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Abstract

In this paper, we introduce two advancements in the automatic keyphrase extraction (AKE) space
- KeyGames and pke+. KeyGames is an unsupervised AKE framework that employs the concept
of evolutionary game theory and consistent labelling problem to ensure consistent classification
of candidates into keyphrase and non-keyphrase. Pke+ is a python based pipeline built on top
of the existing pke library to standardize various AKE steps, namely candidate extraction and
evaluation, to ensure truly systematic and comparable performance analysis of AKE models.
In the experiments section, we compare the performance of KeyGames across three publicly
available datasets (Inspec 2001, SemEval 2010, DUC 2001) against the results quoted by the
existing state-of-the-art models as well as their performance when reproduced using pke+. The
results show that KeyGames outperforms most of the state-of-the-art systems while generalizing
better on input documents with different domains and length. Further, pke+’s pre-processing
brings out improvement in several other system’s quoted performance as well.

1 Introduction

Automatic Keyphrase Extraction (AKE) is a task of identifying important words and phrases that best
describe a given text document. AKE makes searching and indexing large digital collections of text
feasible and finds use in a variety of Natural Language Processing (NLP) and Information Retrieval (IR)
tasks ((Zhang et al., 2004), (Hulth and Megyesi, 2006), (Berend, 2011)). Owing to its widespread use,
Keyphrase Extraction has emerged as a fundamental NLP task, improvements in which could lead to
improvements in higher-level applications that build upon it (Danesh et al., 2015). Due to this importance,
many approaches to keyphrase extraction have been proposed in the literature, majorly along two research
lines: supervised and unsupervised (Hasan and Ng, 2014). However, the field faces two specific problems.
Firstly, with state-of-the-art performance on keyphrase extraction being much lower than on the many
core NLP tasks, there is still a fair amount of improvement possible in this space (Papagiannopoulou and
Tsoumakas, 2020). Secondly, there is no effective way to compare and analyze various past AKE systems
since most of them use different experimental setups. Different works have used different pre-processing
and evaluation to demonstrate their performance. These discrepancies in the past studies make assessing
the progress of the AKE space very challenging.

To deal with the first issue, we recognised the need to approach this challenging problem from a fresh
perspective. We thus propose a game-theoretic framework for AKE - KeyGames. Players, strategies, and
payoffs form an integral part of any game. In KeyGames, the candidate keyphrases act as players having
two strategies each: being a keyphrase and being a non-keyphrase. Each phrase plays a game with all the
other phrases before deciding upon its strategy. Next, the definition of keyphrases is paraphrased, such that
it paves the way for us to develop heuristics which are then formulated into mathematical payoffs. As per
our definition, a candidate keyphrase becomes a keyphrase if it satisfies the following two conditions: (a)
it should be related to the main themes of the document (b) it should be related to other important phrases
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in the document. To capture (a) in our payoffs, we use semantic relatedness between the phrases and the
theme of the document (we call this confidence - higher this metric, more confident the candidate is of
becoming a keyphrase). Later, we also bias a candidate’s confidence based on its positional information
and frequency of occurrence. To capture (b), we use semantic relatedness between the different phrases.
The construction of these payoffs is discussed in detail in section 5.4. Once we have the payoffs in place,
we apply evolutionary game algorithm to score and rank keyphrases.

Inspired by Tripodi and Pelillo (2017), our reasons for exploring Game theory were two fold; firstly,
game theory and NLP have a intuitionistic parallel wherein both have entities interacting with each other
thereby influencing each other’s behaviour. Second and more important was the ability of game-theoretic
frameworks to perform consistent labelling of entities under contextual constraints. We discuss this
property in detail in section 3 and further demonstrate consistent labelling in action when we incorpo-
rate a preliminary constraint in KeyGames’s payoffs to tackle overgeneration1 in extracted keyphrases
(KeyGames+, section 5.4). Through this effort, we reduce the overgeneration error by ˜10% points across
datasets.

To deal with the second issue, we built pke+2 as an extension to pke library 3 (Boudin, 2016), Pke is a
python based tool kit containing implementation of various existing state-of-the-art AKE systems. Under
pke+, we have provided a pipeline with standardized modules for candidate extraction and evaluation.
All of pke’s implemented systems can be plugged-in to this pipeline to extract keyphrases under similar
experimental setup, allowing for a fair comparision (we have implemented KeyGames simply as another
system under pke’s setting).

