
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021), pages 17–23
Bangkok, Thailand (online), August 5–6, 2021. ©2021 Association for Computational Linguistics

17

OCHADAI-KYOTO at SemEval-2021 Task 1: Enhancing Model
Generalization and Robustness for Lexical Complexity Prediction

Yuki Taya1, Lis Kanashiro Pereira1, Fei Cheng2, and Ichiro Kobayashi1

1Ochanomizu University, Japan
2Kyoto University, Japan

g1620525@is.ocha.ac.jp, kanashiro.pereira@ocha.ac.jp,
feicheng@i.kyoto-u.ac.jp, koba@is.ocha.ac.jp

Abstract
We propose an ensemble model for predicting
the lexical complexity of words and multiword
expressions (MWEs). The model receives as
input a sentence with a target word or MWE
and outputs its complexity score. Given that
a key challenge with this task is the limited
size of annotated data, our model relies on
pretrained contextual representations from dif-
ferent state-of-the-art transformer-based lan-
guage models (i.e., BERT and RoBERTa), and
on a variety of training methods for further en-
hancing model generalization and robustness:
multi-step fine-tuning and multi-task learning,
and adversarial training. Additionally, we pro-
pose to enrich contextual representations by
adding hand-crafted features during training.
Our model achieved competitive results and
ranked among the top-10 systems in both sub-
tasks.

1 Introduction

Predicting the difficulty of a word in a given con-
text is useful in many natural language processing
(NLP) applications such as lexical simplification.
Previous efforts (Paetzold and Specia, 2016; Yi-
mam et al., 2018; Zampieri et al., 2017) have fo-
cused on framing this as a binary classification task,
which might not be ideal, since a word close to the
decision boundary is assumed to be just as complex
as one further away (Shardlow et al., 2020). To al-
leviate this issue, SemEval-2021 Task 1 (Shardlow
et al., 2021a) formulates this task as a regression
task, where a model should predict the complexity
value of words (Subtask 1) and MWEs (Subtask 2)
in context.

This paper describes the system developed by
the Ochadai-Kyoto team for SemEval-2021 Task
1. Given that a key challenge in this task is the
limited size of annotated data, we follow best prac-
tices from recent work on enhancing model gen-
eralization and robustness, and propose a model

Task Domain Train Trial Test

Subtask 1
(single-word)

Europarl 2512 143 345
Biomed 2576 135 289
Bible 2574 143 283
All 7662 421 917

Subtask 2
(MWE)

Europarl 498 37 65
Biomed 514 33 53
Bible 505 29 66
All 1517 99 184

Table 1: Summary of the Complex dataset.

ensemble that leverages pretrained representations
(i.e. BERT and RoBERTa), multi-step fine-tuning,
multi-task learning and adversarial training. Ad-
ditionally, we propose to enrich contextual repre-
sentations by incorporating hand-crafted features
during training. Our model ranked 7th out of 54
participating teams on Subtask 1, and 8th out of 37
teams on Subtask 2, obtaining Pearson correlation
scores of 0.7772 and 0.8438, respectively.

2 Task Description

SemEval-2021 Task 1 provides participants with
an augmented version of the CompLex dataset
(Shardlow et al., 2020), a multi-domain En-
glish dataset with sentences containing words and
MWEs annotated on a continuum scale of com-
plexity, in the range of [0,1]. Easier words and
MWEs are assigned lower complexity scores, while
the more challenging ones are assigned higher
scores. This corpus contains a balanced number
of sentences from three different domains: Bible
(Christodouloupoulos and Steedman, 2015), Eu-
roparl (Koehn, 2005) and Biomedical (Bada et al.,
2012). The task is to predict the complexity value
of single words (Subtask 1) and MWEs (Subtask
2) in context. The statistics of the corpus are pre-
sented in Table 1. Our team participated in both
subtasks, and the next section outlines the overview
of our model.
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3 System Overview

We focus on exploring different training techniques
using BERT and RoBERTa, given their superior
performance on a wide range of NLP tasks. Each
text encoder and training method used in our model
are detailed below.

