mean zero and an unstructured covari-
ance matrix. The random effects at the different lev-
els of nesting are assumed to be independent, and
the residual error terms ξkt are assumed to be inde-
pendent and homoskedastic. The change to the syn-
tax from the previous model to this models is very
slight:

lme(fixed=yt~year,data=ldat,
random=~year|schid/stuid)

The random statement is analogous to that used in
estimating the model in Equation (3); in this case, be-
cause there are two random terms at each level, lme
estimates two (2× 2) unstructured covariance matri-
ces in addition to the residual variance.

The other approach to modeling dependence
in the student terms εkt is through their covari-
ance structure. lme accommodates heteroskedastic-
ity and within-student correlation via the weights
and correlation arguments. For the weights ar-
gument, a wide variety of variance functions that
«««< vam.tex can depend on model covariates as
described in Pinheiro and Bates Pinheiro and Bates
(2000) are available. For the basic models we are
======= can depend on model covariates as de-
scribed in Pinheiro and Bates (2000) are available.
For the basic models we are »»»> 1.2 considering
here, the most important feature is to allow the resid-
ual terms to have different variances in each year. For
the correlation argument, all of the common resid-
ual correlation structures such as compound symme-
try, autoregressive and unrestricted (i.e. general pos-
itive definite) are available. The model with random
growth terms at the school level and an unstructured
covariance matrix for εk = (εk0,εk1,εk2) shared by
all students is specified by

lme(fixed=yt~year,data=ldat,
random=~year|schid,
weights=varIdent(form=~1|year),
correlation=corSymm(form = ~1|stuid))

A summary of the model object will report the esti-
mated residual standard deviation for year 0, along
with the ratio of the estimated residual standard de-
viations from other years to that of year 0. It will
also report the estimate of the within-student corre-
lation matrix. The functions varIdent and corSymm
combine to specify the unstructured covariance ma-
trix; other combinations of analogous functions can
be use to specify a broad array of other covariance
structures (Pinheiro and Bates, 2000).

3. Cross classified multivariate models

All of the models in the previous two sections in-
volved only fully nested data structures: observa-
tions nested within students, who are nested in
higher level units such as schools. Modeling crossed
data structures – e.g., accounting for the successive
teachers taught by a student – is more challenging.
The two most prominent examples of cross-classified
models for longitudinal student achievement data
are «««< vam.tex that of the Tennessee Value Added
Assessment System (TVAAS) Ballou et al. (2004) and
the cross-classified model of Raudenbush and Bryk
Raudenbush and Bryk (2002). Both models have the
======= that of the Tennessee Value Added As-
sessment System (TVAAS, Ballou et al., 2004) and
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the cross-classified model of Raudenbush and Bryk
(2002). Both models have the »»»> 1.2 property that
the effects of teachers experienced by a student over
time are allowed to “layer” additively, so that past
teachers affect all future outcomes.

The TVAAS layered model is the most ambitious
VAM effort to date. The full model simultaneously
examines outcomes on multiple subjects, from mul-
tiple cohorts, across five or more years of testing. We
consider a simplified version of that model for three
years of testing on one subject for one cohort. The
model for the outcomes of student k is as follows:

Yk0 = µ0 +θ j0(k) +εk0

Yk1 = µ1 +θ j0(k) +θ j1(k) +εk1

Yk2 = µ2 +θ j0(k) +θ j1(k) +θ j2(k) +εk2 (5)

The random effects for teachers in year t, θ jt, are as-
sumed to be independent and normally distributed
with mean 0 and variance σ2

θt. The within student
residual terms εk = (εk0,εk1,εk2) are assumed to be
normally distributed with mean 0 and unstructured
positive definite covariance matrix Σε. The residu-
als are independent across students and are indepen-
dent of the teacher effects.

Because the model deals directly with the cross-
classified structure of the data, special syntax is re-
quired to fit the model with lme. The main challenges
are building the teacher links and specifying the dis-
tribution of the teacher random effects. The first step
is to augment the long dataframe with binary vari-
ables for each teacher with the property that for each
record, the new variable takes on the value 1 if the
teacher’s random effect is part of that score under the
model and zero otherwise. That is, if there are n stu-
dents in the data set, and if there are Jt teachers in
year t with J = J0 + J1 + J2, then one must augment
the long dataframe with a (3n × J) matrix Z with el-
ements of 1 where linkages occur and 0 otherwise.
Note that in most settings, the matrix is large with
primarily entries of 0, which is why sparse matrix
techniques are likely to be a beneficial line of compu-
tational development for these models.

There are several ways to construct this matrix
but one straightforward method is to build it from
simple assignment matrices of size (n × Jt) using
the teacher identifier fields y0.tchid, y1.tchid and
y2.tchid from the wide format dataframe. The fol-
lowing code carries this out for the hypothetical com-
pletely observed dataset; modifications are necessary
in the presence of missing data:

it<-rep(1:n,each=3)
z0<-model.matrix(~y0.tchid-1,data=wdat)[it,]
z1<-model.matrix(~y1.tchid-1,data=wdat)[it,]
z2<-model.matrix(~y2.tchid-1,data=wdat)[it,]
i0<-seq(from=1,to=(3*n-2),by=3)
z1[i0,]<-0
z2[c(i0,i0+1),]<-0
ldat<-data.frame(ldat,cbind(z0,z1,z2))

The calls to model.matrix result in (n × Jt) assign-
ment matrices, which are then expanded to dupli-
cated rows via the index it. Then, the appropriate
rows of z1 and z2 are set to zero to indicate that later
teachers are not associated with prior scores. The fi-
nal call augments the long dataframe with the new
variables.

The next step is to specify the distribution of the J
teacher random effects. Recall that the teacher effects
are assumed to be independent and normally dis-
tributed, with different variances in each year. That
is, the covariance matrix of the joint distribution of all
teacher random effects (where teachers are blocked
by year) is

Var(θ) =

 σ2
θ0 IJ0 0 0

0 σ2
θ1 IJ1 0

0 0 σ2
θ2 IJ2

 (6)

Communicating this structure to lme requires a rel-
atively sophisticated random argument. To construct
this argument it is necessary to make use of nlme’s
pdMat classes, which allow specification of a flexi-
ble class of positive definite covariance structures for
random effects. The specific classes that are required
are pdIdent, which refers to matrices of the formσ2 I,
and pdBlocked, which creates a block diagonal ma-
trix from its list argument. To build the pdIdent
blocks it is necessary to construct a formula of the
form

~tchid1 + tchid2 + ... + tchidJ -1

for each year; this is used to allow a separate random
effect for each teacher. A common way to build such
a formula from a vector of character strings is

fmla0<-as.formula(paste("~",
paste(colnames(z0),collapse="+"),"-1"))

Letting fmla1 and fmla2 refer to the analogous for-
mulas for years 1 and 2, the covariance structure in
Equation (6) is specified as:

mat<-pdBlocked(list(pdIdent(fmla0),
pdIdent(fmla1),pdIdent(fmla2)))

This covariance structure is then passed to lme in the
call to fit the layered model:

lme(fixed=yt~factor(year)-1,data=ldat,
random=list(dumid=mat),
weights=varIdent(form=~1|year),
correlation=corSymm(form = ~1|dumid/stuid))

Because the layered model allows a separate mean
for each year, it is necessary to treat year as a factor;
including the -1 in the fixed effects specification re-
moves the intercept so that the yearly means are esti-
mated directly. The random argument makes use of a
trick that is necessary to force lme to deal with cross-
classified data when it is designed for nested data.
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In brief, lme assumes that units are nested in hierar-
chical levels, and it allows a vector of random coeffi-
cients for each higher-level unit that affects the out-
comes of all lower-level units nested in that higher-
level unit. Because students are not nested in teach-
ers, and thus in principle the random effects for any
teacher are eligible to contribute to the responses for
any student, it is necessary to impart an artificial
nesting structure on the data. This is the role of the
dumid variable which takes on the same value for all
records in the dataset. Students are trivially nested in
dumid, and teachers are assumed to be attributes of
dumid that have random coefficients, thus allowing
any teacher to affect any student. Finally, as in the
previous section, the weights and correlation ar-
guments allow an unstructured residual covariance
matrix within students; note that in the correlation
argument it is necessary to respect the artificial nest-
ing of students in dumid.

The cross-classified specification of the model af-
fects the form of the model output in one notable
way: a summary of the model object will report a sep-
arate estimated standard deviation component for
each teacher. However, those values will be common
across all teachers in the same year, as required by
the pdIdent specifications.

The Raudenbush and Bryk cross-classified model
uses the same layering of the teacher effects as
the TVAAS layered model, but specifies an explicit
model for student growth rather than an unstruc-
tured student-level covariance matrix. Specifically,
the model for the outcomes of student k is

Yk0 = (µ + µk) +θ j0(k) +εk0

Yk1 = (µ + µk) + (β + βk) +θ j0(k) +θ j1(k) +εk1

Yk2 = (µ + µk) + 2(β + βk)
+ θ j0(k) +θ j1(k) +θ j2(k) +εk2 (7)

Here the residualsεkt are assumed to be independent
and homoskedastic both within and across students.
The student random intercepts and slopes (µk, βk)
have a bivariate normal distribution with mean zero,
variances σ2

µ and σ2
β and covariance σµβ. The dis-

tributions of teacher random effects are the same as
those assumed by the TVAAS layered model.

In order to specify this model in lme one needs
to perform the same steps regarding the teacher
random effects as were necessary with the layered
model, culminating in the creation of the object mat
above. The resulting call to lme is:

lme(fixed=yt~year,data=ldat,
random=list(dumid=mat,stuid=~year))

Note that here year is treated as numeric, with the
model estimating a marginal linear trend in time.
The random statement needs to specify the random
effects structure at each of the two levels of nesting:
the teacher effects at the degenerate highest-level of
nesting have covariance matrix mat, and the random

intercepts and slopes for the students have an unre-
stricted covariance matrix.

Practical Considerations for Cross-Classified Mod-
els: Although this article has shown how lme can
be used to estimate the most prominent cross-
classified models in educational achievement mod-
eling, it is important to bear in mind that it is nei-
ther designed nor optimized for such models. Some-
times, particularly with larger cross-classified mod-
els, lme will be exceedingly memory intensive and
may not converge. To increase the likelihood of con-
vergence in practical settings, particularly with un-
structured student-level correlation, it is useful to
start the algorithm at the empirical correlation of
the data via the value argument of the corClasses
constructor functions. Also in some circumstances
we have found that replacing the unstructured stu-
dent correlation matrix with compound symmetry
(via corCompSymm) greatly enhances the stability of
the estimation. In our experience with actual stu-
dent achievement data, compound symmetry is of-
ten a reasonable assumption and the impact of this
restriction on model inferences is generally minimal.
Finally, in our experience with lme, the TVAAS lay-
ered model is more likely to converge than the Rau-
denbush and Bryk cross-classified model.

