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Abstract 
Constraint networks are known as a useful way to 
formulate problems such as design, scene labeling, 
temporal reasoning, and more recently natural 
language parsing. The problem of the existence of 
solutions in a constraint network is NP-complete. 
Hence, consistency techniques have been widely 
studied to simplify constraint networks before or 
during the search of solutions. Arc-consistency is the 
most used of them. Mohr and Henderson 
[Moh&Hen86] have proposed AC-4, an algorithm 
having an optimal worst-case time complexity. But it 
has two drawbacks: its space complexity and its 
average time complexity. In problems with many 
solutions, where the size of the constraints is large, 
these drawbacks become so important that users 
often replace AC-4 by AC-3 [Mac&Fre85], a non- 
optimal algorithm. In this paper, we propose a new 
algorithm, AC-6, which keeps the optimal worst-case 
time complexity of AC-4 while working out the 
drawback of space complexity. More, the average 
time complexity of AC-6 is optimal for constraint 
networks where nothing is known about the semantic 
of the constraints. At the end of the paper, 
experimental results show how much AC-6 
outperforms AC-3 and AC-4. 

1. Introduction 
There is no need to show the importance of arc- 
consistency in Constraint Networks. Originating 
from Waltz [Waltz72], who developed it for vision 
problems, it has been studied by Mackworth and 
Freuder [Mackworth77], [Mac&Fre85], by Mohr and 
Henderson [Moh&Hen86] who have proposed 
an algorithm having an optimal worst-case time 
complexity: O(ed2 ), where e is the number of 
constraints (or relations) and d the size of the largest 
domain. In [Bessiere91] its use has been extended to 
Dynamic constraint networks. Recently, Van 
Hentenryck, Deville and Teng [Dev&VanH91], 
[VanH&al92], have proposed a generic algorithm 
which can be implemented with all known 
techniques, and have extracted classes of networks 
on which there exist algorithms running arc- 
consistency in O(ed). In 1992, Perlin [Perlin92] has 
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g” ven properties of arc-consistency on factorable 
relations. 

Everybody now looks for arc-consistency 
complexity in particular classes of constraint 
networks because AC-4 [Moh&Hen86] has an 
optimal worst-case complexity and it is supposed 
that we cannot do better. 

But AC-4 drawbacks are its average time 
complexity which is too much near the worst-case 
time complexity and more, its space complexity 
which is O(ed2). In applications with a large number 
of values in variables domains and with weak 
constraints, AC-3 is often used instead of AC-4 
because of its space complexity. Such situations 
appear for example when domains encode discrete 
intervals and constraints are defined as arithmetic 
relations (2, <, f,... ). Constraint Logic Programming 
(CLP) languages [Din&a1881 which are big 
consumers of arc-consistency (arc-consistency has 
some good properties in CLP) are concerned by these 
problems. 

In problems with many solutions, where the 
constraints are weak, AC-4 initialization step is very 
long because it requires to consider the relations in 
their whole to construct its data structure. In those 
cases, AC-3 [Mac&Fre85] runs faster than AC-4 in 
spite of its non-optimal time complexity. 

In this paper we propose a new algorithm, AC-6, 
which while keeping O(ed2) optimal worst-case time 
complexity of AC-4, discards the problem of space 
complexity (AC-6 space complexity is O(ed)) and 
checks just enough data in the constraints to compute 
the arc-consistent domain. AC-4 looks for all the 
reasons for a value to be in the arc-consistent 
domain: it checks, for each value, all the values 
compatible with it (called its supports) to prove this 
value is viable. AC-6 only looks for one reason per 
constraint to prove that a value is viable: it checks, 
for each value, one support per constraint, looking 
for another one only when the current support is 
removed from the domain. 

The rest of the paper is organized as follows. 
Section 2 gives some preliminaries on constraint 
networks and arc-consistency. Section 3 presents the 
algorithm AC-6. In section 4, experimental results 
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show how much AC-6 outperforms the algorithms 
AC-3 and AC-4l. A conclusion is given in section 5. 

