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Abstract
Many language learning tasks require learners
to infer correspondences between data in two
modalities. Often, these alignments are many-
to-many and context-sensitive. For example,
translating into morphologically rich languages
requires learning not just how words, but
morphemes, should be translated; words and
morphemes may have different meanings (or
groundings) depending on the context in which
they are used. We describe an information-
theoretic approach to context-sensitive, many-
to-many alignment. Our approach first trains
a masked sequence model to place distribu-
tions over missing spans in (source, target) se-
quences. Next, it uses this model to compute
pointwise mutual information between source
and target spans conditional on context. Fi-
nally, it aligns spans with high mutual infor-
mation. We apply this approach to two learn-
ing problems: character-based word transla-
tion (using alignments for joint morphological
segmentation and lexicon learning) and visu-
ally grounded reference resolution (using align-
ments to jointly localize referents and learn
word meanings). In both cases, our proposed
approach outperforms both structured and neu-
ral baselines, showing that conditional mutual
information offers an effective framework for
formalizing alignment problems in general do-
mains.

1 Introduction

Natural language is compositional: meanings of
complex utterances can be constructed by combin-
ing the meanings of their atomic constituents (Mon-
tague, 1973). As a consequence, many canonical
language learning problems, from machine trans-
lation to grounded word learning, require learners
to infer what these constituents are, and how they
align across modalities (e.g. between English and
Spanish, or English and the visual world).

Fig. 1 shows an example: in order to translate
discography into Spanish, it is necessary to know

that the morpheme graph should be translated into
graf, the affix y into ía, etc. Formally, given paired
data (x,y) (e.g. sentences and translations) an
alignment algorithm must return a collection of
span pairs {(xi,yi)} where each xi and yi are con-
tiguous sub-sequences of x and y respectively, and
have the same meaning.

Most alignment algorithms assume that both x
and y are sequences pre-segmented into words or
word pieces (e.g. Brown et al., 1990; Zenkel et al.,
2020), and that phrase-level alignments are ulti-
mately reducible to word-level ones. But this as-
sumption is quite restrictive: it limits these algo-
rithms’ applicability in languages with complex
morphology or where segmentation is otherwise
more complex. More importantly, it means that
these algorithms cannot be applied to problems in-
volving non-linguistic (e.g. visual) data, in which it
is possible that every observed fragment of an input
will consist of a unique observation (e.g. set of pixel
values). Indeed, we are not aware of any existing
alignment algorithms that can be applied agnosti-
cally in both settings. Many alignment also make
strong context-independence assumptions—for ex-
ample, that each word in a sentence is translated
or interpreted independently. This assumption can
make it difficult to infer alignments in problems
where language use is highly contextual (e.g. in the
presence of polysemy, Thompson et al., 2018; or
pragmatic constraints, Hickey, 1998).

How might we formulate the alignment prob-
lem in a way that accommodates unknown seg-
ment boundaries, context-dependence, and both
linguistic and non-linguistic data? In this paper,
we offer an information-theoretic framing of align-
ment: segments xi and yi are aligned if they have
high pointwise mutual information (PMI) in the
contexts where they occur. This approach avoids
assumptions about data modality and segmentation
(as PMI is straightforward to calculate for arbitrary
spans in inputs of arbitrary types), and about con-
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discography

discografía

pmi( graph, graf | discography, discografía )

graph [SEP] graf [EOS]  disco [MASK] y [SEP] disco [MASK] ía= log pseq2seq( ∣ )
graph [EOS]  disco [MASK] y [SEP] disco [HIDE] ía−log pseq2seq( ∣ )
graf [EOS]  disco [HIDE] y [SEP] disco [MASK] ía−log pseq2seq( ∣ )

Figure 1: INFOALIGN: deriving alignments from conditional pointwise mutual information (PMI) using masked
language models. We first train neural sequence models to reconstruct masked portions of paired sequences
(e.g. characters forming words). This model is trained to assign probabilities to pairs of masked regions jointly
and marginally (as in the two bottom terms on the right side of the figure). Finally, these models are used to
compute conditional PMI between arbitrary span pairs. We use these scores to extract bilingual lexicons and resolve
references in grounded tasks.

ditional independence (as PMI can be computed
conditional on a linguistic or perceptual context).