3.1 Text Encoders

BERT (Devlin et al., 2019): We use the BERTBASE
model released by the authors. It consists of 12
transformer layers, 12 self-attention heads per layer,
and a hidden size of 768.
RoBERTa (Liu et al., 2019b): We use both
the RoBERTaBASE and RoBERTaLARGE models
released by the authors. Similar to BERT,
RoBERTaBASE consists of 12 transformer layers,
12 self-attention heads per layer, and a hidden size
of 768. RoBERTaLARGE consists of 24 transformer
layers, 16 self-attention heads per layer, and a hid-
den size of 1024.

3.2 Training Procedures

Standard fine-tuning: This is the standard fine-
tuning procedure where we fine-tune BERT and
RoBERTa on each subtask-specific data.
Feature-enriched fine-tuning (FEAT): During
training, we enrich BERT and RoBERTa represen-
tations with word frequency information of the tar-
get word or MWE. We compute the log frequency
values using the Wiki40B corpus (Guo et al., 2020).
For MWEs, we compute the log of the average of
the frequency of each component word. After ap-
plying the min-max normalization to this feature,
we concatenate it to the CLS token vector obtained
from the last layer of BERT and RoBERTa.
Multi-step fine-tuning (MSFT): Multi-step fine-
tuning works by performing a second stage of pre-
training with data-rich related supervised tasks. It
has been shown to improve model robustness and
performance, especially for data-constrained sce-
narios (Phang et al., 2018; Camburu et al., 2019).
Due to the limited size of the data provided for
Subtask 2, we first fine-tune BERT and RoBERTa
on the Subtask 1 dataset. This model’s parameters
are further refined by fine-tuning on the Subtask 2
dataset.
Multi-task learning (MTL): Multi-task learning
is an effective training paradigm to promote model
generalization ability and performance (Caruana,
1997; Liu et al., 2015, 2019a; Ruder, 2017; Col-
lobert et al., 2011). It works by leveraging data

from many (related) tasks. In our experiments, we
use the MT-DNN framework (Liu et al., 2019a,
2020b), which incorporates BERT and RoBERTa
as the shared text encoding layers (shared across
all tasks), while the top layers are task-specific. We
used the pre-trained BERT and RoBERTa models
to initialize its shared layers and refined them via
MTL on both subtasks (i.e. Subtask 1 and Subtask
2).
Adversarial training (ADV): Adversarial training
has proven effective in improving model general-
ization and robustness in computer vision (Madry
et al., 2017; Goodfellow et al., 2014) and more re-
cently in NLP (Zhu et al., 2019; Jiang et al., 2019;
Cheng et al., 2019; Liu et al., 2020a; Pereira et al.,
2020). It works by augmenting the input with a
small perturbation that maximizes the adversarial
loss:

min
θ

E(x,y)∼D[max
δ
l(f(x+ δ; θ), y)] (1)

where the inner maximization can be solved by
projected gradient descent (Madry et al., 2017).
Recently, adversarial training has been successfully
applied to NLP as well (Zhu et al., 2019; Jiang et al.,
2019; Pereira et al., 2020). In our experiments, we
use SMART (Jiang et al., 2019), which instead
regularizes the standard training objective using
virtual adversarial training (Miyato et al., 2018):

min
θ

E(x,y)∼D[l(f(x; θ), y)+

αmax
δ
l(f(x+ δ; θ), f(x; θ))]

(2)

Effectively, the adversarial term encourages
smoothness in the input neighborhood, and α is a
hyperparameter that controls the trade-off between
standard errors and adversarial errors.

3.3 Ensemble Model
Ensemble of deep learning models has proven ef-
fective in improving test accuracy (Allen-Zhu and
Li, 2020). We built different ensemble models by
taking an unweighted average of the outputs of
a few independently trained models. Each single
model was trained on standard fine-tuning, multi-
step fine-tuning, multi-task learning, or adversarial
training, using different text encoders (i.e. BERT
or RoBERTa).