A network of binary constraints (CN) is defined as a set 
of n variables {i, j,. . . ], a domain D=]Di, Dj,. . .I where 
Di is the set of possible values for variable i, and a set 
of binary constraints between variables. A binary 
constraint (or relation) Xij between variables i and j is 
a subset of the Cartesian product Di x D j that 
specifies the allowed pairs of values for i and j. 
Following from Montanari [Montanari74], a binary 
relation Xi* between variables i and j is usually 
represente d as a (O,l)-matrix (or a matrix of booleans) 
with I Di I rows and I Dj I CO~UIIUIS by imposing an 
ordering on the domains of the variables. Value true 
at row a, column b, denoted Rii<a, b), means that the 
pair consisting of the ath element of Di and the bth 
element of D * is permitted; value false means the pair 
is not permi c ted. In all the networks of interest here 
Xij(a, b>=Rji(b, a). In some applications (constraint 
logic programming, temporal reasoning,. . .), Rij is 
defined as an arithmetic relation (=, #, <, 2,. . .) 
without giving the matrix of allowed and not 
allowed pairs of values. 

A graph G can be associated to a constraint 
network, where nodes correspond to variables in the 
CN and an edge links nodes i and j every time there 
is a relation Rij on variables i and j in the CN. For the 
purpose of this paper, we consider G as a symetric 
directed graph with arcs (i, j) and (j, i) in place of the 
edge {i, j}. 

A solution of a constraint network is an 
instantiation of the variables such that all the 
constraints are satisfied. 

Definition. Having the constraint Xi*, value b in 
Dj is called a support for value a in d i if the pair 
(a, b) is allowed by Rij (i.e. Rij(a, b) is true). 

A value a for a variable i IS viable if for every 
variable j such that Rij exists, a has a support 
in D*. 

d e domain D of a CN is arc-consistent if for 
every variable i in the CN, all the values in Di 
are viable. 

3. Arc-consistency with u 

3.1. Preamble 
As Mohr and Henderson underlined in [Moh&- 
Hen86], arc-consistency is based on the notion of 
support. As long as a value a for a variable i (denoted 

(i, a)) has supporting values on each of the other 
variables j linked to i in the constraint graph, a is 
considered a viable value for i. But once there exists a 
variable on which no remaining value satisfies the 
relation with (i, a), then a must be eliminated 
from Di. 

The algorithm proposed in [Moh&Hen86] makes 
this support explicit by assigning a counter 
counter[(i, j), a] to each arc-value pair involving the 
arc (i, j) and the value a on the variable i. This 
counter records the number of supports of (i, a) in Dj. 
For each value (j, b), a set S ‘b is constructed, where 
sjb={(i, a)/(j, b) supports (i, a J }. Then, if (j, b) is elimi- 
nated from Dj, counter[(i, j), a] must be decremented 
for each (i, a) III Sjb. 

This data structure is at the origin of AC-4 optimal 
worst-case time complexity. But computing the 
number of supports for each value (i, a) on each 
constraint Rij and recording all the values (i, a) 
supported by each value Jj, b) implies an expensive 
space complexity of O(ed-) (the size of the support 
sets Sjb) and an average time complexity increasing 
with the number of allowed pairs in the relations 
since the number of supports is proportional to the 
number of allowed pairs in the relations. 

The purpose of AC-6 is then to avoid the 
expensive checking of the relations to find all the 
supports for all the values. AC-6 keeps the same 
principle as AC-4, but instead of checking all the 
supports for a value, it only checks one support (the 
first one) for each value (i, a) on each constraint Ri* to 
prove that (i, a) is currently viable. When (j, b is r’ 
found as the smallest support of (i, a) on Rij, (i, a) is 
added to Sjb, the list of values currently having (j, b) 
as smallest support. If (j, b) is removed from Dj then 
AC-6 looks for the next support in Dj for each value 
(i, a) in Sjb. The only requirement in the use of AC-6 
is to have a total ordering in all domains Dj. But this 
is not a restriction since in any implementation, a 
total ordering is imposed on the domains. This 
ordering is independent of any ordering computed 
in a rearrangement strategy for searching solutions. 

3.2. The algorithm 
The algorithm proposed here works with the 
following data structure: 

e A table M of booleans keeps track of which 
values of the initial domain are in the current domain 
or not (M(i, a)=true H aE Di). In this table, each initial 
Di is considered as the integer range I.. 1 Di ] . But it 
can be a set of values of any type with a total 
ordering on these values. We use the following 

IAC-5 [VanH&al92] is not discussed here since it is not an 
improvement but a generic framework in which all previous 
algorithms can be written. 
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constant time functions to handle Di sets that are 
considered as lists: 

-first(Q ) returns the smallest value in Q. 
- last(Q ) returns the largest value in Q. 
- next(u, Di ) returns the value a’ in Di such 

that every value a D larger than a and smaller than a ’ 
is out of Di. 