Our approach, which we call INFOALIGN, first
trains masked sequence models to compute joint
and marginal probabilities of sub-spans of x and
y in context, then uses these models to compute
mutual information between spans. Using this span-
scoring procedure, we define algorithms for extract-
ing flat or hierarchical correspondences between
modalities. We use these extracted alignments for
two tasks: learning a morpheme-level lexicon to
support zero-shot word translation in a low-data
setting, and learning grounded representations of
word meaning in a pragmatic reference task. In
both settings, INFOALIGN outperforms both neu-
ral and structured appraoches to learning many-to-
many alignments.

2 Background and related work

At an intuitive level, given joint distribution over
pairs of sequences (x, y), alignment algorithms
seek to find correspondences between “pieces” of
x and y. Depending on the nature of the task,
the granularity of these pieces may or may not
be known. For instance, word or character level
alignments operate over well-defined units. Mor-
pheme or phrase alignments, on the other hand,
often require joint induction of alignments and the
units themselves.

Generative alignment models Some of the earli-
est alignment models came from the machine trans-
lation literature (e.g. Brown et al., 1990), which
define generative models of sentences in a source
language given sentences in a target language me-
diated by latent alignments, sometimes constrained
to be tree-structured (Wu, 1997). Models infer

these alignments jointly with a translation lexicon.
However, they make strong conditional indepen-
dence assumptions about the meanings of source
tokens, and provide only one-to-many mappings
between source and target tokens. While these
word alignments may be used as a starting point for
phrase-level extraction (Koehn et al., 2005; Chiang,
2007), they generally cannot be used when tokens
are individually meaningless and non-alignable.

Most relevant to the current work, Faruqui
and Dyer (2013) perform bilingual lexicon in-
duction using parallel corpora by searching for
words that share high mutual information. The
approach we describe shares similar intuition but
leverages general-purpose sequence models to en-
able context-sensitive alignment without requiring
word-level correspondences.

Neural representations and predictions With
the widespread use of neural network models for
language processing, more recent approaches have
derived alignments from predictions (or learned
representations) rather than explicit generative
models. For example, several approaches (Zenkel
et al., 2020; Chen et al., 2021) use masked language
models to learn word alignment by analyzing the
contributions of source words in the prediction.
Other works train multi-lingual models on parallel
corpora, then extract alignments based on similar-
ity of learned word representations in these models
(Dou and Neubig, 2021) .

Segmentation and translation In natural lan-
guage, concepts are not always mappable to in-
dividual words. Often sub-word (morphemes) or
super-word (phrases) segments encode basic units
of meaning required for dictionary learning or trans-
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lation. Performing alignment in these settings re-
quires joint inference on both the segment bound-
ary and its alignment. In this direction, Snyder
and Barzilay (2008) describe a bilingual Bayesian
model that learns to induce morpheme bound-
aries by marginalizing over all possible alignments.
While the task was to learn morphological segmen-
tation, a joint model of alignment and segmentation
was used during training. In machine translation,
Sennrich et al. (2015) study the problem of trans-
lating rare and unknown words by decomposing
them into sub-word units using byte-pair encoding
(BPE), a data compression algorithm that iteratively
identifies frequent token sequences and replaces
them with new tokens. Outside of multi-lingual set-
tings, many probabilistic and information-theoretic
approaches have been used to discover reusable
sub-word units (Goldsmith, 2000; Smit et al., 2014;
Bergmanis and Goldwater, 2017).

3 Approach

What do the various appraoches to alignment de-
scribed above have in common? In general, we
expect a span xi to be aligned to a span yi if the
two spans contain information about each other.
In Fig. 1, it becomes easier to predict that one of
the masked segments is graph knowing that the
other masked segment is graf, and vice-versa. In
fact, (graph, graf ) is one of only a small number
of pairs for which this is true: if we had instead
masked (graph, disco), knowing the contents of
one gap would not have made it any easier to pre-
dict the other one, because all requisite information
would already be available in the context. Intu-
itively, graph and graf contain information about
each other, while graph and disco do not.