To the best of our knowledge, using a game-theoretic approach for AKE has not been proposed before
and our work is first such attempt. In fact, the application of game theory to NLP is still in its infancy. We
believe that our work would spur additional research in this regard.

2 Game Theory

Game Theory is a branch of applied mathematics that provides predictive power in interactive decision-
making situations (Tripodi and Pelillo, 2017). A typical game consists of a finite set of players, P =
(P1, P2, .., Pn), a set of pure strategies for each player i, �i = (�1, ...,�n) and a utility or payoff function
Ui : �1 ⇥ ..�n ! R which associates a combination of strategies played by various players to the payoffs
they receive. Each player aims to settle on a strategy which maximizes its payoff. The concept of payoff,
in general, refers to the satisfaction that a player derives from the outcome of a game while interacting
with other players. Furthermore, in a two player game, payoffs of a player i when it plays the game with
player j can be represented in the payoff matrix Aij , wherein values in each cell of the matrix indicates
the payoff player i gets when opting the strategy corresponding to the row represented by that cell, in the
event when the jth player chooses the strategy corresponding to the column represented by that cell. Nash
equilibria are those strategy profiles which are best response to the strategy of the co-player and no player
has the incentive to unilaterally deviate from his strategy, because there is no way to do better.

In Evolutionary Game Theory (EGT), instead of choosing a strategy with certainty as in classical game
theory, players choose strategies with certain probability. We thus use the concept of mixed strategy
space for each player in EGT. Mixed strategy space is defined as a probability distribution over the pure
strategies a player is allowed to play. It is represented as a vector xi = (x1i , ..., x

m
i ) where m is the

number of pure strategies and each component xhi denotes the probability that player i chooses its hth

pure strategy. Note that:

mX

h=1

xhi = 1 (1)

1Overgeneration errors occur when a system correctly predicts a candidate as a keyphrase because it contains a word that
appears frequently in the associated document, but at the same time erroneously outputs other candidates as keyphrases because
they contain the same word

2https://github.com/mangalm96/KeyGames-pke
3https://github.com/boudinfl/pke
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An important aspect we observe within the framework of EGT is the inductive learning process wherein
the players play the game repeatedly till equilibrium is achieved and keep on updating their beliefs on the
state of the game and choose their strategy accordingly (Tripodi and Pelillo, 2017). The steps below are
followed to model this learning process:

Step 1: The expected payoff of every pure strategy each player i can obtain (u1i ) in a single
two player game is obtained using the equation:

u1i = Aijxj (2)

Step 2: The expected payoff obtained by each player i in a single game (u2i ) is calculated using:

u2i = xTi Aijxj = xTi u
1
i (3)

Step 3: Discrete time version of the replicator dynamic equation (Erdem and Pelillo, 2012) is used to
update the mixed strategy space of a player i after the end of each iteration as follows:

xhi (t+ 1) = xhi (t) ⇤ u1i /u2i (4)

where t denotes each tth iteration of a set of two player games.

3 Motivation

An important factor that motivated us to pursue game theoretic models was their ability to solve Consistent
Labelling Problem wherein labelling of objects is done while satisfying certain constraints as per the
context of the problem (Haralick and Shapiro, 1979). We observed that AKE can be modeled as a
Consistent Labelling Problem as well wherein a candidate keyphrase is to be labelled either a keyphrase
or a non-keyphrase abiding to certain constraints majorly based on the definition of a keyphrase. This
distinguishes our approach from the existing AKE algorithms. A game-theoretic algorithm allows us
not only to exploit the contextual information from an input document like various previous works do
but also lets us design constraints and heuristics and ensures that classification of candidates into keys
and non-keys remains consistent with these heuristics. In fact, it has been shown that, in some cases,
using only contextual information without the imposition of constraints can lead to inconsistencies in the
assignment of labels to related linguistic entities (Tripodi and Pelillo, 2017). A clear example of such
a case is seen while extracting keyphrases from short texts where we have fewer candidates than the
number of keyphrases to be extracted. Any other scoring algorithm would classify all the candidates as
keys. KeyGames, however, will classify only those candidates into keys that remain consistent with the
definition of a keyphrase and will classify the rest as non-keys.

