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Abstract

In this paper, we present three supervised sys-
tems for English lexical complexity predic-
tion of single and multiword expressions for
SemEval-2021 Task 1. We explore the use of
statistical baseline features, masked language
models, and character-level encoders to pre-
dict the complexity of a target token in con-
text. Our best system combines information
from these three sources. The results indicate
that information from masked language mod-
els and character-level encoders can be com-
bined to improve lexical complexity predic-
tion.

1 Introduction

SemEval 2021 Task 1 (Shardlow et al., 2021) fo-
cuses on predicting the complexity of a target token
in an English sentence on a scale from 0 (not very
complex) to 1 (very complex). For example, the
token land in the example below is judged to have
a low complexity of 0.19.

1. Our land will yield its increase.

On the other hand, the token doxycycline in the
following example is judged to have a relatively
higher complexity of 0.75.1

2. The reason these two lines were unresponsive
to doxycycline is unknown.

The dataset for this task was originally proposed in
Shardlow et al. (2020), and includes sentences from
three sources: a translated bible, European Parlia-
ment proceedings, and a biomedical corpus. This
shared task contains two sub-tasks with the first
focusing on lexical complexity for single words,

1These example sentences and complexity scores are taken
from the dataset provided for the shared task.

which will be referred to as SINGLE, and the sec-
ond focusing on complexity of multiword expres-
sions, which will be referred to as MULTI.

In this paper, we explore the use of statistical
baseline features, masked language models, and
character-level encoders to predict the complexity
of a target token in context. We first consider these
approaches individually and then consider super-
vised methods for combining them. We evaluate
our models with Pearson correlation (R), Spear-
man correlation (Rho), mean absolute error (MAE),
mean square error (MSE), and R-squared (R2). We
apply all our models to both sub-tasks and find that
we achieve our best results with a model that com-
bines all three sources of information — baseline
features, masked language modeling, and character-
level encoding. Specifically, we achieve our best
results with respect to Pearson correlation — the
evaluation measure used for the official shared task
system ranking — using a model that combines
complexity predictions from two approaches, one
based on a character-level encoder, and the other
based on a masked language model, which further
incorporates the baseline features, using support
vector regression. Although we achieve our best
results using this approach on both SINGLE and
MULTI with respect to Pearson correlation, we note
substantial variation in performance with respect
to the other evaluation metrics on SINGLE. This
suggests that future work could further explore the
variation in performance of this model on single
and multiword expressions

2 Model components

In this section, we describe three approaches to
lexical complexity prediction. In Section 3 we then
describe how these approaches are combined into
systems that we submitted as official runs to the
shared task.
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2.1 Baseline features

We extract a set of seven statistical baseline fea-
tures. These features include the length of the tar-
get token, the frequency of the token in SubtlexUS
(Brysbaert and New, 2009), the frequency of the
token in SubtlexUK (van Heuven et al., 2014), a
binary feature indicating whether the token is an
MWE, and a binary feature for each text type the
instances were taken from (i.e., biomedical text,
European Parliament proceedings, and the bible)
indicating whether the instance is from that corpus.
For MWEs, the frequency features are calculated
as the average of the frequencies of the component
words in the MWE. In the case that frequency in-
formation is not available for a word in SubtlexUS
or SubtlexUK, the frequency of that word is set to
the average frequency for words in the dataset for
which frequency information is available. These
features are combined with the approach described
in Section 2.3, and the systems presented in Section
3.

2.2 Character-level encoder

This approach is based on a character-level encoder,
which has three parts. The first part is a pre-trained
character-level language model which gets a sen-
tence containing a target expression as its input and
its last hidden state is used as an embedding repre-
senting the input sentence. This language model
uses a bi-directional GRU with a hidden layer size
of 256. It is trained on the sentences in the trial and
training data provided for the shared task.