Another practical constraint is that to our knowl-
edge, lme does not allow there to be more than 200
random effects associated with any one unit at any
one level of nesting. This implies, for example, that
the layered or cross-classified cannot be fit as speci-
fied above when the total number of teachers exceeds
200, because teachers are assumed to be attributes
of dumid each with a separate random coefficient. A
clever way to sidestep this boundary is to make use
of additional, “higher-level” degenerate nesting vari-
ables. Although all such variables take on only a sin-
gle value in the dataset, they are still trivially nested,
and it is technically possible to specify up to 200 ran-
dom effects at each of these levels. With three years
of cross-classified data in (for example) the TVAAS
layered model, this can be used to expand the capa-
bilities of lme from 200 total teachers to 600 via the
following syntax, where the additional degenerate
nesting variables dumid2 and dumid3 have been ap-
pended to ldat:

lme(fixed=Y~factor(year)-1,data=ldat,
random=list(dumid=pdIdent(fmla1),

dumid2=pdIdent(fmla2),
dumid3=pdIdent(fmla3)),

weights=varIdent(form=~1|year),
correlation=corSymm(form =
~1|dumid/dumid2/dumid3/stuid))

Although such structuring in principle increases the
capabilities lme, our experience is that models with
significantly more than 200 teachers often do not con-
vergence.
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Extensions and other issues

Incomplete data

The hypothetical examples assumed fully observed
data: all student outcomes and all appropriate links
of units to higher level units are known. In practi-
cal applications this will seldom be true. Students
may be missing scores, links to teachers, or both. For
the nested univariate models, it is common (though
potentially not advisable) to use only complete cases;
this is achieved by passing na.action=na.omit as an
additional argument to lme. The multivariate mod-
els can use incomplete records, though the specific
assumptions and models necessary to do so require
careful substantive consideration. Incomplete data
also make some of the pre-processing operations re-
quired to fit cross-classified models somewhat more
tedious; in particular, adjustments to the Z matrix to
account for missing scores and/or missing teacher
links are required.

Multivariate annual outcomes

In some cases it might be of interest to model simul-
taneously the outcomes on multiple assessments in a
given year, either on the same or different subjects.
Generally this would be done only in the context of
the multivariate models, where then one must con-
sider appropriate mean and covariance structures
for outcomes both contemporaneously and across
time. It is beyond the scope of this article to explore
the details of such specifications, but for some data
and model structures (particularly with nested rather
than cross-classified data) it is possible to specify and
estimate such models with lme.

Covariates

Although the bulk of this article focused on the speci-
fications of the random effects structures of the mod-
els, which can be used to estimate student, teacher
or school effects, in practical settings it is often of in-
terest to augment the models with covariates at one
or more levels of the data. The relationships of such
variables to outcomes may be of substantive inter-
est, they may be used to explain variation in random
effects, or they may be used to make more normal-
ized comparisons among estimated unit-specific ef-
fects. In most applications, such variables are mod-
eled with fixed effects, and thus are simply speci-
fied by passing standard R model formulae as the
fixed argument to lme for any of the models spec-
ified above. The syntax seamlessly handles variables
at any level of the multilevel data structure.

Conclusion

lme is an excellent tool for the many applications of
longitudinal student achievement modeling in edu-

cation research. In many research problems involv-
ing moderately sized data sets, it is possible to es-
timate all of the models that are commonly used
to make inferences about teacher and school effects
as well as the relationships of outcomes with edu-
cator practices and characteristics. The current pri-
mary limitation is the size of the dataset, particu-
larly with cross-classified models. Although large
cross-classified models are outside the current scope
of the nlme package, theoretical and practical devel-
opments are underway to broaden the size and scope
of such models that can be estimated (Bates and De-
bRoy, 2003; Browne et al., 2001).

The examples presented previously can be gen-
eralized to handle some additional complications of
the data such as team teaching and multiple student
cohorts. More complex models involving student-
by-teacher interactions and unknown persistence of
teacher effects (such as that described in McCaffrey
et al. (2004)) are currently beyond the reach of lme as
well as other standard packages.
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lmeSplines
An R package for fitting smoothing spline terms in
LME models

by Rod Ball

Smoothing splines can be formulated in terms of lin-
ear mixed models. Corresponding to any smoothing
spline term there is a mixed model with a set of ran-
dom effects, a covariance structure, and a Z-matrix
linking the random effects back to observations in
the users dataframe. For a smoothing spline model a
single variance component is estimated which is in-
versely proportional to the smoothing parameter for
the smoothing spline. The lmeSplines package pro-
vides functions for generating and manipulating the
necessary Z-matrices corresponding to sets of ran-
dom effects. Using the Choleski decomposition of
the covariance matrix, the random effects are trans-
formed to an independent set of random effects, en-
abling the model to be fitted in lme with existing
pdMat classes. Model predictions can be obtained
at the data points and, by interpolation in the Z-
matrices, at alternate points using predict.lme.

Smoothing splines

Smoothing splines are a parsimonious representa-
tion (only one variance parameter is fitted) of a non-
parametric curve. Compared with non-linear mod-
els, smoothing splines offer a number of advantages:

• Avoiding the need to find a parametric model.

• Avoiding strong model assumptions about the
form of the curve.

• Avoiding problems e.g. in longitudinal data
where some individuals don’t follow the stan-
dard curves.

• Can be used to test for smooth departures from
a given model.

• A non-linear mixed model can be replaced with
a linear model giving more rapid convergence
of model fits, and hence enabling more com-
plex and realistic variance structures to be fit-
ted.

Smoothing splines as mixed models

Our package is based on the formulation given in
Verbyla et al (1999), and extends the capabilities of
the NLME package for fitting linear and non-linear
mixed models. Readers interested in trying NLME
are recommended to read the excellent book (Pin-
heiro and Bates 2000). The NLME package is sub-
stantial, with comprehensive on-line documentation,

however it helps to have worked through the exam-
ples, and have an overview understanding of the sys-
tem to fully appreciate its potential.

In the one dimensional case, the smoothing spline
for fitting a function of the form y = g(t) + ε, is
found by maximising the penalised likelihood:

penalised likelihood = log likelihood−λ

∫
g′′(t)2dx

(1)
Restricting to the observed data points, the choice

of g from an infinite dimensional space reduces to a
finite dimensional problem, which can be expressed
as a linear mixed model. The mixed model has the
form:

y = Xsβs + Zsus +ε (2)

where β are fixed effects with intercept and slope
coefficients, us is a set of random effects with us ∼
N(0, Gsσ

2
s ), and ε ∼ N(0,σ2). The matrices Q and

Gs depend only on the the spacings between the time
points (see Verbyla et al p. 278), where Q is denoted
by ∆), Zs is given by

Zs = Q(QtQ)−1, (3)

and the smoothing spline parameter λ is related to
the mixed model parameters by

λ =
σ2

σ2
s

. (4)

We transform to a set of independent random ef-
fects u′s with

us = Lu′s, Z′
s = ZsL, (5)

where L is the Choleski decomposition of Gs, LL′ =
Gs, giving

y = Xsβs + Z′
su′s +ε (6)

with u′s ∼ N(0, Iσ2
s ).

For further information on the historical context
of representing smoothing splines as mixed models
and related approaches to smoothing see the discus-
sion (Verbyla et al p. 276), and the other references.

Fitting smoothing spline models

The package provides 3 functions: the function
smspline() calculates the matrix Z′

s in (6), (hence-
forth referred to as the Z-matrix, or simply Z), with
columns corresponding to the unique values of the
‘time’ covariate, except for the two endpoints. The
function smspline.v() returns a list containing the
matrices X, Q, Z, Gs which can be used for further
calculations in the smoothing spline framework. A
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third function approx.Z is used for transforming the
spline basis (columns of the Z-matrix).

The function smspline() is used to calculate the
Z-matrix. A smoothing spline is fitted by including a
term (or block) of the form pdIdent(~ Z - 1) in the
LME random effects structure.

In the first example a smoothing spline is fit to a
curve with measurements made on 100 time points.
This takes less than a second to fit on a 2 Ghz Linux
PC.

Example 1.

> library{lmeSplines}
> data(smSplineEx1)
> # variable ‘all’ for top level grouping
> smSplineEx1$all <- rep(1,nrow(smSplineEx1))
> # setup spline Z-matrix
> smSplineEx1$Zt <- smspline(~ time,
+ data=smSplineEx1)
> fit1s <- lme(y ~ time, data=smSplineEx1,
+ random=list(all=pdIdent(~Zt - 1)))

Note:

1. LME has several methods for specifying
the covariance structure for random effects
which can be confusing to new users. We
will use only one: consisting of a named
list with each element corresponding to
a level of grouping, specified by a for-
mula, such as ~ time, or a ‘pdMat’ object
such as pdIdent(~Zt - 1), or a list of such
objects wrapped up with pdBlocked e.g.
pdBlocked(list(~time,pdIdent(~Zt - 1))).

2. Where there is no grouping structure, or we
wish to use the ’top-level’ grouping, consisting
of the whole dataset, we introduce the variable
all consisting of a vector of ones.

3. The structure smSplineEx1 is a dataframe with
100 rows. We have added the matrix Zt which
is a matrix with 100 rows.

> str(smSplineEx1)
‘data.frame’: 100 obs. of 5 variables:
$ time : num 1 2 3 4 5 6 7 8 9 10 ...
$ y : num 5.80 5.47 4.57 3.65 ...
$ y.true: num 4.24 4.46 4.68 4.89 ...
$ all : num 1 1 1 1 1 1 1 1 1 1 ...
$ Zt : num [1:100, 1:98] 1.169 ...

Fortunately the R dataframes and model for-
mulae can contain matrix terms. Using ~ Zt
in a model formula is equivalent to specifying
every column of Zt as a term.

4. The ‘ -1’ in pdIdent(~Zt - 1) stops R from
adding an intercept term. Thus there are 98
random effects specified, one for every column

of Zt, i.e. one for every unique time point ex-
cept the ends.

The LME fitted model is summarised as:-

> summary(fit1s)
Linear mixed-effects model fit by REML
Data: smSplineEx1
AIC BIC logLik
282 292 -137

Random effects:
Formula: ~Zt - 1 | all
Structure: Multiple of an Identity

Zt1 Zt2 Zt3 Zt4
StdDev: 0.0163 0.0163 0.0163 0.0163
. . .