A Consistent Labelling Problem can be defined as tuple hX,L,Ci where X = {X1, X2...Xn} is a set
of n objects, L = {l1, l2. . . lm} is a set of m labels and C is a real-valued, n2 ⇤m2 matrix of compatibility
coefficients also called compatibility model, C = {Cij(�, µ) | �, µ 2 L}. Cij(�, µ) is the measure of
strength of compatibility of two hypothesis “Xi is labeled �” and “Xj is labeled µ”. C is used to impose
constraints on labelling so that each label assignment is consistent. The problem is to find a label for each
object such that the resulting set of object-label pairs is consistent with the constraints of the compatibility
model (Haralick and Shapiro, 1979). A. Miller and Zucker (1991) observed that a consistent labelling
problem is equivalent to a polymatrix game. They demonstrated that the objects are equivalent to players
in game theory, the labels are strategies each player can opt for, the compatibility model is the payoff
matrix designed for the game and a consistent labelling solution is the Nash Equilibrium. In our model,
the candidate keyphrases serve as the objects (players), “keyphrase” and “non-keyphrase” serve as the
only two labels (strategies) and finally, the mathematical signals formulated using definition of keyphrases
serve as the compatibility model (payoff matrix). These signals simply imply that two candidates, one
of which adheres to the definition of a keyphrase and another one which doesn’t, cannot be assigned the
same labels. Clearly, the first one is to be labelled a keyphrase while the second one is to be labelled a
non-keyphrase.
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4 Related work

Existing studies present keyphrase extraction in two steps. Firstly, a list of candidate keyphrases is
generated using heuristic rules such as extracting important noun phrases or extracting phrases that match
specific POS (part-of-speech) tags (Bougouin et al., 2013; Mahata et al., 2018). In the next step, ranking
mechanisms are often used to select the keyphrases from among the candidates. Both supervised and
unsupervised methods are used here. Detailed surveys on these are available (Hasan and Ng, 2014;
Papagiannopoulou and Tsoumakas, 2020). Here, we focus on unsupervised approaches due to their many
benefits (no training data, domain independence). In unsupervised approaches, many techniques have
been explored including, graph-based ranking, clustering and statistical methods. Many statistical based
approaches like TFIDF, KPMiner(El-Beltagy and Rafea, 2009) have been proposed. YAKE (Campos et
al., 2020) recently used a combination of statistical metrics to capture context information and the spread
of the terms in the document.

In graph-based approaches, a document is represented as a graph and word-word interactions are
scored using graph centrality measures such as PageRank (Brin and Page, 1998) and its variants. First
introduced as TextRank (Mihalcea and Tarau, 2004), words are here represented by nodes and two words
are connected by an edge if they co-occur in given window size. Nodes are then ranked using PageRank.
Wan and Xiao (2008) extended TextRank to SingleRank by incorporating weights to edges, using number
of co-occurences between words as weights. Another graph based model, PositionRank (Florescu and
Caragea, 2017) demonstrated the importance of capturing the positions and frequency of a word in a
biased PageRank algorithm, preferring words that appeared earlier and more frequently in the text. There
have also been attempts at extracting keyphrases that cover all the main topics of the document. This has
been done either by using a clustering based approach (Liu et al., 2009) to cluster words into specific topics
or by using Latent Dirichlet Allocation(LDA) model (Blei et al., 2003) to obtain the topic distribution
(Liu et al., 2010; Sterckx et al., 2015). The LDA based methods require training data, making the systems
corpus dependent. Clustering based approaches were first used in a graph by Bougouin et al. (2013). In
their proposed system, TopicRank, candidates are clustered depending on the percentage of shared words
using hierarchical clustering. A graph is constructed where each node represents a cluster and edges are
weighted based on the phrases’ offset position in the text. This work was extended to MultiPartiteRank
(Boudin, 2018) by encoding topical and positional information within a multipartite graph structure.