This intuition can be formalized in terms of
pointwise mutual information (PMI) (Fano,
1961). Given random variables Xi and Yi, the
PMI between two outcomes xi and yi is defined
as:

pmi(xi;yi) = log
p(xi,yi)

p(xi)p(yi)
. (1)

= log
p(xi | yi)

p(xi)
(2)

Via Eq. (2), PMI may be understood as quantify-
ing how much our confidence in the outcome xi

increases after observing yi. This definition can
also be extended to the conditional setting: given

some other random variable Z, we may write:

pmi(xi;yi | z) = log
p(xi,yi | z)

p(xi | z)p(yi | z)
(3)

In the context of alignment, if xi and yi are
spans, and z is the context in which they occur,
xi and yi should be aligned precisely when their
PMI (conditioned on z) is large. INFOALIGN oper-
ationalizes this notion by first building a probabilis-
tic model of source and target sequences, using this
model to score spans based on conditional PMI,
then uses scores to find the highest-scoring span
alignments. Below, we describe each of these steps
in more detail.

3.1 Masked Span Modeling
The first component of INFOALIGN is a joint proba-
bilistic model of source and target spans in context.
Let xi and yi be spans of sequences x and y. For
convenience, let us define x−i = x \ xi (a version
x with the span xi masked out; see Fig. 1). We
may define y−i correspondingly. Then, to compute
the PMI between two spans in context (via Eq. (3)),
we must compute the following three quantities:

p(xi,yi | x−i,y−i) (4)

p(xi | x−i,y−i) (5)

p(yi | x−i,y−i) (6)

Each of these probability distributions is a kind of
masked language model of a kind well-studied
in the NLP literature: like the T5 and BART lan-
guage models (Raffel et al., 2020; Lewis et al.,
2019), all three quantities represent distributions
over variable-length spans occurring in the middle
of input sequences; like forgetful causal models
(Liu et al., 2022), the latter two quantities mask
multiple spans but predict only a subset. For large
datasets, these distributions may be represented ap-
proximately using neural language models (Bengio
et al., 2000). For small datasets, it is even possible
to represent them using explicit frequency counts
(Och and Ney, 2000). Indeed, it is possible to view
Eqs. (4–6) as special kinds of skip-gram model
(Huang et al., 1993) of a kind formerly popular in
speech recognition and machine translation.

In practice, given a training set of paired se-
quences, we sample uniformly from the set of all
maskings and train models to predict each of the
three quantities above. We use encoder–decoder
models, which generate x, y or both autoregres-
sively (like T5 and BART) to avoid the indepen-
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dence assumptions made by masked language mod-
els (like BERT).1 As a concrete example, each term
in the bottom right of Fig. 1 shows an example of
an input–output pair used for training (or querying)
these models. Inputs may contain [MASK], [HIDE]
and [SEP] tokens, while outputs contain one predic-
tion for each [MASK]ed span, delimited with [SEP]
tokens if multiple [MASK]s are present.

3.2 Conditional PMI
Given models of Eqs. (4–6), we compute PMI ex-
actly as in Eq. (3). As described below, it is useful
to define one additional quantity, which we call the
cross-information (CI):

ci(xi,yi,xj ,yj) =pmi(xi;yi | x−i,y−i)

+ pmi(xj ;yj | x−j ,y−j)

− pmi(xi;yj | x−i,y−j)

− pmi(xj ;yi | x−j ,y−i) (7)

If xi and xj are adjacent spans (likewise yi and
yj), then CI intuitively measures the quality of a
partition of the aligned spans [xi,xj ] and [yi,yj ]
into aligned sub-spans (Fig. 2). If CI is less than
zero, then unaligned sub-spans contain as much
or more information about each other compared
to aligned spans. If there is no split of the two
combined spans with positive CI, then those spans
are not divisible further.

3.3 Unit Discovery
In some applications (like the reference resolution
task we will study in Section 5), tools for comput-
ing PMI between arbitrary spans are useful even
without producing a single span-level alignment
between source and target sentences. But in other
applications (like the word translation task in Sec-
tion 4) explicit segment-to-segment alignments are
useful, e.g. for building a lexicon of frequently
aligned span pairs. Thus, the final component of
INFOALIGN is an algorithm for constructing a hi-
erarchical, span-level sequence-to-sequence align-
ment using the measures defined in Section 3.2.