Zt97 Zt98 Residual
StdDev: 0.0163 0.0163 0.86

Fixed effects: y ~ time
Value Std.Error DF t-value

(Intercept) 6.50 0.173 98 37.5
time 0.04 0.003 98 13.0

p-value
(Intercept) <.0001
time <.0001
Correlation:

(Intr)
time -0.868

Standardized Within-Group Residuals:
Min Q1 Med Q3 Max

-2.889 -0.581 0.116 0.659 1.784

Number of Observations: 100
Number of Groups: 1

We read off the estimate of σ̂s = 0.0163 (standard
deviation parameters for Zt1, Zt2,. . . ), and the es-
timate of σ̂ = 0.86 (residual standard deviation),
and hence the smoothing parameter is estimated as
λ̂ = (σ̂/σ̂s)2 = (0.0163/0.86)2 = 3.6 × 10−4 repre-
senting quite a smooth curve. (Cf Figure 1).

Comparison with B-splines and Flexi

We compare the smoothing spline fit to B-spline
models with 3 and 5 knots (fit1bs3, fit1bs5 re-
spectively) viz:-

> fit1bs3 <- update(fit1s, random=list(all=
+ ~bs(time,3)-1))
> fit1bs5 <- update(fit1s, random=list(all=
+ ~bs(time,5)-1))
> anova(ex1.fit1s,ex1.fit1bs3,ex1.fit1bs5)

Model df AIC BIC logLik L.Rat Pval
fit1s 1 4 282 292 -137
fit1bs3 2 13 298 332 -136 1.86 0.99
fit1bs5 3 24 316 378 -134 4.54 0.95
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A plot of the smoothing spline fit is shown in Fig-
ure 1, with B-spline fits with 3 and 5 knots are shown
for comparison. Output from Flexi, a Bayesian
smoother (Upsdell 1994,1996; Wheeler and Upsdell
1997) is also shown. The Flexi and smoothing spline
curves appear similar with Flexi giving slightly less
of a ‘hump’ near the end. The B-spline models used
many more degrees of freedom, took longer to fit (2
sec and 10 sec for 3 and 5 knot points respectively)
and gave poorer fits by either AIC of BIC criteria—
note the polynomial type wobbles.

0 20 40 60 80 100

4
6

8
10

time

y

true
sm.spline
bs(time,3)
bs(time,5)
flexi

Figure 1: Spline fits. Curves fitted include: the
‘true’ curve, from which deviations were simulated,
a smoothing spline, B-splines with 3,5 knots, and
Flexi, a Bayesian smoother.

Aside: Discussion of mixed model formu-
lation in LME, GENSTAT and SAS

By using the variable ’all’ we see that models with
no grouping structure are a special case of models
with a grouping structure. This makes it possible to
fit any models, such as commonly fitted in GENSTAT
or SAS, where there is no grouping structure (un-
less specifically requested using a ‘repeated’ or ‘ran-
dom’ statement in SAS), albeit without taking advan-
tage of the efficiency gains possible from LME’s treat-
ment of grouping. Model formulae in LME are of-
ten more cumbersome than the corresponding GEN-
STAT REML or SAS PROC MIXED formulae, be-
cause LME assumes a general positive definite sym-
metric covariance matrix for all effects in a formula,
while GENSTAT and SAS assume independent sets
of random effects for each term in a formula. Sup-
pose that a,b are factors, and we want random terms
for a, b, and the interaction, with different variances
for different levels of b. In GENSTAT this would be
fitted with:

vcomp random = a + b + a.b
vstruct[term=b]factor=b; model=diag
vstruct[term=a.b]factor=a,b; model=id,diag

In LME, using the levels of a as groups, this would
become

random=list(
all=pdBlocked(list(
pdIdent(~1),pdIdent(~a-1),pdDiag(~b-1))),

a = pdDiag(~b-1))

LME is still lacking some ‘pdMat’ classes corre-
sponding to the separable (i.e. tensor product) struc-
tures in GENSTAT. In many cases, one of the covari-
ance matrices in a tensor product is the identity, and
can be modelled using the factor with the identity
structure as a grouping factor, as above. If, however,
a in the GENSTAT model had a general symmetric
covariance matrix Va and b had a diagonal matrix Db,
the tensor product covariance matrix Va ⊗ Db for the
interaction between a and b would be fitted in GEN-
STAT with:

vcomp random = a + b + a.b
vstruct a; symm
vstruct b; diag
vstruct a.b; symm,diag

which currently has no equivalent in LME.
Of course LME has the major advantage that any-

one can write a new pdMat class.

Fitting with alternate sets of time points

The fitted curve in Fig. 1 was obtained using fitted
values from the NLME fitted model object viz:-

lines(smSplineEx1$time,fitted(fit1s),col=2)

If the observed data are irregular or more points are
needed, predictions at other points can be obtained
in principle from the spline model using the matri-
ces Xs, Q, Gs. We have not implemented these calcu-
lations, rather, we use a third function approx.Z()
for transforming the spline basis to alternate sets of
points (e.g. finer or coarser grids) for modelling
and/or prediction. For example to fit the model on a
coarser grid:-

# fit model on coarser grid
times20 <- seq(1,100,length=20)
Zt20 <- smspline(times20)
smSplineEx1$Zt20 <- approx.Z(Zt20,times20,

smSplineEx1$time)
fit1s20 <- lme(y ~ time, data=smSplineEx1,

random=list(all=pdIdent(~Zt20 - 1)))

Predictions with alternate sets of time
points

For model predictions we need to generate a newdata
argument for predict.lme() which contains all the
terms in the model including the Z-matrix (here
Zt20). This means we need a replacement for
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Zt20 with values for each time point in the predic-
tion dataset. This is obtained by calling the func-
tion approx.Z which uses linear interpolation in the
columns of the Z-matrix.

# get model predictions on a finer grid
times200 <- seq(1,100,by=0.5)
pred.df <- data.frame(all=rep(1,

length(times200)),time=times200)
pred.df$Zt20 <- approx.Z(Zt20,times20,

times200)
yp20.200 <- predict(fit1s20,newdata=pred.df)

Note: Linear interpolation is a good approximation
here because the spline basis functions (columns of
the Z-matrix, i.e. the matrix Z′

s after the transforma-
tion (5)) are approximately piecewise linear.

Models with multiple levels of grouping

More general models can contain multiple smooth-
ing spline terms at different levels of grouping
and/or with different time covariates.

This is illustrated in the second example. The
Spruce dataset contains size measurements taken
over time on 13 different trees from each of 4 differ-
ent plots.

Example 2.

data(Spruce)
Spruce$Zday <- smspline(~days, data=Spruce)
spruce.fit2 <- lme(logSize ~ days,
data=Spruce, random=list(
all=pdIdent(~Zday - 1),
plot=pdBlocked(list(

~ days, pdIdent(~Zday - 1))),
Tree = ~1))

Fixed or random? Note the inclusion of intercept
and slope terms as random effects at the plot level.
The smoothing spline model (6) specifies fixed effects
for the slope and intercept. We recommend that the
choice of random or fixed effects should be made
prior to consideration of fitting a smoothing spline
term—whether these should be fixed or random fol-
lows the same logic regardless of whether a smooth-
ing spline term is added. We specify random effects
since plot effects come from a population of plots,
which gives rise to a population of spline curves.

The pdBlocked construction at the plot level gives
a variance structure in two mutually independent
blocks. The first block contains two random ef-
fects (intercept and slope) for each plot with a gen-
eral symmetric 2×2 covariance matrix, and the sec-
ond contains 11 independent random effects for the
smoothing spline.

Alternate possible models include adding linear
terms at the tree level, or linear and spline terms.
However, for these data a single overall spline term
gave the best fit.

Much more complex models can be fitted. Re-
cently we have fitted models for the spatial dis-
tribution of wood density in tree stems. There
were measurements made for each annual ring
of each of a number of discs taken from log
ends (at approximately 5m intervals) on 2 trees
per clone for each of 10 clones, for a total sam-
ple size of around 2650. There were four levels
of grouping: all/clone/tree/disc. The model
contained linear terms, smooth trends represented
by pdIdent(~Zr-1), pdIdent(~Zh-1), in ring num-
ber and height, and deviations represented by e.g.
pdIdent(~factor(ring)-1), at each level, as appro-
priate, additionally with an AR(1) correlation struc-
ture for within group errors. The LME model fitted
was:

Example 3.

lme(density ~ ring + height, random=list(
all = pdBlocked(list(

pdIdent(~Zr-1),
pdIdent(~factor(ring) -1),
pdIdent(~Zh-1),
pdIdent(~factor(height)-1))),

clone = pdBlocked(list(
~ ring + height,
pdIdent(~factor(ring) -1),
pdIdent(~Zh-1),
pdIdent(~factor(height)-1))),

tree = pdBlocked(list(
~ ring + height,
pdIdent(~factor(ring) -1),
pdIdent(~Zh-1),
pdIdent(~factor(height)-1))),

disc = pdBlocked(~ ring, pdIdent(~Zr -1)),
cor=corAR1(form= ~ring))

The smoothing spline models fit relatively
quickly, but with additional within group correlation
structures the model fits take a number of hours. Fur-
ther details will be reported elsewhere.
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Debugging Without (Too Many) Tears
New packages: debug and mvbutils

by Mark Bravington

“Man is born unto trouble, as surely as the sparks fly up-
ward”1; and writing functions leads surely to bugs,
even in R. Although R has a useful debugging facility
in trace and browser, it lacks some of the sophisti-
cated features of debuggers for languages like C. The
new package debug offers:

• a visible code window with line-numbered
code and highlighted execution point;

• the ability to set (conditional) breakpoints in
advance, at any line number;

• the opportunity to keep going after errors;

• multiple debugging windows open at once
(when one debuggee calls another, or itself);

• full debugging of on.exit code;

• the ability to move the execution point around
without executing intervening statements;

• direct interpretation of typed-in statements, as
if they were in the function itself.

I often use the debugger on other people’s code
as well as my own: sometimes to see exactly what
went wrong after typing something, and sometimes
merely to see how another function actually works.
And sometimes— just sometimes— because there’s
a bug!

Although this article is mostly about debug, it
makes sense to briefly mention another new pack-
age, mvbutils, which is required by debug. Besides
its many miscellaneous utilities, mvbutils supports:

• hiearchical, searchable project organization,
with workspaces switchable inside a single R
session;

• function editing (interface to text editors), with
multiple simultaneous edits, an “unfrozen” R
prompt, and automatic backup;

• function code and plain-text documentation
stored in the same R object, and editable in the
same file;

• informal plain-text documentation via help,
and conversion to Rd format;

• nested sourceing, and interspersal of R code
and data in the same file;

• macro-like functions, executing inside their
caller’s environment;

• untangling and display of “what calls what”
within groups of functions.