With recent advances in deep learning, word embeddings are increasingly being used to study word
associations in NLP. Wang et al. (2015) first proposed usage of word embedding vectors for keyphrase
extraction when they used the semantic information supplied by pretrained word embeddings to formulate
a weighted scheme which is then used on a weighted Page Rank algorithm. Later using a similar approach,
Mahata et al. (2018) proposed a corpus dependent method making use of their domain specific trained
fasttext embeddings(Bojanowski et al., 2017) for extracting keyphrases from scientific articles. Recently
in a departure from graph-based approaches, Bennani-Smires et al. (2018) proposed EmbedRank where
they use sentence embeddings (Sent2vec) to represent both the candidate phrases and the document in the
same high-dimensional vector space. Their system then ranks the candidate phrases using cosine similarity
(semantic relatedness) between the embedding of the candidate phrase and the document embedding.

KeyGames combines many of the approaches discussed above. Here we develop payoffs by capturing
word-word and topic-word interactions using fasttext embeddings and later bias these interactions using
frequency and positional information of a candidate.

5 Proposed Methodology

5.1 Candidate Extraction

In this work, we use Spacy’s4 noun phrases chunking parser to extract the noun phrases from the input
document. Various pre-processing steps (comprising of noun chunk cleaning) are then employed on these
chunks to get a list of n-grams (including unigrams). Finally, Spacy’s POS tagger is used to remove
those singular tokens, which are not Proper Noun or unknown entities (X). Figure 1 illustrates this entire

4https://spacy.io
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Figure 1: Candidate Extraction Methodology

candidate extraction methodology in detail with an example. This methodology forms a part of the
candidate extraction module of the pke+ pipeline.

5.2 Semantic Relatedness using Embeddings

As mentioned in Section 1, we use semantic relatedness in our payoffs. To capture this relatedness, we
use the concept of word embeddings. In particular, we use the pre-trained fastText embeddings to get a
vector representation of our candidate keyphrases. Semantic relatedness between the candidates is then
calculated using the cosine similarity between the phrase vectors. The chosen pre-trained embeddings5

contain 1 million word vectors trained with subword information on Wikipedia 2017, UMBC web corpus,
and statmt.org news dataset. The semantic relatedness between two phrases Pi and Pj is represented as
Sij . We choose fastText for its ability to capture both semantic and morphological similarities between
words and also the similarity for Out of Vocabulary (OOV) words (Bojanowski et al., 2017).

5.3 Confidence Score

As per our definition, a keyphrase that is more related to the theme of the document is more confident
to become a keyphrase. For this preliminary work, we assume that major themes of a document can be
inferred from the document title. Thus we simply extract noun phrases from the input document’s title
(T = {t1, t2. . . tm}), each of which acts as a thematic phrase for our algorithm. The thematic confidence
score of the candidates is then calculated using the following equation:

Cti = Si1 + Si2. . . .+ Sim =
mX

k=1

Sik (5)

where each (Si1, Si2, ...Sim) is the semantic relatedness between each keyphrase Pi and all the thematic
phrases {t1, t2. . . tm}. These individual scores (Cti) are then normalised after division with the highest
confidence value (Ctmax).
Taking inspiration from previous works (Florescu and Caragea, 2017), we bias the confidence score by
assigning more weight to candidate phrases that are found early in a document and are frequent. We
weigh each phrase with its inverse position in the candidate list. The frequency of a phrase is taken into
account by summing over all its position weights. For eg. for a phrase in the 2nd, 6th and 10th position,
the positional confidence is 1/2 + 1/5 + 1/10 = 0.8. The normalised positional confidence Cpi, then
added to our thematic confidence Cti gives us the final confidence score Ci for a candidate phrase Pi.

5.4 Evolutionary Game Algorithm

The candidate keyphrases participate as players (Pi 2 P) in our games, having two strategies each - to be
a keyphrase (K) or to be a non-keyphrase (NK). Initially, all the players would have equal probabilities
(0.5 each) of being a keyphrase or non-keyphrase and hence the initial mixed strategy space(xi) for each

5https://fasttext.cc/docs/en/english-vectors.html
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player Pi, would be

xi = [0.5, 0.5]T (6)

As the games proceed, the probabilities in the mixed strategy space adjust appropriately following the
inductive learning process after the replicator equation (Equation 4) is applied at the end of each iteration.
Also, the two probabilities in the mixed strategy space of every player will always add to 1 (Equation 1).
Whenever for any candidate keyphrase Pi, the probability of being a keyphrase is greater than 0.5, we
say that the Phrase Pi is tending to be a keyphrase (K). Conversely, whenever the probability is lower
than 0.5 (and hence the probability of being a non-keyphrase is higher than 0.5), we say that the Phrase
Pi is tending to be a non-keyphrase (NK). Next, we describe the formulation of payoffs that players will
receive while deciding upon their strategy (key vs. non key). Note that they will ultimately settle for a
strategy for which their average payoff is maximum.