The second part is a similar pre-trained GRU bi-
directional character-level language model, which
receives the target word as its input and the first
hidden state is initialized with the embedding of
the input sentence. The last hidden state is then
passed to the systems described in Section 3 for
complexity prediction.

In this approach, our hypothesis is that the hid-
den state of the first language model provides a
representation for the input sentence, and the lan-
guage model can encode the complexity of the tar-
get word by having access to a representation of the
sentence in which the target word appears. Figure
1 shows a diagram of this model.

2.3 Masked language model

In this approach, we recruit BERT (Devlin et al.,
2019) as a masked language model to estimate the
probability for the target token in context. Collins-

Thompson and Callan (2004) show that language
modeling can be used to predict reading difficulty,
and therefore we hypothesize that language mod-
eling can also be useful for predicting lexical com-
plexity.

We use the large uncased pretrained BERT
model, which consists of 16 heads and 24 layers
of 1024 hidden units each. Given a sentence, we
replace the target token with the special [MASK]
token and use the modified sentence as input to
BERT to obtain the probability of the target token.
BERT’s tokenizer can split tokens into multiple
pieces. The probability of a target token (single
word or multiword expression) is therefore calcu-
lated by averaging the probabilities of its parts.

The probability of the target is then used as a fea-
ture, alongside the baseline features from Section
2.1, in a support vector regressor (SVR) to predict
complexity. The SVR uses an rbf kernel, with a
kernel coefficient of 0.1, epsilon of 0.1, and a regu-
larization of 1/100 The output of the SVR is used
as a feature in the systems described in Section 3.
Figure 2 shows a diagram of this model.

3 Submitted Systems

In this section, we describe how we combine the
approaches discussed in Section 2 to form sys-
tems that were submitted as official runs to the
shared task. We selected these systems because
they achieved the best performance in a ten-fold
cross-validation experiment on the combined trial
and training data, in terms of Pearson correlation
(R), the evaluation metric used to rank systems in
the shared task. The performance of each submitted
system, a baseline in which we train logistic regres-
sion on the baseline features from Section 2.1, and
the masked language model approach described in
Section 2.3 (our best-performing model that was
not submitted to the shared task), are shown in Ta-
bles 1 and 2 for SINGLE and MULTI, respectively.

3.1 System 1

In this system, we concatenate the output of the
character-level encoder approach discussed in Sec-
tion 2.2 with the baseline features from Section
2.1. This representation is then used as input to
a feed-forward network to predict the complexity.
The feed-forward network has two fully connected
hidden layers with sizes 128 and 64, and ReLU
activation functions. We train this network using
Adam optimizer (Kingma and Ba, 2015) with a
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Figure 1: The character-level encoder model.

Figure 2: A diagram of the masked language model.
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Model R Rho MAE MSE R2
Baseline 0.618 0.633 0.080 0.011 0.378
MLM 0.622 0.635 0.080 0.011 0.383
System1 0.698 0.673 0.074 0.009 0.476
System2 0.712 0.680 0.072 0.009 0.499
System3 0.705 0.678 0.073 0.009 0.482

Table 1: Results for each model for each evaluation
metric on single word expressions in the validation set.
MLM is the masked language model described in Sec-
tion 2.3. (For R, Rho, and R2 bigger numbers indi-
cate better performance, whereas for MSE and MAE,
smaller numbers are better.)

Model R Rho MAE MSE R2
Baseline 0.665 0.683 0.094 0.015 0.412
MLM 0.665 0.684 0.094 0.015 0.411
System1 0.675 0.686 0.092 0.014 0.440
System2 0.684 0.693 0.091 0.014 0.442
System3 0.673 0.684 0.091 0.014 0.432

Table 2: Results for each model for each evaluation
metric on multiword expressions in the validation set.

learning rate of 0.001 for 100 epochs. This system
is referred to as System1 from heron.

3.2 System 2
In this system, we concatenate the feature from
the masked language model approach described
in Section 2.3 with the output from the system
described in Section 3.1 to create a 2-dimensional
vector. This vector is then used as input to an SVR
to predict complexity.