Once the packages are installed and loaded,
detailed documentation can be obtained via
README.debug() and README.mvbutils(). The code
of debug— which is written entirely in R itself— re-
veals quite a bit about the workings of R, and will
form the subject of a future Programmer’s Niche ar-
ticle. The rest of this article is a basic introduction to
usage.

Using the debugger

Consider this function, which is laboriously trying to
calculate a factorial:

f <- function(i) {
if (i<0)
i <- NA

else
for(j in (i-1):2)
i <- i * j

i
}

This doesn’t quite work: f(3) is rightly 6, but
f(2) is 4 not 2. To prepare for debugging, type
mtrace(f), then f(2) to actually start. A window
containing the line-numbered code of f will appear
at the bottom of the screen, looking like a wider ver-
sion of Figure 1. You may need to resize your R win-
dow to see it. In the R command window, you’ll see
a prompt2 D(1)>. The debugger is awaiting your in-
put.

Figure 1: The code window at the start of debugging
function f

In the R window, press <ENTER> to execute the
bright green highlighted statement and print the re-
sult. The FALSE value comes from the conditional
test in the if statement. The highlight will move

1Book of Job, 5:7
2The 1 is the current frame number, which matches the number in the title bar of the code window; see “The code window”.
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into the else block, to the for loop at line 3. Press
<ENTER> again, and the values that the index will
loop through are printed. The intention is obviously
not to do the loop at all for i<=2, but instead you’ll
see [1] 1 2 because the “:” is going the “wrong”
way3.

If you were really debugging this function, you
would probably exit with qqq() at this point, and
then edit f. For now, though, type go(5). The de-
bugger will begin executing statements in f contin-
uously, without pausing for input. When line 5 is
reached, it will be highlighted in the code window,
and the D(1)> prompt will return in the R command
window. At the prompt, type i to see its value. You
can type any R statement (including assignments)
at the prompt; it will be evaluated in the function’s
frame, and the result will be printed in the R com-
mand window. The pending statement in your func-
tion will stay pending, i.e. it won’t be executed yet.
To see all this, try hand-tweaking the result by typ-
ing i<- 2. Then type go() (without a line number
this time) to run through the rest of the function and
return the correct value at the normal R prompt.

If you type something at the D(...)> prompt that
leads to an error, the error message will be printed
but the D(...)> prompt will return, with the line that
led to the error highlighted in the code window. You
can carry on as if the error didn’t happen; type some
commands to patch the problem, or mtrace another
function inside which the error occurred, or skip to
another statement (see below), or type qqq() to finish
debugging.

Special debugging functions

The “big five” are: mtrace to prepare or unprepare
debugging, bp to manage breakpoints, go to execute
statements continuously, skip to move the execution
point without actually executing any code, and qqq
to halt the debugging session and return you to the
usual R prompt (with a “non-error” message). The
last three can only be called inside the debugger, the
first two from inside or outside. go and qqq have
already featured, and there isn’t much more to say
about them. As for the others:

• mtrace(f) does two things. First, it stores
debugging information about f in tracees$f.
The list tracees has one element for each
function currently mtraced; it lives in the
mvb.session.info environment, shown by
search(). This environment is created when
mvbutils is loaded, and lasts until the end of
the R session. It is never written to disk, and is
used to store session information, like “frame
0” in Splus.

Second, mtrace overwrites f with a modified
version that calls the debugger. This does
not change f’s source attribute, so you will
see no apparent change if you type f (but try
body(f)). However, if you save an mtraced
function and then load it into a new R ses-
sion, you’ll see an error when you invoke the
function. Before saving, type mtrace(f,F)
to untrace f, or mtrace.off() to untrace all
tracees— or consult ?Save for a shortcut.

mtraceing a function should not affect editing
operations. However, after the function is read
back into R, it will need to be mtraced again
(unless you use fixr in mvbutils). All previ-
ous breakpoint will be cleared, and a new one
will be set at line 1.

• To illustrate skip, type f(-5) to start debug-
ging again, and press <ENTER>. The if test will
be TRUE, so execution will move to line 2. At
this point, you might decide that you want to
run the loop anyway. Type skip(3) to move
the execution point to the start of the for loop,
and i to confirm that the value has not been al-
tered. skip(1) will move you back to the start
of the function, ready to start over. However,
note that skipping backwards doesn’t undo
any changes.

• bp(5) will set a breakpoint at line 5 (if the de-
bugger is already running), as shown by the
red asterisk that appears to the left of line 5.
Type go(); the highlight should re-appear on
line 5. Now clear the line 1 breakpoints by
bp(1,F)— the upper asterisk will disappear.
Press <ENTER> to execute line 5 and finish the
function, then f(2) again to restart the debug-
ger. This time, when the code window appears,
the highlight will be on line 5. Because the line
1 breakpoint was cleared, execution has pro-
ceeded continuously until the breakpoint on
line 5 triggers. If all breakpoints are cleared,
the entire function will run without the code
window ever appearing, unless an error occurs
(try f(’oops’)). Clearing all breakpoints can
be useful when a function will be invoked re-
peatedly.

Conditional breakpoints can be set by e.g.
bp(4,i<=j). The second argument is an (un-
quoted) expression which will be evaluated in
the function frame whenever line 4 is reached;
if the expression evaluates to anything except
FALSE, the breakpoint will trigger. Such break-
points are mainly useful inside loops, or when
a function is to be called repeatedly. Be-
cause everything in a breakpoint expression

3One solution to this common loop bug, is to replace the “:” with the %downto% operator from mvbutils: for( j in (i-1) %downto%

2). A far better way to calculate vectorized factorials, though, is based on cumprod(1 %upto% max(x))[x], and there is always
round(exp(lgamma(i+1))).
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gets evaluated in the function frame, includ-
ing assignments, conditional breakpoints can
be used for “invisible mending” of code. Put
the “patch” statement followed by FALSE in-
side braces, as in the following hack to get f
working OK:

bp( 4, { if(i<3) break; FALSE})

The FALSE at the end prevents the breakpoint
from triggering, so that execution continues
without pause. f(2) and f(1) will now work
OK, giving possibly the world’s worst factorial
function.

Breakpoints are usually set inside the debug-
ger, after the code window has appeared.
However, they can also be set in advance. Un-
less you are clearing/setting at line 1, you will
need to check the line list, which can be seen in
tracees$f$line.list.

Debugging on.exit code

Code set in on.exit statements can be debugged just
like normal body code. At the end of the main body
code, the code window displays a section marked
##### ON EXIT #####. Until an on.exit statement
gets executed, this section just contains a NULL state-
ment. When on.exit is invoked (either in the func-
tion, or from the prompt), the code window will
change to show the new exit code. You can set break-
points in the exit code and step through it just as if
it were body code. The exit code will normally be
reached when there are no more statements to exe-
cute in the body code, or following a return state-
ment. Without the debugger, the exit code will also
be run after an error; however, with the debugger, er-
rors switch the debugger into step mode, but do not
move the execution point.

If you quit the debugger via qqq(), the exit code
will not be executed. To avoid this, skip to the start of
the exit code, go to the line number of the final NULL,
and then type qqq().

Every statement that is executed or typed in
while in the body code, will update the return value
(except debug-specific commands such as go()).
Once the debugger has moved into the exit code, the
return value does not change. You can find out the
return value by typing get.retval(). To forcibly
change it, first skip back to any line in the body code,
then call return to set the value and return to the exit
code block.

Note that if your function completes (i.e. the de-
bugger leaves it without you calling qqq()), the re-
turn value will be passed on OK and execution will
carry on as normal, even if there were error messages
during the execution of your function.

Which statements can be traced?

The basic unit of execution in debug is the numbered
line. Certain statements get individual lines, while
other statements are grouped together in a single
line, and therefore can’t be stepped into. Grouped
statements comprise:

• The test expressions in if, while and switch
statements.

• The lists of items to be looped over in for state-
ments.

• Calls to “normal” (non-flow-control) functions.
You can usually mtrace the function in ques-
tion if you want to see what’s happening.

• Assignments. If you write code such as x<- {
for( i in 1:5) y<- i/y+y/i; y}, you’re on
your own!

The code window

In the present version of debug, all you can do in the
code window is look at your code. You can scroll up
or down and select lines, but this has no effect on de-
bugging. Several code windows can be open at once,
not necessarily for different functions (try calling f
from within f), and can be distinguished by the func-
tion name and frame number in the title. The win-
dow whose number matches the D(...)> prompt is
currently “active”. Some aspects of window position
and appearance can be controlled via options; see
the package documentation.

Strategies for debugging

There are no rules for how to go about debugging,
but in most cases I begin by following one of two
routes.

When faced with an actual error message, I first
call traceback() to see where the error occurred; of-
ten, this is not in my own functions, even if one of
them is ultimately responsible. I then call mtrace
either on my function, or on the highest-numbered
function from traceback for which the cause of error
is mysterious. Next, I simply retype whatever gave
the error, type go() when the code window appears,
and wait for the crash. The debugger highlights the
error line, and I can inspect variables. If it’s still not
obvious why the crash occurred, I mtrace whichever
function is invoked by the error line— say glm.. Then
I press <ENTER> to take me into glm, and either exam-
ine the arguments, or type go() again to take me to
the error line in glm, etc. etc.

If there’s no error but f is giving strange results,
then I mtrace and invoke f, and step through the
code with <ENTER>, watching intermediate results
and printing any variables I’m curious about. If
there is an unproblematic block of code at the start
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of f, then it’s faster to use go(N) (or bp(N) followed
by go()) to get to line number N after the block;
sometimes N will be the first line of the exit code.
Once I understand roughly where the problem is—
as shown by a variable taking on an unexpected
value— I will either qqq() or patch things up, by set-
ting variables directly from the keyboard and/or us-
ing skip, just to check that the next few statements
after the bug are OK.

The fancier features, such as conditional break-
points and bp(1,F), are used less, but can be invalu-
able timesavers where loops are involved.

Speed issues

Functions do run slower when mtraced, though this
is only likely to be a problem if a lengthy loop has to
execute before reaching the interesting code. You can
speed things up by wrapping innocuous code near
the start in an evalq({...}) call. For instance, if you
mtrace and run this function

slowcrash <- function( x) {
for( i in 1:(10^5)) x <- x+1
crash <- x + "oops!"

}

then you’ll be waiting a long time before go ar-
rives at the accident scene. Instead, try mtraceing
and running this:

fastcrash <- function( x) {
evalq({ for( i in 1:(10^5)) x <- x+1 })
crash <- x + "oops!"