Payoffs 1.0: To construct the payoffs, we first need to understand how the candidates would select their
strategies as they interact with one another. Phrase Pi while playing the game with Phrase Pj takes a
decision based on the following logics:

1. If Pj is tending to be a keyphrase and also possesses a very high confidence value (Cj), Pi presumes
that Pj has a very strong chance to become a keyphrase. Thus, Pi selects its strategy based on its
semantic relatedness with Pj . If Pi and Pj have high semantic relatedness (S), then Pi chooses to be
a keyphrase (K) as it believes it will have high contextual coherence with the input document just
like the semantically similar and confident Phrase Pj . Otherwise, it tends to be a non-keyphrase.

2. If Pj is tending to be a non-keyphrase and has a very low confidence value (Cj), Pi presumes that Pj

will surely become a non-keyphrase and again selects its strategy based on its semantic relatedness
with Pj . In this case, if Pi and Pj have high semantic relatedness (S) then Pi chooses to be a
non-keyphrase as it gets reasons to believe that it will not be contextually coherent with the document
just like the semantically similar and non-confident Phrase Pj . Otherwise, it tends to be a keyphrase.

3. If Pj is tending to be a keyphrase and has a very low confidence value (Cj) or if Pj is tending to
be a non-keyphrase with a very high confidence value (Cj), Pi realizes that Pj is not sure about its
decision and hence bases its strategy on its own confidence value. If Pi has high confidence (Ci),
then it chooses to be a keyphrase as high confidence indicates that the Phrase Pi is contextually
coherent with the document and hence is capable of explaining the main topics of the document.

Payoffs 2.0: In a bid to bias our AKE system against producing over-generated keyphrases, we introduce
a factor of fuzzy string match, “F” (based on the Levenshtein distance) on top of Payoff 1.0 built in the
last discussion. The core idea is that if two candidates have similar spelling or similar set of tokens, then
the system should deter from labelling both of them as keyphrases together. (only the candidate which
performs well on other heuristics now stands a chance to become a keyphrase). We use fuzz.token set
ratio() function from fuzzywuzzy6, a python based library to calculate this factor F. A few examples of
this function in action-
F (lossy transmission, transmission) = 100
F (pade approx, rational approx) = 84
F (numerical methods,transmission lines) = 34
To bring out this impact of fuzzy match, we tweak the first condition discussed under payoff 1.0 as follows
while keeping the other two conditions unchanged:

1. If Pj is tending to be a keyphrase and also possesses a very high confidence value (Cj), Pi presumes
that Pj has a very strong chance to become a keyphrase. Thus, Pi selects its strategy based on its
semantic relatedness and its fuzzy similarity with Pj . If Pi and Pj have high semantic relatedness
(S) and low fuzzy similarity (F ), then Pi chooses to be a keyphrase as it believes it will have high

61. https://github.com/seatgeek/fuzzywuzzy
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Phrase Pj

Strategies KEY NON KEY

KEY Payoff ↵1 Payoff ↵2

• Pj has high confidence and Pi is contextually similar to Pj(Cj * S) • Pj has high confidence and Pi has high confidence (Cj * Ci)
• Pj has low confidence and Pi has high confidence (Cj* Ci) • Pj has low confidence and Pi is dissimilar to Pj (Cj* S)

P
h

r
a

s
e
P
i

NON KEY Payoff ↵3 Payoff ↵4

• Pj has high confidence and Pi is dissimilar to Pj (Cj*S) • Pj has high confidence and Pi has low confidence (Cj * Ci)
• Pj has low confidence and Pi has low confidence (Cj* Ci) • Pj has low confidence and Pi is similar to Pj (Cj* S)

Table 1: Strategies of Phrase Pi summarised depending upon strategies of Phrase Pj .
Phrase Pj

Strategies Key Non Key
Key CjS +CjCi CjCi+Cj S

P
h

r
a
s
e
P

i

Non Key CjS+ Cj Ci CjCi +CjS

Table 2: Payoff 1.0 Matrix. C and S denote the
Confidence and Similarity indicators respec-
tively.