We perform a grid search to tune the hyperpa-
rameters of the SVR via evaluating its performance
on the validation set. We achieve our best results
with an SVR using a polynomial kernel with a de-
gree of 3, a kernel coefficient of 1, a regularization
parameter of 100, a stopping tolerance of 1, and
a gamma value of 1/number of training instances.
We use these parameters for all further experiments
with this system, which we refer to System2.

3.3 System 3
In this system, similar to System1, we concatenate
the output of several approaches from Section 2,
and then pass this representation to a fully con-
nected network to predict the complexity. Here we
concatenate the baseline features with the output
of both the character-level encoder approach (Sec-
tion 2.2) and the masked language model approach
(Section 2.3). We use the same fully-connected net-

Model R Rho MAE MSE R2
Baseline 0.584 0.597 0.080 0.108 0.334
System 1 0.691 0.656 0.073 0.0094 0.418
System 2 0.695 0.654 0.072 0.0089 0.450
System 3 0.689 0.653 0.069 0.0086 0.471

Table 3: Results on SINGLE for each system and each
evaluation metric. The best result for each evaluation
metric is shown in boldface.

Model R Rho MAE MSE R2
Baseline 0.731 0.704 0.092 0.013 0.470
System1 0.741 0.735 0.0843 0.0116 0.519
System2 0.752 0.742 0.0802 0.0106 0.562
System3 0.736 0.730 0.0851 0.0116 0.521

Table 4: Results on MULTI for each system and each
evaluation metric. The best result for each evaluation
metric is shown in boldface.

work structure, and training settings, as for System1.
We refer to this approach as System3.

4 Results

In this section we present our results with respect
to the five evaluation metrics. We evaluate our
models on the single word sub-task (SINGLE) first
and then on the multiword expressions sub-task
(MULTI). Each system is trained on all training
instances from both SINGLE and MULTI.2 We in-
clude the performance of our baseline to show that
all submitted systems continue to outperform this
baseline model on the test data.

In Table 3, we show the performance of our sys-
tems on SINGLE. System2 achieves the best re-
sults with respect to R, which is the metric used to
rank submissions in the shared task. Interestingly,
however, this is the only metric for which System2

outperforms the other systems. System3 — which
like System2 incorporates information from both
the character-level encoder and masked language
model approaches — performs worst of these three
systems with respect to R, but achieves the best per-
formance amongst these systems for MSE, MAE,
and R2.

In Table 4, we show the performance of our mod-
els on MULTI. In contrast to the results on SINGLE,
these results show System2 consistently performs

2The training data for the approach described in Section
2.3 also includes instances from the provided trial data from
both SINGLE and MULTI.
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best for all evaluation metrics. The improvement
of System2 — which uses information from both
the character-level encoder and masked language
model approaches — over System1 in particular —
which does not incorporate information from the
masked language model — suggests that these two
sources of information can be combined to improve
lexical complexity prediction.

5 Conclusions

We evaluated three systems for lexical complex-
ity prediction of single and multiword expressions
for SemEval 2021 Task 1. These systems incorpo-
rated information from statistical baseline features,
a character-level encoder approach, and a masked
language model approach. We found that a system
that combined the complexity predictions of the
character-level encoder approach and the masked
language model approach, which further incorpo-
rates the statistical baseline features, using support
vector regression performed best amongst our sub-
mitted systems with respect to Pearson correlation
on both the single word and multiword expressions
sub-tasks. This approach further performed best of
our submitted systems with respect to all evalua-
tion metrics on the multiword expression sub-task,
although this was not the case for the single word
sub-task.

In future work, the relationship between the sub-
tasks, models, and evaluation metrics warrants fur-
ther exploration, including studying the effect that
the type of the target expression, i.e., single word
or multiword expression — has on the performance
of the models with respect to the various evaluation
metrics.
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