}

If an error occurs in a complex statement inside a
loop, but only after a large number of loop iterations
have completed, you can try a different trick. Put the
loop contents into an mlocal “macro” function (see
mvbutils) called e.g. loopee; replace the guts of the
loop with a call to loopee(); make sure loopee is un-
traced; invoke f; and type go(). When the debugger
stops at the offending iteration, on the loopee() line,
call mtrace(loopee) and press <ENTER> to step into
loopee.

Omissions and limitations

1. try(...) statements work fine, but can’t yet
be stepped into (it’s on the to-do list). Fancy er-
ror handling via tryCatch etc. isn’t explicitly
handled, and I don’t know how the debugger
will respond.

2. The debugger endeavours to invisibly re-
place certain commands with “debug-friendly”
equivalents, both in function code and in
keyboard input. It is possible to de-
feat this with really strange code such as
eval(parse(text=’next’)). If you write that
sort of code, you’ll get what you deserve...

3. A few key base functions (and most functions
in the debugger) can’t be debugged directly. A
workaround is to copy them to a new variable
and mtrace that.

4. There is no “watch window” and no “global
expression-triggered breakpoint” facility. Both
could be added (the Splus version of debug did
have a watch window at one point), but would
take me some time.

5. Loss of breakpoints after editing is annoying;
the Splus version tries harder to keep them,
and I might implement the same for R.

6. The code window is very unsophisticated, re-
flecting my TCL/TK abilities; mark-and-copy
would be nice, for example.

7. S4 methods aren’t handled (though S3 methods
are, even hidden ones); I have no plans to write
my own S4 methods, and hope not to have to
debug anyone else’s!

Feedback on debug and mvbutils is welcome. I
will fix bugs, and will try to add feasible enhance-
ments as time permits.

Mark Bravington
CSIRO Mathematics and Information Sciences
Hobart, Tasmania, Australia
mark.bravington@csiro.au
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The R2HTML Package
Formatting HTML output on the fly or by using a
template scheme

By Eric Lecoutre

Statistics is not only theory and methodology, but
also computing and communication. Applied statis-
ticians are aware that they have to pay particular at-
tention to the last step of an analysis: the report. A
very elegant way to handle the final report with R is
to use the wonderful Sweave system (Leisch, 2002a)
in package tools: not only does it allow professional
quality reports by using LATEX, but it also stores the
code that is used for the report within the document,
which is very useful when returning to the analysis
later on. This solution, however, is not always ap-
plicable, as the user may not be familiar with LATEX
or may need another format to communicate with a
client, who, in many cases, will expect a report that
he can edit or to which he can add some details. RTF
format is ideal for this type of communication, as it
can be opened on many platforms and allows some
formatting enhancements (bold, tables, . . . ). Never-
theless, it is not easy to produce and does not enable
the user to embed graphs. Another universal format
which can achieve our goal is HTML: it is lightweight,
readable on almost all platforms, editable, and al-
lows graphs. Moreover, it can easily be exported to
other formats.

This document describes the R2HTML package
which provides some support for writing formatted
HTML output. Although some knowledge of HTML
is desirable for those who wish to customize the out-
put, the package can be used successfully without
this background. We will create several web pages,
which the reader can find at the following address:
http://www.stat.ucl.ac.be/R2HTML/.

Introduction to HTML and the
R2HTML package

According to the W3 Consortium, HTML is the lin-
gua franca for publishing hypertext on the World
Wide Web. It is a non-proprietary format based upon
SGML, and can be created and processed by a wide
range of tools, from simple plain text editors to so-
phisticated WYSIWYG authoring tools. HTML uses
so-called tags to structure text into headings, para-
graphs, lists, hypertext links and to apply a format.
For example the <b> tag is used to start bold text, and
the </b> tag to stop bold text. The tag with the slash
(/) is known as the closing tag. Many opening tags
need to be followed by a closing tag, but not all of
them do.

Consequently, the only required knowledge in or-
der to write basic HTML documents is the list of ex-
isting tags and their functionality. By way of illus-
tration, here is the structure of a (rather basic) HTML
document:

<html>

<h1>My first HTML page </h1>

<p>This is some basic text with a

<b>bold</b> word.</p>

<p>It uses h1, and p tags which allows to create

a title and to define a paragraph</p>

</html>

Now, we have a very easy way to create our first
webpage from R: simply using the cat function to
write text into an external file. In the following ex-
ample, consider how we call the cat function sever-
all times having set the append argument to TRUE in
order to add information to the page.

> htmlfile = file.path(tempdir(),

+ "page1.html")

> cat("<html><h1>My first HTML page from R</h1>",

+ file = htmlfile)

> cat("\n<br>Hello Web World!",

+ append = TRUE, file = htmlfile)

> cat("\n</html>", append = TRUE,

+ file = htmlfile)

The package R2HTML contains a collection of
wrapper fynctions that call the cat function to write
HTML codes. The main functions are:

• HTML() Main generic function with methods
for all classic classes (matrix, lm, summary.xxx,
. . . ).

• HTMLbr() Inserts a <br> HTML tag, which re-
quires a new line to be started.

• HTMLhr() Inserts an <hr> HTML tag, a horizon-
tal rule to separate pieces of text.

• HTMLInsertGraph() Inserts an <img> HTML tag
to add an existing graph to the report. The
graph should have been created before in a
suitable web format such as GIF, JPEG or PNG.

Basically, the R2HTML package contains a
generic HTML() function that behaves like the inter-
nal cat function. Common arguments are append
and file, the default file is set by the hidden vari-
able .HTML.file:

> .HTML.file = file.path(tempdir(),

+ "page2.html")

> HTML(as.title("Title of my report"),

+ append = FALSE)

> HTMLhr()

> HTML("3 dimensions identity matrix")

> HTML(diag(3))
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Generating HTML output on the fly

The first way to use the R2HTML package is to gen-
erate automatic HTML output during an interactive
session. This is especially convenient for teaching,
as students can then keep a log of the commands
they asked for and the corresponding outputs, with
graphs incorporated. For a dynamic session to be
successful, two commands have to be processed:

• HTMLStart()

• HTMLStop()

Here is a sketch of the way those commands
work. When calling HTMLStart(), several actions are
performed:

• Three HTML files are written into the tempo-
rary directory of the session (or in the direc-
tory specified in an option). The main file
‘index.html’ is linked to the other two, by in-
corporating them within HTML frames. This
makes it possible to have the commands on the
left of the screen and the corresponding out-
puts on the right.

• A new environment, called HTMLenv, is cre-
ated, where some internal variables are stored.
Those variables make it possible to store the
path of the output files, and to know which ac-
tion has been performed with the latest submit-
ted command.

• A new fix function is assigned to the global
environment, masking the internal one. When
calling the "new" fix, a boolean is set to TRUE
in the HTMLenv environment, so that we know
that the latest action was to edit a function.

• addTaskCallback is called, adding a task to
each submitted command. This task, handled
by the function ToHTML (not visible to the user)
is the core of the process, as it exports the last
manipulated object. This function also tests
whether a stored boolean indicates that a func-
tion has been edited and, if so, exports the
edited function. When doing so, a new file is
created, so that at the end of the process, one
can keep track of all the versions of the func-
tion at the different stages of the work.

• Finally, as a side effect, the prompt is changed
to HTML> so as a signal that outputs are cur-
rently being redirected.

From this moment on, every command is treated
twice: first it is evaluated and then the result goes
through the ToHTML function which writes it into the
HTML output.

As there is no convenient way to know when
a graph has been performed (or modified, think of

lines, points, . . . ) and as it is not desirable to export
every graph, the user has to explicitly ask for the in-
sertion of the current active graph to the output, by
calling the HTMLplot() function.

When necessary, a call to the HTMLStop() func-
tion stops the process and removes all the temporary
variables created.

The following example only works in an interac-
tive R session:

> HTMLStart(filename = "dynamic",

+ echo = TRUE)

*** Output redirected to directory: C:\tmp

*** Use HTMLStop() to end redirection.[1] TRUE

HTML> sqrt(pi)

[1] 1.772454

HTML> x = rnorm(10)

HTML> x^2

[1] 2.91248574 0.21033662

[3] 0.16120327 1.56429808

[5] 0.02863139 3.47605227

[7] 1.36348399 0.30152315

[9] 0.73402896 0.77886722

HTML> myfunction = function(x)

+ return(summary(x))

### try to fix the function

HTML> myfunction(x)

Min. 1st Qu. Median Mean

-1.7070 -0.3017 0.6291 0.3878

3rd Qu. Max.

1.0960 1.8640

HTML> plot(x)

HTML> HTMLplot()

[1] TRUE

HTML> HTMLStop()

[1] "C:\\.../dynamic_main.html"

Creating personalized reports

A simple analysis

For anyone who knows the basics of HTML, the
R2HTML package offers all the necessary material
to develop fast routines in order to create one’s own
reports. But even users without knowledge of HTML
can easily create such reports. What we propose here
is a so-called template approach. Let us imagine that
we have to perform a daily analysis whose output
consists of some summary tables and graphs.

First, we collect in a list all the objects necessary
for writing the report. An easy way to do so is to
create a user function MyAnalysis that returns such
a list. In addition, we assign a user-defined class to
this object.

MyAnalysis = function(data) {

table1 = summary(data[,1])

table2 = mean(data[, 2])

dataforgraph1 = data[,1]

output = list(tables =
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list(t1 = table1, t2 = table2),

graphs = list(d1 = dataforgraph1))

class(output) = "MyAnalysisClass"

return(output)

}

We then provide a new HTML function, based on
the structure of our output object and corresponding
to its class:

HTML.MyAnalysisClass = function(x,

file = "report.html", append = TRUE,

directory = getwd(), ...) {

file = file.path(directory, file)

cat("\n", file = file,

append = append)

HTML.title("Table 1: summary for

first variable",file = file)

HTML(x$tables$t1, file = file)

HTML.title("Second variable",

file = file)

HTML(paste("Mean for second",

"variable is: ",

round(x$tables$t2,3),

sep = ""),file = file)

HTMLhr(file = file)

png(file.path(directory,

"graph1.png"))

hist(x$graphs$d1,

main = "Histogram for 1st variable")

dev.off()

HTMLInsertGraph("graph1.png",

Caption = "Graph 1 - Histogram",

file = file)

cat(paste("Report written: ",

file, sep = ""))

}

If we want to write the report, we simply have to
do the following:

> data = matrix(rnorm(100), ncol = 2)

> out = MyAnalysis(data)

> setwd(tempdir())

> HTML(out, file = "page3.html")

Report written: C:/.../page3.html

The advantage of this approach is that we store all
the raw material of the analysis within an object, and
that we dissociate it from the process that creates the
report. If we keep all our objects, it is easy to modify
the HTML.MyAnalysisClass function and generate all
the reports again.