This procedure is defined formally in Algo-
rithm 1. It is broadly inspired by the splitting parser
of Stern et al. (2017). We begin by assuming that

1In the case of neural models, we cannot guarantee that Eqs.
(5–6) will exactly correspond to marginals of Eq. (4), even
though we expect them to do so asymptotically (Goyal et al.,
2022; Hennigen and Kim, 2023). In experiments, even though
neural models sometimes made “impossible” predictions (e.g.
p(xi,yi) > p(xi)), we found this did not appear to limit their
effectiveness at discovering high-quality alignments.

Algorithm 1 Alignment via top-down splitting
1: function ALIGN(xi,yi)
2: # Add current input to set of aligned spans.
3: spans← {(xi,yi)}
4: # Find the highest-scoring split.
5: a∗, b∗ ← argmaxa,b
6: ci(x<a

i ,y<b
i ,x≥a

i ,y≥b
i )

7: # If this split has non-positive C.I., stop.
8: if ci(x<a∗

i ,y<b∗

i ,x≥a∗

i ,y≥b∗

i ) ≤ 0 then
9: return spans

10: # Otherwise, recurse on splits.
11: spans← spans ∪ ALIGN(x<a∗

i ,y<b∗

i )
12: spans← spans ∪ ALIGN(x≥a∗

i ,y≥b∗

i )
13: return spans

discography discografía

disco | graphy disco | grafía 

graph | y graf | ía

Figure 2: Alignment via top-down splitting. Beginning
with complete (source, target) pairs, we recursively, syn-
chronously split these pairs until their CI becomes non-
positive.

the entire source sentence is aligned to the entire
target sentence, then recursively split aligned spans
into pairs of aligned sub-spans by maximizing CI.
The procedure stops when no split yields positive
CI. It runs in O(m2n2) time (where m and n are
the lengths of x and y respectively). The version
described in Algorithm 1 (and used in our exper-
iments) assumes that alignments are monotonic,
but can be easily extended to non-monotonic align-
ments (with only constant overhead) by also consid-
ering CI between pairs (x<a

i ,y≥b
i ) and (x≥a

i ,y<b
i )

on line 5.

Aside: exact alignment The above procedure
may be viewed as greedily attempting to optimize
an objective of the form:

max
A∈A

∑
(xi,yi,xj ,yj)∈A

ci(xi,yi,xj ,yj) (8)

where A is the set of hierarchical alignments A be-
tween x and y (e.g. the set depicted with gray lines
in Fig. 2). While not used in our experiments, it is
actually possible to optimize this quantity exactly
using standard algorithms for forced alignment in



492

inversion–transduction grammars (Wu, 1997), with
CI as a scoring function. This procedure requires
O(m3n3) time (but only O(m2n2) evaluations of
the scoring function).

In the remainder of this paper, we evaluate IN-
FOALIGN on two different word learning problems:
word-level MT and grounded color naming. Each
is described below.

4 Experiments: Translation

Our first set of experiments focuses on learning to
translate words (at the character level) by learning
a morphological lexicon. In this task, models are
trained set of inflected word pairs in source and
target languages, and evaluated on their ability to
translate novel word forms. Generalization of this
kind is only possible with a correct model of the
internal morphological structure of words:

4.1 Dataset
Our experiments focus on translating from En-
glish to Spanish. This language pair presents a
particularly interesting case because Spanish is
a fusional language: single, non-decomposable
morphemes often carry information about number,
person, tense and gender simultaneously. These
may in turn interact with lemmas in complex ways.
Spanish morphology is also in general more com-
plex than English, so the learned mapping must
be one-to-many. Thus, inferred morphological lex-
ica must encapsulate information about morpheme
pairs that may encode different pieces of informa-
tion, and learned predictors must use morpheme-
level information in a manner sensitive to global
word structure.

We evaluate using word pairs from the MUSE

project (Lample et al., 2017). In the training split,
this dataset contains 11977 paired word forms,
corresponding to 5000 unique English forms and
10166 unique Spanish forms. The test set, mean-
while, contains 2975 paired forms, with 1500
unique English inputs. However, at most 1046 of
these are, even in principle, predictable on the basis
of the training set (in the sense that they are ex-
pressible in terms of paired spans that co-occurred
during training).