4 Experiments

4.1 Implementation Details
Our model implementation is based on the MT-
DNN framework (Liu et al., 2019a, 2020b). We
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use BERT (Devlin et al., 2019) and RoBERTa
(Liu et al., 2019b) as the text encoders. We used
ADAM (Kingma and Ba, 2015) as our optimizer
with a learning rate in the range ∈ {8× 10−6, 9×
10−6, 1 × 10−5} and a batch size ∈ {8, 16, 32}.
The maximum number of epochs was set to 10.
A linear learning rate decay schedule with warm-
up over 0.1 was used, unless stated otherwise. To
avoid gradient exploding, we clipped the gradient
norm within 1. All the texts were tokenized using
wordpieces and were chopped to spans no longer
than 512 tokens. During adversarial training, we
follow (Jiang et al., 2019) and set the perturbation
size to 1× 10−5, the step size to 1× 10−3, and to
1× 10−5 the variance for initializing the perturba-
tion. The number of projected gradient steps and
the α parameter (Equation 2) were both set to 1.

We follow (Devlin et al., 2019), and set the first
token as the [CLS] token when encoding the input.
For Subtask 1, we separate the input sentence and
the target token with the special token [SEP]. e.g.
[CLS] This was the length of Sarah’s life [SEP]
length [SEP]. For Subtask 2, such encoding led to
lower performance of our system. Therefore, we
consider only the target MWE when encoding the
input, e.g. [CLS] financial world [SEP].

For each subtask, we used the trial dataset re-
leased by organizers as development set (see Table
1). We select the best epoch and the best hyper-
parameters using performance (measured in terms
of Pearson correlation score) on this development
set. We also experimented on saving the best epoch
and best hyper-parameters for each domain (Bible,
Biomedical and Europarl).

4.2 Main Results

Submitted systems were evaluated on five met-
rics: Pearson correlation (R), Spearman correla-
tion (Rho), Mean Absolute Error (MAE), Mean
Squared Error (MSE), and R-squared (R2). The
systems were ranked from highest Pearson correla-
tion score to lowest. We built several models that
use different text encoders and different training
methods, as described in Section 3. See Table 2
for the results. First, we observe that ensembling
different single models yield better performance on
both tasks. Furthermore, models that use feature-
enriched representations, multi-task learning, multi-
step fine-tuning and adversarial training surpass
models that use the standard fine-tuning approach.
We detail next the results for each subtask.

For Subtask 1, the single models that used
RoBERTa, adversarial training, multi-task learn-
ing and feature-enriched representations performed
best on the development set. Moreover, saving
the best epoch and hyper-parameters for each do-
main performed better than saving the best epoch
and hyper-parameters without domain distinction.
Among the single models, the model that per-
formed best on the development set was the model
that uses RoBERTaLARGE and adversarial train-
ing (RoBERTaLARGE(ADV)domain model, with a
Pearson score of 0.8441). The second best sin-
gle model was the model that uses RoBERTaBASE
and feature-enriched contextual representations
(RoBERTaBASE(FEAT)domain model, with a Pear-
son score of 0.8391). The third best single model
was the model that uses RoBERTaLARGE and
multi-task learning (RoBERTaLARGE(MTL)domain
model, with a Pearson score of 0.8371). Thus,
we ensemble these three single models in differ-
ent ways when making our submissions. The
ensemble model that performed best on the test
set (Ensemble 2single word) was the model that
combined feature-enriched contextual represen-
tations (RoBERTaBASE(FEAT)domain), adversarial
training (RoBERTaLARGE(ADV)domain), and multi-
task learning (RoBERTaLARGE(MTL)domain). This
ensemble model obtained development and test set
Pearson scores of 0.8570 and 0.7772, respectively.

For Subtask 2, the single models that
use BERTBASE outperformed models that use
RoBERTa, on the development set. Moreover,
we noted that using the Subtask 1 dataset as
auxiliary dataset by performing multi-step fine-
tuning and multi-task learning greatly help to
improve the performance. For instance, the
BERTBASE(MSFT) outperformed the BERTBASE
model by 0.0405 Pearson correlation points
(0.7965 vs 0.8370). The ensemble model that per-
formed best on the test set (Ensemble 1MWE) was
the model that combined multi-step fine-tuning and
multi-task learning using BERT, i.e. BERTBASE
(MSFT) and BERTBASE(MTL) models, respec-
tively, and multi-task learning using RoBERTa
(RoBERTaLARGE(MTL) model). This ensemble
model obtained development and test set Pearson
scores of 0.8461 and 0.8438, respectively. Differ-
ent from Subtask 1, we observe that saving the best
epoch and hyper-parameters for each domain on
the development set performed worse than saving
the best epoch and hyper-parameters without do-
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Training Methods Ensemble R Rho MAE MSE R2