A template scheme to complete the report

What we wrote before is not a real HTML file,
as it does not even contain standard headers
<html>...</html>. As we see it, there are two dif-
ferents ways to handle this, each with its pros and
cons. For this personalization, it is indispensable to
have some knowledge of HTML.

First, we could have a pure R approach, by
adding two functions to our report, such as:

MyReportBegin = function(file = "report.html",

title = "My Report Title") {

cat(paste("<html><head><title>",

title, "</title></head>",

"<body bgcolor=#D0D0D0>",

"<img=logo.gif>", sep = ""),

file = file, append = FALSE)

}

MyReportEnd = function(file = "report.html") {

cat("<hr size=1></body></html>",

file = file, append = TRUE)

}

MyReport = function(x, file = "report.html") {

MyReportBegin(file)

HTML(x, file = file)

MyReportEnd(file)

}

Then, instead of calling the HTML function directly,
we would consider it as an internal function and, in-
stead, call the MyReport function.

> out = MyAnalysis(data)

> MyReport(out, file = "page4.html")

Report written: C:/.../page4.html

The advantage is that we can even personalize the
header and the footer of our report on the basis of
some R variables such as the date, the name of the
data or anything else.

If we do not need to go further than that and
only need hard coded content, we can build the re-
port on the basis of two existing files, header.html
and footer.html, which can be modified to suit our
needs. To work properly, the following piece of code
supposes that those two files do exist in the working
directory:

MyReport = function(x, file = "report.html",

headerfile = "header.html",

bottomfile = "footer.html") {

header = readLines(headerfile)

cat(paste(header, collapse = "\n"),

file = file, append = FALSE)

HTML(x, file = file, append = TRUE)

bottom = readLines(bottomfile)

cat(paste(bottom, collapse = "\n"),

file = file, append = TRUE)

}

Going one step further with CSS

Cascading Style Sheets (CSS) compensate for some of
the deficiencies of HTML language. CSS add to each
standard HTML element its own style, which is de-
fined in an external file. Thus, when the inhouse
stylebook of the report is changed, one need only
modify the definition of the classes in a single place
to change the look of all the reports - past or future -
that rely on the defined classes.

The use of cascading style sheets makes it possi-
ble to:
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• give a homogeneous look to all generated re-
ports

• change the look of a bunch of reports at one
time

• produce lighter reports, as formatting instruc-
tions are kept separate

• download and view reports more rapidly

for details about CSS see http://www.w3.org/
Style/CSS/.

All functions of package R2HTML rely on CSS
and a given sample CSS file, R2HTML.CSS. This file
is used by HTMLStart. In order to work properly,
the CSS file must located in the same directory as
the report and one simply has to add the follow-
ing line to it <link rel=stylesheet type=text/css
href=R2HTML.css>. This job is performed by the
HTMLCSS() function. It is a good idea to systemati-
cally start a report with this function, as CSS files are
very powerful. So, in its last version, our reporting
function yields:

MyReport = function(x, file = "report.html",

CSSfile = "R2HTML") {

MyReportBegin(file)

HTMLCSS(file = file, CSSfile = CSSfile)

HTML(x, file = file)

MyReportEnd(file)

}

Summary

The R2HTML package provides functions to export
many base R objects to HTML. In this paper we have
described a simple mechanism to use these functions
in order to write HTML reports for statistical analy-
ses performed with R. The mechanism is flexible and
allows customizations in many ways, mainly by us-
ing a template approach (separating the body of the
report from the wrapper, i.e., header and footer) and
by using an external CSS file.
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R Help Desk
Package Management

Uwe Ligges

Preface

A huge number of packages dedicated to wide range
of applications is available for R. Writing this article,
there are more than 300 packages: base and recom-
mended packages, CRAN1 packages, packages from
the Omegahat2 and BioConductor3 projects, as well
as a couple of other packages. This shows that pack-
age management is really important. A recent sum-
mary of existing packages is published in the R FAQ
by Hornik (2003).

Convenient tools for developing, checking, in-
stalling, updating and removing packages are avail-
able in R. Therefore, users and developers can easily
handle packages. This is one of the main reasons for
R’s rapid growth.

In this article, the procedures to install, update,
and manage packages in (more than) one library
are described. In particular, this article summarizes
and extends the existing documentation on package
management.

Documentation on package man-
agement

Package management is described in several docu-
ments, because handling packages is fundamental
for users of R. The “R Installation and Administra-
tion” manual (R Core, 2003a) is the main resource for
users who want to install packages. Among other
topics it explains the terminology. In particular, it is
important to distinguish between a package and a li-
brary:

“A package is loaded from a library by the
function library(). Thus a library is a direc-
tory containing installed packages; ...”

“The R FAQ” (Hornik, 2003) devotes a section to
package management. The complementary “R for
Windows FAQ” (Ripley, 2003) explains a couple of
specific Windows issues related to package manage-
ment. For users of the Macintosh, the “RAqua FAQ”
(Iacus, 2003) might be extended by a corresponding
section in a future versions.

The manual “Writing R Extensions” (R Core,
2003b) is devoted to the development of packages,
hence of minor interest for the user who tries to in-
stall or update a package.

Libraries

If you have installed a released version of R, the
base and recommended packages can be found in
the main library: R_HOME/library, where R_HOME de-
notes the path to your version of R, e.g. /usr/local/
lib/R or c:\Programs\rw1081.

By default, further packages will be installed into
R_HOME/library as well.

It may be sensible to have more than one library,
depending on the purpose of the system R has been
installed on.

Let’s consider the following situation: R has been
installed on a server, and the regular user does not
have any write access to R’s main library. There is
no need to ask the administrator to install a pack-
age from CRAN. The user can easily install the pack-
age into another library to which he has write ac-
cess, e.g.: /home/user/myRstuff/library. More-
over, it might be convenient to have a third library
containing packages the user is maintaining himself,
e.g.: /home/user/myRstuff/mylibrary.

In the example given above, Unix file paths have
been used, but the idea is applicable to arbitrary op-
erating systems. As an example, consider our de-
partment’s Windows system: R is installed on a net-
work share, say s:\R (no write access for the regular
user). If a user has write access to, say, d:\user, then
d:\user\myRstuff\library might be a good choice
for a library containing private packages.

Since R does not know about any further li-
braries than the default one, the environment vari-
able R_LIBS must be set appropriately. This can be
done in the usual way for setting environment vari-
ables on your operating system, or even better by
specifying it in one of the environment files R pro-
cesses on its startup, see ?Startup for details. For
example, in order to tell R that a second library
/home/user/myRstuff/mylibrary is available, you
might want to add the line

R_LIBS=/home/user/myRstuff/mylibrary

to the file ‘.Renviron’ (see ?Startup). More libraries
can be specified as a semicolon separated list.

During R’s startup, the library search path is ini-
tialized by calling the function .libPaths() on the
directories defined in R_LIBS (the main library is al-
ways included). If .libPaths() is called without
any arguments, the current library search path is re-
turned.

1http://cran.r-project.org
2http://www.omegahat.org
3http://www.bioconductor.org
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Source vs. binary packages

Packages may be distributed in source or binary
form.

Source packages are platform independent,
i.e. independent of hardware (CPU, ...) and oper-
ating system, as long as the package author does
not implement platform specific details — and, of
course, as long as R is available on the particular plat-
form. Installing source packages requires a couple of
tools to be installed (e.g. Perl, and depending on the
package: C compiler, Fortran compiler, ...). In order
to provide packages to a large group of users, devel-
opers must submit their packages in source form to
CRAN4

For users working on Unix-like systems (includ-
ing Linux, Solaris, ...), it is quite easy to install pack-
ages from source, because their systems generally
have (almost) all of the required tools installed.

Binary packages are platform specific. They may
also depend on the R version — in particular, if com-
piled code has been linked against R. To install a bi-
nary package, no special tools are required, because
the shared object files (as known as DLL5 under Win-
dows), help pages (HTML, text, ...), etc. already have
been pre-compiled in a binary package.

In order to make package installation as conve-
nient as possible for the user, binary versions of
CRAN packages are provided for some platforms (in
particular these are currently MacOS X, SuSE Linux,
and Windows) and the most recent versions of R.
For example, binary versions of packages for Win-
dows regularly appear within two days after the cor-
responding source package on CRAN — given there
is no special dependence or need for manual config-
uration.

By convention, source packages regularly have
the file extension ‘.tar.gz’, binary packages for Win-
dows ‘.zip’, and those for Linux ‘.deb’ or ‘.rpm’.
Both extensions ‘.tar.gz’ and ‘.zip’ indicate archives
files (an archive contains files in compressed form)
packed by different tools. Hence, it’s a fast but also
unsafe way to decide by looking at file extensions:
Omegahat source packages still end in ‘.zip’, MacOS
X binary packages end in ‘.tar.gz’. You can always
check whether a package contains folders help and
html. If it does, it is almost certainly a binary pack-
age.

Installing and updating source
packages

If you have more than one library, you need to spec-
ify the library to/in/from which a package is to be
installed, updated, removed, etc. The syntax to in-

stall source packages on Unix using the command
line is

$ R CMD INSTALL -l /path/to/library package

The part used to specify the library, -l
/path/to/library, can be omitted. In that case the
first library in the environment variable R_LIBS is
used if set, otherwise the main library. Note that file
‘.Renviron’ is not read by R CMD. A Section describing
the syntax for Windows can be found below.

For example, a source package mypackage_0.
0-1.tar.gz can be installed to the library /home/
user/myRstuff/mylibrary using the command

$ R CMD INSTALL -l /home/user/myRstuff/mylibrary

mypackage_0.0-1.tar.gz

In most cases an alternative approach is much
more convenient: Packages can be downloaded
and installed from within R using the function
install.packages(). In order to install a pack-
age package from CRAN into the library /path/to/
library from an appropriate CRAN mirror6 (which
might not be the US mirror given below), the call
looks like:

R> options(CRAN="http://cran.us.r-project.org/")

R> install.packages("package",

R+ lib = "/path/to/library")

Analogously to the command line version, the spec-
ification of a library may be omitted when the pack-
age is to be installed into the first library of the library
search path. More specifically, install.packages()
looks for available source packages on CRAN, down-
loads the latest version of the requested source pack-
age, and installs it via R CMD INSTALL.