Phrase Pj

Strategies Key Non Key
Key CjSF +CjCi CjCi+Cj S

P
h

r
a
s
e
P

i

Non Key CjS+ Cj Ci + CjSF CjCi +CjS

Table 3: Payoff 2.0 Matrix. C,S and F denote the
Confidence, Similarity and Fuzzy Match indica-
tors respectively.

contextual coherence with the input document just like the semantically similar and confident Phrase
Pj while the low Fij ensures that it will not be causing over-generation. Otherwise, it tends to be a
non-keyphrase.

As in any two-by-two game with players having two strategies each, four scenarios are possible when
two phrases are involved in our games: (I) both phrases opt for becoming keyphrase (II) both phrases
opt for becoming non-keyphrase (III) phrase one opts to become a keyphrase while phrase two doesn’t
(IV) phrase two opts to become a keyphrase while phrase one does not. For each of these four scenarios,
we develop four mathematical signals (↵1, ↵2, ↵3, ↵4) which ultimately become our payoffs. These
four signals employ the use of indicators S, S, Ci, Cj , Ci, Cj , F , F to model the three decision logics
discussed above. We further demonstrate the formulation of Payoffs 1.0 in Table 1.The Payoff 1.0 matrix
and Payoff 2.0 matrix are shown in Table 2 and Table 3 respectively.

Lastly, we implement evolutionary game algorithm (Algorithm 1) to score and rank keyphrases.
KeyGames (KG) use Payoffs 1.0 and KeyGames+ (KG+) use Payoffs 2.0. Note that with regards to
Algorithm 1, equilibrium is the state when the probability of becoming a keyphrase for all candidates
remains constant across two consecutive iterations. We simulate this by letting the algorithm run for a
large enough number of iterations(i.e. 50).

Algorithm 1 KeyGames Algorithm
Input: Candidates list ck; Confidence score C; Semantic Relatednes S
1: Init Mixed Strategy Space, x = [ ]
2: Init Weight of a candidate i, W (i) = 0
3: for each phrase i in ck do

4: x(i) = [ P(K)=0.5, P(NK)=0.5 ]T

5: while (equilibrium not achieved) do

6: for each phrase i in ck do

7: u1 = [0, 0]T

8: u2 = 0
9: for each phrase j in ck do

10: payoffMatrix[0, 0] = CjS +CjCi

11: payoffMatrix[0, 1] = CjCi + Cj S
12: payoffMatrix[1, 0] = CjS+ Cj Ci

13: payoffMatrix[1, 1] = CjCi + CjS
14: temp = payoffMatrix ⇤x(j)
15: u2 + = x(i)T ⇤ temp
16: u1 + = temp
17: x(t+1)(i) = xt(i) ⇤ u1/u2

18: ck[i].W (i)+ = x(t+1)(i)[0]

19: sort(ck) by descending W and extract topn keys
Output: List of Topn keyphrases



2044

Figure 2: Using KG, ‘lossy nonuniform transmission lines’, ‘rational approximation’ and ‘frequency
domain’, all end up in the extracted keyphrase list at the equilibrium position, but ‘rational approximation’
and ‘frequency domain’ don’t make it to the top 10 keyphrase list as they achieve equilibrium at a very slow
rate. Under KG+, however, overgenerated phrases like ‘pade approximation’ and ‘rational approximation’
both move towards becoming non-key at a faster pace then their KG counterparts. Also note that KG+,
while punishing over-generated candidates, rewards non-overgenerated phrases like ‘frequency domain’
and it ends up as top 10 keyphrase (partially matching with a ground truth keyphrase) thereby increasing
diversity in the KG+ extracted keyphrase list.