We evaluate performance on this task using two
metrics. First, for the subset of words that are
(in principle) exactly predictable, we report ex-
act match (E.M.): given an English input, does
the model’s predicted Spanish output correspond

to any valid Spanish translation? Second, for all
words (even those that cannot be translated exactly),
we report character edit distance (C.E.D.): the
minimum Levenshtein distance between the pre-
dicted translation and any valid translation.

4.2 Model
To apply INFOALIGN to the word translation task,
we first extract a dictionary of morpheme pairs
from forced alignments, then compose these mor-
phemes together using a neural sequence model.

Morpheme lexicon We use the procedure de-
scribed in Section 3 to induce a joint segmentation
and alignment of every word pair in the training set.
We run Algorithm 1 up to a maximum depth of 2,
in practice analyzing each word as a (prefix, suffix)
pair or single morpheme. Surprisingly, we found
that we obtained higher-quality predictions using
exact count-based estimates of Eq. (3) rather than
a neural model.2

We then construct a morpheme-level lexicon
with one entry for each leaf (pair of aligned, non-
decomposable segments) in the induced alignments.
Each lexicon entry is assigned a score correspond-
ing to the conditional PMI between the aligned
segments. When a given pair of segments appears
in multiple training words, we add these PMI-based
scores together.

LM-guided decoding In parallel with morpheme
extraction, we train an ordinary character-level
sequence-to-sequence model (a single-layer, 1024-
dimensional LSTM with attention, which we found
more effective than any transformer variant we
tried on the small training dataset; Hochreiter and
Schmidhuber, 1997). Finally, given an input x, we
predict:

max
(xi,yi),(xj ,yj)

xixj=x

(
score(xi,yi) + score(xj ,yj)

+λ log pLM(yiyj |xixj)
) (9)

where morpheme pairs (xi,yi) and (xj ,yj) are
taken from the lexicon, and score denotes the entry
score computed as described above.

4.3 Baselines
We compare INFOALIGN to several baselines:

2Because alignments are only computed on the training
set, backoff methods are not needed to guarantee these models
assign probability to all inputs on which they will be evaluated.
Sparsity is a potential issue; while we use all counts exactly,
future work might incorporate smoothing methods of the kind
commonly used in n-gram models (Och and Ney, 2000).
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E.M. ↑ C.E.D. ↓

INFOALIGN 0.17 2.13
+ MORFESSOR 0.03 0.64
− context 0.15 2.62
− rescoring 0.14 2.39
SEQ2SEQ 0.15 4.52
+ MORFESSOR 0.07 2.48

Table 1: Evaluation results for the word translation
task. E.M. denotes exact string match and C.E.D. de-
notes character edit distance; both are computed with
respect to the best choice in the set of valid trans-
lations. The base INFOALIGN model outperforms a
standard sequence-to-sequence model, with or with-
out pre-tokenization using MORFESSOR. Both context-
conditioning and rescoring with a sequence model are
necessary to obtain these results.

• Ablations of the main INFOALIGN model: one
of which removes context (computing PMI,
rather than conditional PMI, between aligned
spans), and one of which removes rescoring
with the neural sequence model. These abla-
tions evaluate the role of the specific decoding
criterion described in Eq. (9).

• A neural SEQ2SEQ baseline that directly gen-
erates from the sequence model rather than
using it for rescoring, with no lexicon-based
scores or decoding constraints. This baseline
evaluates the role of the learned lexicon in
improving generalization performance.

• Variants of both INFOALIGN and SEQ2SEQ

that operate not on characters, but on word
pieces inferred using MORFESSOR (2.0), a
classical (monolingual) morphological seg-
mentation algorithm (Smit et al., 2014) that
identifies frequently occurring spans using a
minimum description length criterion. These
variants evaluate the quality of segments dis-
covered by INFOALIGN relative to other ap-
proaches to unsupervised segmentation.

4.4 Results

Table 1 shows results of our experimental evalua-
tion. INFOALIGN outperforms SEQ2SEQ with and
without MORFESSOR-based unit discovery; both
rescoring and context are important for high-quality
span alignment. Intriguingly, applying MORFES-
SOR to INFOALIGN substantially worsens exact
match, but improves character edit distance.