Subtask 1 (Single Word Lexical Complexity Prediction Task)
BERTBASE

dev 0.7794 0.7423 0.0664 0.0077 0.1898
RoBERTaBASE

dev 0.8139 0.7498 0.0628 0.0064 0.4325
RoBERTaBASE(FEAT)dev X 0.8348 0.7579 0.0603 0.0058 0.6955
RoBERTaBASE(FEAT)dev

domain X X 0.8391 0.7640 0.0599 0.0057 0.6976
RoBERTaLARGE

dev 0.8213 0.7629 0.0627 0.0062 0.5381
RoBERTaLARGE(FEAT)dev

domain 0.8218 0.7513 0.0634 0.0063 0.6025
RoBERTaLARGE(MTL)dev

domain X X 0.8371 0.7694 0.0609 0.0062 0.3640
RoBERTaLARGE(ADV)dev X 0.8328 0.7760 0.0603 0.0059 0.5509
RoBERTaLARGE(ADV)dev

domain X 0.8441 0.7873 0.0572 0.0054 0.7123

Ensemble 1single word
dev © 0.8481 0.7825 0.0578 0.0053 0.7175

Ensemble 2single word
dev © 0.8570 0.7902 0.0553 0.0050 0.7335

Ensemble 3single word
dev © 0.8548 0.7816 0.0560 0.0051 0.7300

Ensemble 1single word
test © 0.7590 0.7174 0.0640 0.0069 0.5719

Ensemble 2single word
test © 0.7772 0.7313 0.0617 0.0065 0.6015

Ensemble 3single word
test © 0.7761 0.7244 0.0622 0.0065 0.6003

Top Team Result (JUST BLUE)single word
test* 0.7886 0.7369 0.0609 0.0062 0.6172

Subtask 2 (MWE Lexical Complexity Prediction Task)

BERTBASE(full context)dev† 0.7903 0.7839 0.0770 0.0090 0.6240
BERTBASE

dev 0.7965 0.7856 0.0761 0.0086 0.3552
BERTBASE(FEAT)dev 0.8166 0.8033 0.0730 0.0080 0.6610
BERTBASE(MSFT)dev X 0.8370 0.8361 0.0661 0.0071 0.5276
BERTBASE(MSFT)dev

domain X X 0.8498 0.8492 0.0669 0.0068 0.7099
BERTBASE(MTL)dev X 0.8176 0.8202 0.0725 0.0081 0.5086
BERTBASE(MTL)dev

domain X X 0.8442 0.8323 0.0667 0.0067 0.7125
RoBERTaBASE

dev 0.7689 0.7659 0.0771 0.0098 0.3767
RoBERTaLARGE

dev 0.8110 0.8181 0.0737 0.0082 0.4363
RoBERTaLARGE(MTL)dev X 0.8176 0.8202 0.0725 0.0081 0.5086
RoBERTaLARGE(MTL)dev

domain X 0.8341 0.8276 0.0675 0.0075 0.6790
RoBERTaLARGE(ADV)dev 0.8119 0.8019 0.0718 0.0080 0.4785
RoBERTaLARGE(ADV&MSFT)dev 0.8247 0.8092 0.0685 0.0076 0.4748
RoBERTaLARGE(ADV&MSFT)dev

domain X 0.8283 0.8176 0.0676 0.0074 0.6858

Ensemble 1MWE
dev © 0.8461 0.8441 0.0672 0.0068 0.7080

Ensemble 2MWE
dev © 0.8543 0.8444 0.0642 0.0064 0.7270

Ensemble 3MWE
dev © 0.8571 0.8509 0.0640 0.0064 0.7267

Ensemble 1MWE
test © 0.8438 0.8285 0.0660 0.0070 0.7103

Ensemble 2MWE
test © 0.8376 0.8231 0.0682 0.0076 0.6840

Ensemble 3MWE
test © 0.8312 0.8157 0.0708 0.0080 0.6686

Top Team Result (DeepBlueAI)single word
test* 0.8612 0.8526 0.0616 0.0063 0.7389

Table 2: Comparison of different text encoders and different training methods on the single word lexical complexity
prediction task (Subtask 1) and on the MWE lexical complexity prediction task (Subtask 2). Best results for single
and ensemble models are highlighted in bold. † indicates that we consider the full context surrounding the MWE
when encoding the input. In the other models for Subtask 2, we consider only the target MWE. * indicates re-
sults obtained from the Task’s official leaderboard: (https://competitions.codalab.org/competitions/27420#results).
Xindicates each single model that was used in the ensemble, indicated in each column by©.

main distinction. We hypothesize that, due to the
small size of the data provided for Subtask 2, sav-
ing the best epoch and hyper-parameters without
domain distinction might avoid overfitting.