Title: Accurate modeling of lossy nonuniform transmission lines by using differential quadrature methods.
Input Text: This paper discusses an efficient numerical approximation technique, called the differential quadrature method

(DQM), which has been adapted to model lossy uniform and nonuniform transmission lines... Using the DQM, the frequency-domain
Telegrapher’s partial differential equations for transmission lines... DQM reduces interconnects into multiport models whose port
voltages and currents are related by rational formulas in the frequency domain. The rationalization process in DQM is comparable
with the Pade approximation of asymptotic waveform evaluation (AWE) applied to transmission lines. AWE employs a complex
moment-matching process to obtain rational approximation... Due to global sampling of points in the DQM approximation, it
requires far fewer grid points in order to build accurate discrete models than other numerical methods do. The DQM-based
time-domain model can be readily integrated in a circuit simulator like SPICE.
Assigned Keyphrases: lossy nonuniform transmission lines, differential quadrature method, numerical approximation tech-
nique, frequency-domain Telegrapher PDE, partial differential equations, multiport models, multiconductor transmission lines,
rationalization process
KeyGames Keyphrases: lossy nonuniform transmission lines, differential quadrature methods, numerical approximation technique,
transmission lines, multiport models, accurate discrete models, numerical methods, rational formulas
KeyGames+ Keyphrases: lossy nonuniform transmission lines, differential quadrature methods, numerical, approximation tech-
nique, multiport models, global sampling, small set, frequency domain, accurate discrete models

Table 4: An example of keyphrases extracted using KG and KG+ from a sample Inspec article (397.txt)

5.5 Keyphrase Ranking:

Keyphrases are ranked in the order in which they achieve equilibrium. We measure this rate for a candidate
by summing over its probability of becoming a keyphrase at the end of each iteration (Algorithm 1: Line
18). The earlier a candidate becomes a keyphrase, the faster its probability of becoming a keyphrase
(P(K)) reaches one. Hence, its summation of P(K) across all iterations would be higher. Table 4 shows
ranked keyphrases extracted from a sample Inspec article. Figure 2 illustrates the dynamics of a typical
KeyGame for selected phrases of the sample.

6 Experimentation and Results

6.1 Datasets and Evaluation Metrics

To evaluate the performance of KeyGames, we carry out experiments on three publicly available English
datasets. The first dataset, Inspec (Hulth, 2003), consists of short documents from scientific journal
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Inspec SemEval DUC

Method P R F1 F1
o P R F1 F1

o P R F1 F1
o

SingleRank 40.31 36.41 38.26 29.69* 6.8 4.71 5.57 1.99* 22.48 27.47 24.73 27.2
TopicRank 41.02 34.69 37.59 27.9 16.1 11.16 13.18 12.1 19.31 23.6 21.24 21.39*

PositionRank 40.56 36.61 38.48 27.49* 10.6 7.35 8.68 7.85* 23.33 28.52 25.67 27.01*

MultipartiteRank 41.15 37.2 39.07 30.6 18.2 12.61 14.9 14.5 22.21 27.19 24.45 23.41*

EmbedRank 41.44 37.43 39.33 35.8* 6.2 4.29 5.08 3.58* 22.71 27.71 24.96 29.4*

YAKE 36.7 32.8 34.63 31.6 0.6 0.4 0.5 12.25* 3.95 4.84 4.35 14.18*

KeyGames(KG) 43.38 38.79 40.48
† - 17.57 12.13 14.35 - 25.71 31.43 28.28

† -
KeyGames+(KG+) 43.15 38.73 40.87 - 17.17 11.85 14.02 - 23.89 29.21 26.28 -

Table 5: Comparison of KG and KG+ with some unsupervised systems. Precision (P), Recall (R), and
F-score (F1) for Top 10 Keyphrases (using pke+) are reported. † indicates significance at the 0.01 level
using Student’s t-test over the next best system. For a fair comparison, the original reported F-scores (F1

o)
of the existing systems are provided. Missing results are accounted for by reimplementation using pke
(indicated by *)

abstracts. Like previous works (Mihalcea and Tarau, 2004; Bougouin et al., 2013), we use the test set of
500 documents and the uncontrolled set of annotated keyphrases as ground truth for our analysis. The
second dataset, SemEval 2010 (Kim et al., 2010) contains ACM full length papers. In our experiments, we
use the 100 documents from the test set and the combined set of annotated keyphrases. The third dataset,
DUC 2001 (Wan and Xiao, 2008), is a collection of 308 medium length news articles. Similar to candidate
extraction, we use common evaluation to transparently compare our approach with other systems. We
compute exact matched true positives between the assigned and extracted keys (both stemmed) and
evaluate performances in terms of the micro-averaged Precision, Recall, and F1 measure for top 10
keyphrases.