Examples of discovered morphemes are shown
in Table 2. They include frequently occurring stems

English Spanish Score

-s -s 120.0
-os 76.3
-es 54.3

-ing -ando 19.4
-iendo 18.5
-ndo 17.3

-ation -ación 11.4
-ción 8.6
-aciones 2.9

-ed -do 30.8
-ó 19.2
-da 11.7

publish- edito- 2.0
publica- 2.0
editoria- 1.0

believ- cre- 2.0

Table 2: Discovered word piece alignments in English–
Spanish word translation. Only the 3 highest-scoring
entries for each word are shown. Discovered correspon-
dences include inflectional and derivational morphology,
as well as lemmas. In some cases multiple translations
are possible (e.g. English -ed, which can correspond to
the past perfect, imperfect, or preterite in Spanish), and
multiple lexicon entries are generated.

English Spanish INFOALIGN SEQ2SEQ

impression impresión impres-ión presenta
relocated trasladó r-localizado recariado
prisoner prisionera carcel-ador respadar
grows crece crece-s crece
keys llaves clave-s claves

Table 3: Example outputs from the INFOALIGN and
SEQ2SEQ models. Spanish shows the (closest) ground-
truth translation, while subsequent columns show model
predictions. For INFOALIGN, morpheme boundaries are
denoted with a -. INFOALIGN often generates correct
translations; sometimes translations are phonotactically
and semantically plausible even when incorrect.

and affixes, and reflect variability in allowed trans-
lation resulting from the many-to-many mapping
between English and Spanish word forms. Table 3
shows model predictions that use these inferred
alignments. Even when incorrect, these are of-
ten close (the English morpheme re is mapped to
the Spanish span r, resulting in a phonotactically
unaceptable prediction); in other cases, they are
semantically plausible even when incorrect (carce-
lador, the model’s predicted translation of prisoner,
is not a real word but could be reasonably trans-
lated as jailer). By contrast, the SEQ2SEQ model
sometimes generates words with no obvious cor-
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respondence to the input (respadar) or generates
inflections that were seen in training data (crece).

5 Experiments: Reference Resolution

Our other experiments focus on a grounded refer-
ence resolution task. In this task, referring expres-
sions are generated in a highly ambiguous percep-
tual context; at training time, learners must jointly
infer word meanings and their context-dependent
referents; at evaluation time, learners must resolve
references for new inputs.

5.1 Dataset

We use the Colors in Context dataset from Monroe
et al. (2017). Each example consists of a natural
language referring expression paired with a set of
three color patches (Table 4). To generate refer-
ring expressions, human annotator were shown the
three patches and asked to refer to one of them; an-
other annotator was then evaluated on their ability
to correctly resolve the referent. Generated expres-
sions are very sensitive to context (redder of the
two brownish colors, darker purple).

Most work on Colors in Context has studied a
supervised version of the problem, in which models
learn to predict or resolve references given ground-
truth information about the target color. In contrast,
we evaluate on an unsupervised version of the ref-
erence resolution problem, in which learners do not
have access to the target even at training time, and
must jointly learn word meanings and their contex-
tual referents. Colors were generated with constant
luminosity but varying hue and saturation, so each
color is presented to learners as a pair of integers.

As above, we use two metrics to evaluate predic-
tors for this task. First, their exact match success at
the reference game: what fraction of expressions
was correctly resolved? Second, their perceptual
distance: how far was the learner’s chosen color
from the true color (measured in HSV space)?

5.2 Model

Rather than first extracting a fixed lexicon map-
ping names to color parts, we use computed PMI
between utterances and single color patches to di-
rectly identify the referents of natural language
expressions. We begin by training a model exactly
as in Section 3 (learning to predict masked versions
of all possible source/target spans). For these exper-
iments, unlike above, we use a trained transformer
to compute conditional PMI.

At evaluation time, we successively mask each
candidate referent (a complete H, S pair), then com-
pute its PMI with the (unmasked) input utterance
conditional on the other candidate referents. Fi-
nally, we select the referent with the greatest PMI.