The function update.packages() helps to keep
packages on a system up to date. According to R
Core (2003a), update.packages()

“... downloads the list of available packages
and their current versions, compares it with
those installed and offers to fetch and install
any that have later versions on CRAN.”

Note that, instead of the current package man-
agement tools, packageStatus() (see its help page
?packageStatus for details) is intended to become
the default package manager for future versions of R.
Both packageStatus() and the package reposTools
from the BioConductor project are expected to be-
come great tools for modern package management
in R.

On Windows, install.packages() and
update.packages() are used to install binary ver-
sions of packages rather than source packages (see
below).

See R Core (2003a) for an explanation how to re-
move packages.

4Note that submissions of any binary packages to CRAN will not be accepted.
5dynamic link libraries
6For a list of mirrors see http://cran.r-project.org/mirrors.html
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Package management on the Mac-
intosh

Recent versions of R only support MacOS X. On this
operating system’s command line, R behaves as un-
der Unix.

For users of RAqua, the GUI has menus for the in-
stallation and update of source and binary packages.
Also, there are separate menus for CRAN packages
and packages from the BioConductor project, as well
as for packages from local directories.

Functions like install.packages() for manag-
ing source packages behave as on Unix, but there are
also functions for managing binary packages avail-
able in RAqua. Instead of ending on .packages,
names of these functions end on .binaries. Hence,
install.binaries() installs binary packages, etc.
A corresponding binary repository for RAqua is
available on CRAN at yourCRANmirror/bin/macosx/
MajVer/ where MajVer is, e.g., ‘1.8’ for R-1.8.1.

Package management on Windows

Package management on Windows is special in a
way: On the typical Windows system many of the
required tools to install packages from source are
missing. Moreover, the operating system’s command
shell is quite different from typical Unix command
shells.

Therefore, R’s command line tools are slightly
different on Windows. For example, the command
to install the source package called mypackage in
file ‘mypackage 0.0-1.tar.gz’ to the library path c:
\myRstuff\mylibrary using the command line is:

c:\> Rcmd INSTALL -l c:\myRstuff\mylibrary

mypackage_0.0-1.tar.gz

How to collect the required tools and how to set up
the system in order to be able to install packages from
source is described in the file R_HOME/src/gnuwin32/
readme.packages within the R sources. It is highly
recommended to read that file very carefully line by
line, because almost every line is important to get
Rcmd INSTALL working. Those who have already
compiled their version of R from source also have set
up their system and tools correctly to install source
packages.

The R functions install.packages(),
update.packages() and friends work differently
on Windows than on Unix (with the same syntax,
though). On Windows, these functions look at the list
of binary packages (rather than of source packages)
and download the latest version of the requested
binary package.

The repository in which these functions
are looking for binary packages is located at

yourCRANmirror/bin/windows/contrib/MajVer/
where MajVer is, e.g., ‘1.8’ for R-1.8.1. The ReadMe
files in these directories (and also the one in
yourCRANmirror/bin/windows/contrib/ReadMe)
contain important information on availability of
packages and how special circumstances (e.g. what
happens when packages do not pass the quality con-
trol, Rcmd CHECK) are handled.

If you are using R’s GUI (‘RGui.exe’) on Win-
dows, you will find a menu called “Packages”
that provides a GUI interface to the functions
install.packages(), update.packages() and
library(). Besides the CRAN repository, the Bio-
Conductor repository is also accessible via the menu,
as well as the installation of local files.

Note that it is not possible to install to another
library than that one in the first place of the library
search path (.libPaths()[1]) using the menu. Con-
sider using install.packages() directly in order to
install to a different library. For example, in order to
install a binary version of the package mypackage,
available as a local zip file c:\myRstuff\mypackage_
0.0-1.zip, into the library c:\myRstuff\mylibrary,
we can use

R> install.packages(

R+ "c:/myRstuff/mypackage_0.0-1.zip",

R+ lib = "c:/myRstuff/mylibrary", CRAN = NULL)

Note that you have to escape the backslash, or use
normal slashes as above, to specify a path within R
for Windows.
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Programmer’s Niche
Little Bits of String

by Thomas Lumley

Character strings occupy an unusual position in R.
They are treated as atomic types — little bits of string
— by all the subscripting functions. On the other
hand, in most cases where the programmer really is
treating strings as atomic objects it would be better
to use factors instead.

The decision not to treat strings as vectors of char-
acters makes sense when you consider what sorts of
operations we do on strings. The vectorised opera-
tions in R mostly deal with operating on the same
entry in multiple vectors. With two strings, the ‘same
character’ is more likely to be defined relative to pat-
terns in the string rather than by counting charac-
ters from the beginning. The most useful operations
on strings are not elementwise operations on their
characters, but pattern matching and replacement
operations. In the Unix world these pattern match-
ing operations are described by regular expressions.
R provides two implementations of regular expres-
sions, which allow quite complex text manipulation,
though for efficient processing of very large quanti-
ties of text a specialised tool such as Perl is better. I
will discuss only some features of one of the R imple-
mentations. A more complete description of regular
expressions in R is given by help(regex) and the ref-
erences it cites.

A regular expression is a small program that
matches one or more strings. For example, the reg-
ular expression a regular expression matches the
single string “a regular expression”. R provides
functions grep, sub, gsub, regexpr, and strsplit
that take a regular expression and a string and look
for any of the possible outputs of the regular ex-
pression in the string. This can be useful even
with very simple regular expressions, for example,
apropos("file") returns all the currently defined
objects that have the string "file" in their names.

As the example shows, most characters in a regu-
lar expression just match themselves as output. The
power of regular expressions comes from the special
characters that do more than this. The first two are ^
and $, which represent the beginning and end of the
string respectively. The regular expression ^print
matches “print” at the beginning of the string,
which is found in the strings "print.data.frame"
and "printer.type" but not in "dev.print". In
simpler times the function methods, which lists the
methods available for a given generic function, could
just use a regular expression of this sort to find all
functions whose name began with the name of the
generic; things are much more complicated now.

In addition to representing a single character, we
can represent a class of characters. At the extreme,
the character . matches any character, but more re-
stricted patterns are often more useful. For exam-
ple, the regular expression [[:alpha:]] matches any
single uppercase or lowercase letter, [[:digit:]]
matches any digit, and [[:space:]] matches any of
the white-space characters. Other square-bracket ex-
pressions specify other character classes. You may
see [A-Z] for specifying ranges of characters (be-
tween A and Z in this example), but this should be
used with care (for example, in Danish the letters Æ,
Ø, and Å are not between A and Z).

The special characters present a problem when
you need an actual . or $, say, in a string. To prevent
their being interpreted as special they must be pre-
ceded by a backslash and, given the familiar prob-
lems with C strings, this means typing a double
backslash. To match “.sgml” at the end of a string
(identifying S help files) we need the regular expres-
sion \\.sgml$ (as a convenience, the R functions that
accept regular expressions mostly accept an argu-
ment fixed=TRUE to specify that all special characters
should be interpreted as ordinary characters).

The real power of regular expressions comes from
specifying repetitions of characters or sets of charac-
ters. The qualifiers ?, +, and * specify that the pre-
vious character should be repeated at most once, at
least once, or any number of times. For example,
^[[:space:]]* matches any amount of empty space
at the start of a string, so

sub("^[[:space:]]*", "", string)

will remove any leading whitespace characters from
the strings (that is, replace it with nothing). Paren-
theses create groups that can be repeated together, so
that (".+",[[:space:]]*)* matches any number of
terms in quotation marks, separated by commas and
optionally by space. Even trickier things are possible
with parentheses:

([[:alpha:]]+)[[:space:]]\\1

matches repeated words. The backreference \\1
means ‘the string that the first set of parentheses
matched’. We could remove repeated words from a
string with

> gsub("([[:alpha:]]+)[[:space:]]*\\1", "\\1",
"the the end is is nigh")

[1] "the end is nigh"

The Sweave tools (Leisch, 2002) provide a nice exam-
ple of the integration of regular expressions into R
programs. The underlying R code can process input
files in multiple formats, with the necessary descrip-
tions of the formats given by regular expressions (e.g.
tools::SweaveSyntaxNoweb1)

1in future versions of R this will be utils::SweaveSyntaxNoweb
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Despite this power, the main use I make of reg-
ular expressions is in simple script processing. For
example, in porting a package written for S-PLUS re-
cently I wrote a function to find all the SGML docu-
mentation files in the package, strip the version con-
trol comments from the beginning of each file, and
feed them to R CMD Sd2Rd to make Rd files. This
could have been done in Perl or probably with a sim-
ple shell script, but it seemed easier just to use R.

An interesting exercise for the reader: Creat-
ing a namespace for an existing package that uses
S3 methods requires registering the methods in
the NAMESPACE file. That is, for a function such
as print.coxph, the NAMESPACE file should contain
S3method(print, coxph). How would you write
a function that looked for methods for a list of
common generic functions and created the neces-
sary S3method calls? You would probably need
to use the functions either strsplit and paste or

regexpr and substr, and would need to remember
that the generic name need not be a single word
(is.na.Surv springs to mind). Some hand edit-
ing would still be required, for example to deter-
mine whether t.test.formula was a method for t
or t.test or neither.
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Recent Events
R at the Statistics Canada Sympo-
sium

R was one of the software packages demonstrated
at the 2003 Statistics Canada Symposium, an annual
event organized by Statistics Canada and presented
near Ottawa, Ontario. The event is attended largely
by the methodologists (statisticians) who work here
and at other national statistical agencies, such as the
US Census Bureau. This year’s symposium was the
20th edition of the conference. The four day event
had two days of software demonstrations with dif-
ferent packages being shown each day. Out of the 10
different packages being demonstrated, 7 were de-
veloped at Statistics Canada for very specific tasks.

Although the software demonstrations were hid-
den in a room out of sight from the main proceed-
ings, there were still several curious visitors to the R
demo computer. We showed some basic demos of

R at work in sampling and in simulation problems,
emphasizing both the simplicity of the code and the
results that can be produced. We also used the built-
in graphics demo, which impressed many people. As
most people working for Statistics Canada use SAS,
many of our discussions were about why one would
use R instead of SAS (besides the fact that R is free).
We had many discussions on programming struc-
ture, creating plots, dealing with large amounts of
data and general ease of use. All our visitors, when
shown the software, seemed to like it and were not
adverse to the idea of using it instead of SAS. In fact,
they couldn’t understand why we were not already
using it more widely.