6.2 Performance Comparision

In Table 5, we compare KG (with Payoffs 1.0) and KG+ (with Payoffs 2.0) to existing unsupervised state-
of-the-art systems - SingleRank (Wan and Xiao, 2008), TopicRank (Bougouin et al., 2013), PositionRank
(Florescu and Caragea, 2017), MultipartiteRank (Boudin, 2018), EmbedRank7 (Bennani-Smires et al.,
2018) and YAKE8 (Campos et al., 2020). Direct comparisons are done on the scores (P ,R,F1) obtained
using the pke+ implementation. We also mention the original scores(F1

o) as reported in the respective
papers to compare it with our pke+ implementations.

We observe that KeyGames consistently outperforms most of the existing systems across the three
datasets, each with different document length, covering two different domains. Moreover, the pke+
pipeline (more specifically, the pre-processing) helps most systems improve/retain performances as
originally quoted. This further indicates the effectiveness of the new candidate extraction. Among existing
systems, EmbedRank performs admirably on short texts (Inspec/DUC) but fails to replicate it on long texts
(as also reported by the authors themselves). Only MPRank gives consistent results across the datasets but
does not match the effectiveness of KeyGames, especially on Inspec and DUC, where the improvements
are statistically significant while the difference on SemEval is statistically insignificant. The performance
on longer texts like SemEval has historically been lower, often attributed to the hypothesis that it is more
difficult to extract keyphrases correctly from longer documents because of a much bigger search space
(Hasan and Ng, 2014).

Dataset Inspec SemEval DUC
Assigned Keys 29.59% 46.99% 22.71%

KG 35.49% 63.4% 30.68%
KG+ 26.12% 53.5% 20.92%

Table 6: Over-generation in Assigned keys
& Extracted Keys of KG and KG+

Compared to KG, the KG+ system, which incorporates
the over-generation constraint, shows a dip in performance
even though it results in keys with less overgeneration
(Table 6) (and hence more diversity). We calculate this
over-generation percentage as the the sum of the number
of phrases having more than 75% fuzzy match with any
other keyphrase in the extracted/assigned keyphrase list as

7EmbedRank’s reported scores are macro-averaged. Hence, we mention their reimplemented scores
8YAKE’s original reported score are based on the entire SemEval dataset (and not just the test set)
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a share of the total number of keyphrases extracted/assigned across the entire dataset -

og% = 100

P
i2N count(overgenerated keys)P

i2N count(total keys)
(7)

where overgenerated keys are keyphrases with more than 75% fuzzy match(F) score with any other
key in the assigned/extracted keyphrase list of doc i, total keys are the total number of assigned/extracted
keyphrases of doc i and N is the number of documents in a dataset.

Bennani-Smires et al. (2018) also observed such a dip in results on these diverse and less overlapping
keys in their experiments. It can perhaps be explained by high over-generation present in the assigned
keys themselves (Table 6). In Table 5 we highlight the results of the KG system and not KG+ because of
its more consistent performance across datasets.

7 Conclusion and Future Work

In this paper, we discussed our work on a novel, unsupervised game-theoretic approach to automatic
keyphrase extraction after modeling the task as a consistent labelling problem. We paraphrased the
definition of a keyphrase, conceptualized logics to model the same, and ultimately designed keyphrase
games by quantifying these logics into mathematical payoffs. For carrying out experiments, we used pke
to construct a new pipeline pke+, standardizing candidate extraction, and evaluation steps across different
systems. Our proposed method consistently outperforms most of the existing systems on three datasets
with different domains and lengths, indicating the potential of game theory as an alternative. In the future,
we plan on working with Infection and Immunization Dynamics (InImDyn) (Rota Bulò et al., 2011),
which approximately simulates replicator dynamics in linear time, thereby reducing time-complexity of
KeyGames. We plan to experiment with different heuristics in our payoffs as well. We would also like to
explore other methods like document embedding to extract the theme of the document.
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