Why should we expect this procedure to work?
Because referents in the colors in context dataset
are context-sensitive, we expect targets to be pre-
dictable only given information about the other
available referents. The scoring model thus needs
to implement a version of pragmatic reference res-
olution internally (something that past work has
found neural models capable of; Monroe et al.,
2017) in order to assign high probability to contex-
tually appropriate color descriptions.

5.3 Baselines
We compare INFOALIGN to:

• An ablation of the main INFOALIGN model,
as in Section 4, that removes conditioning
on context (and scores unconditional PMI be-
tween colors and referring expressions).

• A neural attention baseline. We concatenate
(color, expression) pairs into single sequences,
then train a masked language model on these
sequences exactly as in the BERT model (De-
vlin et al., 2019). Finally, we predict by select-
ing the color having greatest cross attention
with the input sequence, averaging over all
heads and layers.

5.4 Results
Results are shown in Table 5. As above, IN-
FOALIGN outperforms the standard neural base-
line; here, even more than the translation task,
conditional alignment is essential for good perfor-
mance. The unsupervised version of this task is
challenging, and performance remains far from per-
fect, but INFOALIGN performs significantly better
than chance (in contrast to the attention model,
which is only a few percentage points better than a
chance baseline).

Examples of model predictions are shown in Ta-
ble 4. INFOALIGN successfully resolves complex
and context-dependent references, including ex-
amples containing comparatives (redder, darker),
similes (color of a cherry) and even more com-
plex uses of context (combo of the other 2 colors).
In contrast, the attention-based scoring method of-
ten makes basic mistakes (choosing a bright green
when the expression refers to brownish colors).
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Referring expression A B C G.T. I.A. M.A.

it s a combo of the other 2 colors B B A
color of a cherry B B B
redder of the two brownish colors C C A
the brightest pink C C A
blue A C B
well the darker purple B A B

Table 4: Example predictions on the Colors in Context task. Columns A, B and C show the candidate referents
presented to the learner. G.T. shows the ground truth label (seen by the human annotator but not by models).
I.A. shows predictions from INFOALIGN, while M.A. shows predictions from the MASKEDATTENTION model.
INFOALIGN often makes correct predictions even when context is required to interpret expressions (as in the first
line).

E.M. ↑ C.D. ↓

INFOALIGN 0.50 49.0
− context 0.37 66.4
MASKEDATTENTION 0.34 77.4

Table 5: Evaluation results for the color reference res-
olution task. Only INFOALIGN performs significantly
above chance, but succeeds only when context is used
to compute alignment scores.

Performance, while above chance, remains signifi-
cantly below the near-perfect accuracy that many
supervised models achieve on this task; we expect
that more sophisticated visual representations, or
perhaps explicit pragmatic procedures of the kind
described by Andreas and Klein (2016) or McDow-
ell and Goodman (2019) might improve results.

6 Limitations

One major limitation of the proposed approach is
runtime. Applying this method to extract a struc-
tured lexicon, as in Section 3.3, is computationally
costly, especially in the presence of deeper struc-
tures than investigated here. Extracting these cor-
respondences requires more effort than inspecting
the behavior of a (quadratic-time) attention mecha-
nism.

Additionally, PMI can only be computed if we
have the ability to assign a normalized probability
to a masked sequence. Outside of language do-
mains, many of today’s most sophisticated genera-
tive models (including GANs and diffusion models)
define intractable probability distributions, mean-
ing that additional modeling work will be required
to scale INFOALIGN to these more complex do-
mains (e.g. images).

7 Conclusion

We have presented INFOALIGN, an information-
theoretic approach to alignment that can identify
context-dependent, span level correspondences be-
tween inputs in multiple modalities. INFOALIGN

outperforms both classical unit discovery and neu-
ral sequence modeling approaches in both word
translation and reference resolution domains. More
broadly, INFOALIGN offers a new approach for
thinking about what an alignment is in domains
where the primitive elements of alignment (analo-
gous to words in machine translation) are unknown,
and complete source→ target generative models
cannot be specified. By deriving alignments from
information-theoretic measures, we can use the
modern neural sequence modeling toolkit to ob-
tain meaningful correspondences between data of
diverse types.
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