5 Analysis

We briefly analyse our best models’ results on the
test set for each subtask. Figure 1 (top) shows a
comparison between our best ensemble model’s

predictions for Subtask 1 (Ensemble 2single word)
and the gold answers. We observe that our model
often fails to predict correctly in the range where
samples have a complexity score below 0.2. We
hypothesize this might be due to the skewed dis-
tribution of the golden complexity scores for each
domain, as shown in Table 4. A possible solution
might be to build domain-specific models.

Figure 1 (bottom) shows a comparison between
the best ensemble model’s predictions for Subtask
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Domain Sentence Target Prediction Label
Sub-task 1

Europarl The Swedish Presidency aims to maintain the debate on
animal welfare and good animal husbandry. husbandry 0.3270 0.53143

Biomed We adopted the same strategy to investigate the relative contribution of
the 129 Chromosome 1 segment and the Apcs gene to each disease trait. Chromosome 0.4865 0.2237

Bible God has gone up with a shout, Yahweh with the sound of a trumpet. shout 0.2032 0.2031
Sub-task 2

Biomed These studies strongly suggest that the hsp family of proteins has
other functions in addition to protecting proteins and cells during stress. other functions 0.2564 0.4167

Europarl What plans does the Commission have to introduce
eco labelling of ’sustainable’ palm oils? eco labelling 0.5277 0.3553

Bible In the dry season, they vanish. dry season 0.2832 0.2857

Table 3: Examples of successful and poor predictions on the test set by the best ensemble models submitted for
each subtask (Ensemble 2single word and Ensemble 1MWE models). Successful predictions are highlighted in bold.

Figure 1: Comparison between the Ensemble
2single word and Ensemble 1MWE models’ predictions
submitted for Sub-task 1 (top) and Sub-task 2 (bottom),
respectively, and the gold answers. On the left, we
show the distribution of the correct complexity score
and our submission. On the right, we show a scatter
plot where the x-axis corresponds to our model’s pre-
dictions and the y-axis corresponds to the gold answers.

2 (Ensemble 1MWE), and the gold answers.
Compared to Subtask 1, the data distribution of
the development and test sets of Subtask 2 look
more similar, hence a possible reason why the
development and test set scores were closer than
in Subtask 1 (the best ensemble models obtained
development and test set scores of 0.8570 and
0.7772, respectively, in Subtask 1, and 0.8461 and
0.8438, respectively, in Subtask 2). Table 3 shows
examples of successful and poor predictions made
by Ensemble 2single word and Ensemble 1MWE mod-
els. Table 4 shows how the performance of these
models varies across domains. The Biomedical
domain obtained the highest Pearson correlation
scores on both subtasks, which indicates that

Bible Europarl Biomed
Sub-task 1

MAE 0.0679 0.0549 0.0638
R 0.7329 0.7213 0.8358

Sub-task 2

MAE 0.0721 0.0592 0.0667
R 0.8114 0.6374 0.9104

Table 4: Performance of Ensemble 2single word and En-
semble 1MWE models on each domain and subtask.

might be a sharper difference between simple and
complex words in this corpus (Shardlow et al.,
2021b).

6 Conclusion

In this paper, we have presented the implementa-
tion of the Ochadai-Kyoto system submitted to the
SemEval-2021 Task 1. Our model ranked 7th out
of 54 participating teams on Subtask 1, and 8th
out of 37 teams on Subtask 2. We proposed an
ensemble model that leverages pretrained represen-
tations, multi-step fine-tuning, multi-task learning
and adversarial training. We also proposed to en-
rich contextual representations by incorporating
hand-crafted features during training. In future ef-
forts, we plan to further improve our model to better
handle data-constraint and domain-shift scenarios.
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