0 Sjb=I(i, a>/& b) is the smallest value in D j 
supporting (i, a) on Xii) while in AC-4 it was 
containing all the values supported by (j, b). 

0 Counters for each arc-value pair in AC-4 are not 
used in AC-6. 

e A list List contains values deleted from the 
domain but for which the propagation of the deletion 
has not been processed yet. 

In AC-4, when a value (j, b) was deleted, it was 
added to List waiting for the propagation of the 
consequences of its deletion. These consequences 
were to decrement counfer[(i, j), a] for every (i, a) in 
Sjb and to delete (i, a) when counfer[(i, j), a] becomes 
equal to zero. In AC-6, the use of List is not changed 
but the consequence of (j, 6) deletion is now to find 
another support for every (i, a) in S-b. Having an 
ordering on Dj we look after b (the o d support) for I! 
another value c in Dj supporting (i, a) on Xij (we 
know there is no such value before b). When such a 
value c is found, (i, a) is added to Sjc since (j, c) is the 
new smallest support for (i, a) in Dj. If no such value 
exists, (i, a) is removed and put in List. 

AC-6 uses the following procedure to find the 
smallest value in Dj not smaller than b and 
supporting (i, a) on Rij: 

procedure nextsupport(in i, j, a : integer; in out b : integer; 
out emptysupport : boolean); 

begin 
{search of the smallest value as large as b that 
belongs to Dj; this part is not needed in the call of 
the procedure done in the initialization step since b 
already belongs to Dj } 
while not M(j, b) and b c last(Dj ) do b t b + 1 ; 
emptysupport t not M(j, b) ; 

{search of the smallest support for (i, a) in Dj} 
while not R$a, b) and not emptysuppoftdo 

if b c last(Dj) then b t next(b, Dj) 
else emptysupport t true 

end; 

The algorithm AC-6 has the same framework as 
AC-4. In the initialization step, we look for a support 
for every value (i, a) on each constraint Rq to prove 
that (i, a) is viable. If there exists a constraint Rij on 
which (i, a) has no support, it is removed from Di 
and put in List. 

In the propagation step, values (j, b) are taken 
from List to propagate the consequences of their 
deletion: finding another support (j, c) for values (i, a) 

they were supporting (values (i, a) in Sjb). When such 
a value c in Di is not found, (i, a) is removed from Di 
and put in Lid at its turn. 

{initialization} 
for(i, a) E Ddo &t0; M(i, a)+ true; 
for ((1) E arcs(GJ do 

foraE Did0 
begin 
if Dj= 0 
then emptysupport t true 
else b t first(Dj) ; 

nextsupport(i, j, a, b, emptysupport ) ; 
if emptysuppott 
then Di t Di\ {a} ; M(i, a) t false ; 

Append( List, (i, a)) 
else Append(Sjb, (i, a)) 
end 

{propagation} 
while List # 0 do 

begin 
choose (j, b) from List and remove (j, b) from List; 
for (i, a) E sjb do {before its deletion (j, b) was the 

begin smallest support in Djfor (i, a) on Rii} 
remove (i, a) from sjb ; 
if M(i, a) then 

begin 
c t b ; nextsupport(i, j, a, c, emptysupport) ; 
if emptysupport 
then Di t Di\ {a} ; M(i, a) t false ; 

Append( List, (i, a)) 
i:; Append(Sjc, (i, a)) 

end 
end 

3.3. Correctness of AC-6 
Here are the key steps for a complete proof of the 
correcmess of AC-6. In this section we denote maxAC 
the maximal arc-consistent domain which is expected 
to be computed by an arc-consistency algorithm. 

0 In AC-6, value (i, a) is removed from Di only 
when it has no support in Dj on a constraint Ri*. If all 
previously removed values are out of maxA 6 then 
(i, a) is out of maxAC. maxAC was trivially included 
in D when AC-6 started. Then, by induction, (i, a) is 
out of maxAC. Thus, maxAC CD is an invariant 
property of AC-6. 

* Every time a value 0, b) is removed, it is put in 
List until the values it was supporting are checked 
for new supports. Every time a value (i, a) is found 
without support on a constraint, it is removed from 
D. Thus, every value (i, a) in D has at least one 
support in DuLisf on each constraint Rij. AC-6 
terminates with List empty. Hence, after AC-6, every 
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orresponding to a house position (e.g. assigning the 
value 2 to the variable horse means that the horse 
owner lives in the second house) [Dechter88]. 
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