Krisztina Filep
Social Survey Methods Division
Statistics Canada
Ottawa, Ontario, Canada
Krisztina.Filep@statcan.ca
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Upcoming Events
useR! 2004

The first international R user conference ‘useR! 2004’
will take place at the Technische Universität Wien in
Vienna, Austria from 2004-05-20 to 2004-05-22. This
R user conference will

• give an overview of the new features of the
rapidly evolving R project and

• provide a platform for R users to discuss and
exchange ideas how R can be used to do sta-
tistical computations, data analysis, visualiza-
tion, teaching and exciting applications in var-
ious fields.

Keynote lectures

A huge amount of exciting features and innovations
came up in the last releases of R. How these features
can be used efficiently will be presented in the fol-
lowing keynote lectures given by R core team mem-
bers:

• R Key Features & Innovations

– grid Graphics and Programming, by Paul
Murrell

– Namespaces & Byte Compilation, by Luke
Tierney

– S4 Classes and Methods, by Friedrich
Leisch

• Users Become Developers

– Good Programming Practice, by Martin
Mächler

– Language Interfaces (.Call & .External), by
Peter Dalgaard

– Packaging, Documentation, Testing, by
Kurt Hornik

• Topics of Current Interest

– Datamining: Large Databases and Meth-
ods, by Brian D. Ripley

– Multilevel Models in R: Present & Future,
by Douglas Bates

User-contributed presentations

A major goal of the useR! conference is to bring
users from various fields together and provide a plat-
form for discussion and exchange of ideas: both in
the official presentations as well as in Vienna’s wine
and beer pubs, cafes and restaurants. The formal
part of the conference will consist of both oral and
poster user-contributed presentations reflecting the
wide range of fields in which R is used to analyze
data such as: biostatistics & medical statistics; vi-
sualization & graphics; spatial statistics; graphical
models; time series, econometrics & finance; R on
Windows and MacOS; office integration & user in-
terfaces; teaching with R and many, many more...

Further information on the program, submission
of abstracts and registration details are available on-
line on the conference web page at http://www.ci.
tuwien.ac.at/Conferences/useR-2004/.

See you in Vienna!

For the organizing committee:
Torsten Hothorn, Erlangen
Achim Zeileis and David Meyer, Wien
useR-org@ci.tuwien.ac.at

COMPSTAT 2004

COMPSTAT 2004, the 16th Symposium of the
International Association for Statistical Comput-
ing (IASC, http://www.cbs.nl/isi/iasc.htm), will
take place at Charles University in Prague, Czech Re-
public, from 2004-08-23 to 2004-08-27.

As at previous COMPSTATs, the scientific pro-
gram will cover all aspects of the link between sta-
tistical theory and applied statistics provided by sta-
tistical computing, from the development and im-
plementation of new statistical ideas through to user
experiences and software evaluation. The program
should appeal to anyone working in statistics and
using computers, whether in universities, industrial
companies, government agencies, research institutes
or as software developers. On Aug 22, I will de-
liver a half-day pre-conference tutorial on “R: The
Next Generation”, introducing the key innovations
in the R 2.0 release scheduled for 2004. There are no
keynote lectures or invited organized sessions specif-
ically dedicated to R.

The conference web site (http://compstat2004.
cuni.cz/) has more details.

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org
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Changes in R 1.8.1
by the R Core Team

New features

• There is now a “Complex” S3 group generic
(a side-effect of fixing up the corresponding S4
group generic).

• help("regex") now gives a description of the
regular expressions used in R.

• The startup message now shows the R Foun-
dation as copyright holder, and includes the
R ISBN number and a pointer to the new
citation() function.

• The solve() function now uses the ‘tol’ argu-
ment for all non-complex cases. The default
tolerance for LINPACK is 1e-7, as before. For
LAPACK it currently is .Machine$double.eps
but may be changed in later versions of R.

• help.search() now defaults to agrep =
FALSE when keyword= is specified, since no
one wants fuzzy matching of categories.

• Function texi2dvi() in package tools can be
used to compile latex files from within R.

• Objects with formal S4 classes saved in pre-1.8
versions and loaded into the current version
have incompatible class attributes (no package
information). A new function, fixPre1.8() in
package methods, will fix the class attributes.
See the help for this function.

• heatmap() allows Rowv/Colv = NA, suppress-
ing the corresponding dendrogram.

• An “antifeature”: Tcl 8.0 is now officially un-
supported. In 1.8.0 it just didn’t work. This
very old version lacks several features that are
needed for the new version of the tcltk pack-
age. R will still build the tcltk package against
Tcl 8.0 but the resulting package will not load.

The above lists only new features, see the ‘NEWS’
file in the R distribution or on the R homepage for a
list of bug fixes.

Changes on CRAN
by Kurt Hornik and Friedrich Leisch

New contributed packages

CDNmoney Components of Canadian Monetary
Aggregates with continuity adjustments. By
Paul Gilbert.

HI Simulation from distributions supported by
nested hyperplanes, using the algorithm de-
scribed in Petris & Tardella, “A geometric
approach to transdimensional Markov chain
Monte Carlo”, Canadian Journal of Statistics,
v.31, n.4, (2003). Also random direction mul-
tivariate Adaptive Rejection Metropolis Sam-
pling. By Giovanni Petris and Luca Tardella.

asypow A set of routines written in the S language
that calculate power and related quantities uti-
lizing asymptotic likelihood ratio methods. S
original by Barry W. Brown, James Lovato and
Kathy Russel. R port by Kjetil Halvorsen.

concord Measures of concordance and reliability. By
Jim Lemon.

covRobust The cov.nnve() function for robust co-
variance estimation by the nearest neighbor

variance estimation (NNVE) method of Wang
and Raftery (2002,JASA). By Naisyin Wang and
Adrian Raftery with contributions from Chris
Fraley.

digest The digest package provides two functions
for the creation of ‘hash’ digests of arbitrary
R objects using the md5 and sha-1 algorithms
permitting easy comparison of R language ob-
jects. The md5 algorithm by Ron Rivest is
specified in RFC 1321. The SHA-1 algorithm
is specified in FIPS-180-1. This packages uses
two small standalone C implementations (that
were provided by by Christophe Devine) of the
md5 and sha-1 algorithms. Please note that
this package is not meant to be used for cryp-
tographic purposes for which more compre-
hensive (and widely tested) libraries such as
OpenSSL should be used. By Dirk Eddelbuet-
tel.

fda Analysis of functional data, that is data where
the basic observation is a function of some
sort—an area involving the generalization of
the techniques of multivariate data analysis to
functional data. By Jim Ramsay.

fork This library provides a simple wrapper around
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the Unix process management API calls: fork,
wait, waitpid, kill, and _exit. These com-
mands allow construction of programs that uti-
lize multiple concurrent processes. By Gregory
R Warnes.

labstatR This package contains sets of functions de-
fined in “Laboratorio di Statistica con R”, Iacus
& Masarotto, MacGraw-Hill Italia, 2003. Func-
tion names and docs are in italian as well. By
Stefano M.Iacus and Guido Masarotto.

lazy By combining constant, linear, and quadratic
local models, lazy estimates the value of an un-
known multivariate function on the basis of a
set of possibly noisy samples of the function it-
self. This implementation of lazy learning au-
tomatically adjusts the bandwidth on a query-
by-query basis through a leave-one-out cross-
validation. By Mauro Birattari and Gianluca
Bontempi.

ldDesign R package for design of experiments for
association studies for detection of linkage dis-
equilibrium. Uses an existing deterministic
power calculation for detection of linkage dise-
quilibrium between a bi-allelic QTL and a bi-
allelic marker, together with the Spiegelhal-
ter and Smith Bayes factor to generate designs
with power to detect effects with a given Bayes
factor. By Rod Ball.

lmm Some improved procedures for linear mixed
models. S original by Joseph L. Schafer, R port
by Jing hua Zhao.

magic A variety of methods for creating magic
squares of any order greater than 2, and vari-
ous magic hypercubes. Includes sundry magic
square amusements and is intended as a rebut-
tal to the often-heard comment “I thought R
was just for statistics”. By Robin K. S. Hankin.

mapproj Converts latitude/longitude into projected
coordinates. By Doug McIlroy. Packaged for R

by Ray Brownrigg and Thomas P Minka.

pan Multiple imputation for multivariate panel or
clustered data. S original by Joseph L. Schafer,
R port by Jing hua Zhao.

pheno Provides some easy-to-use functions for time
series analyses of (plant-) phenological data
sets. These functions mainly deal with the es-
timation of combined phenological time series
and are usually wrappers for functions that
are already implemented in other R packages
adapted to the special structure of phenologi-
cal data and the needs of phenologists. By Jo-
erg Schaber.

phyloarray Software to process data from phyloge-
netic or identification microarrays. At present
state, it is rather limited and focuss was on a
fast and easy way for calculating background
values by interpolation and plotting melting
curves. The functions for reading the data are
similar to those used in package sma (statistical
microarray analysis). By Kurt Sys.

rgdal Provides bindings to Frank Warmerdam’s
Geospatial Data Abstraction Library (GDAL)
(>= 1.1.8) - this version with new-style classes.
The GDAL library is external to the package,
and must be correctly installed first. By Timo-
thy H. Keitt and Roger Bivand.

Other changes

• Package normix was renamed to nor1mix.

Kurt Hornik
Wirtschaftsuniversität Wien, Austria
Kurt.Hornik@R-project.org

Friedrich Leisch
Technische Universität Wien, Austria
Friedrich.Leisch@R-project.org
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R Foundation News
by Bettina Grün

Donations

• Brian Caffo (USA)

• Department of Economics, University of Mi-
lano (Italy)

• Hort Research Institute (New Zealand)

• Biostatistics and Research Decision Sciences,
Merck Research Laboratories (USA)

• Minato Nakazawa (Japan)

• Bill Pikounis (USA)

• James Robison-Cox (USA)

• Boris Vaillant (Germany)

New supporting institutions

• Department of Biostatistics, Johns Hopkins
University, Maryland, USA

• Loyalty Matrix Inc., California, USA

New supporting members

Adelchi Azzalini (Italy)
Paul J. Brewer (Hong Kong)
Olaf Bürger (Germany)
James Curran (New Zealand)
Davide Fiaschi (Italy)
John Field (Australia)
John R. Gleason (USA)
Darlene Goldstein (Switzerland)
Eugène Horber (Switzerland)
Graham Jones (UK)
Christian Keller (Switzerland)
Shigeru Mase (Japan)
Daniel Mathews (USA)
Roger Peng (USA)
Bill Pikounis (USA)
Michael Tiefelsdorf (USA)
Harald Weedon-Fekjær (Norway)
Bernd Weiß (Germany)
Brandon Whitcher (UK)

Bettina Grün
Technische Universität Wien, Austria
Bettina.Gruen@ci.tuwien.ac.at
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