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Abstract

Human-annotated textual explanations are be-
coming increasingly important in Explainable
Natural Language Processing. Rationale ex-
traction aims to provide faithful (i.e., reflective
of the behavior of the model) and plausible
(i.e., convincing to humans) explanations by
highlighting the inputs that had the largest im-
pact on the prediction without compromising
the performance of the task model. In recent
works, the focus of training rationale extrac-
tors was primarily on optimizing for plausi-
bility using human highlights, while the task
model was trained on jointly optimizing for
task predictive accuracy and faithfulness. We
propose REFER, a framework that employs a
differentiable rationale extractor that allows to
back-propagate through the rationale extraction
process. We analyze the impact of using hu-
man highlights during training by jointly train-
ing the task model and the rationale extractor.
In our experiments, REFER yields significantly
better results in terms of faithfulness, plausi-
bility, and downstream task accuracy on both
in-distribution and out-of-distribution data. On
both e-SNLI and CoS-E, our best setting pro-
duces better results in terms of composite nor-
malized relative gain than the previous base-
lines by 11% and 3%, respectively.

1 Introduction

Neural Language Models have emerged as State-
of-The-Art (SoTA) performers in a wide range of
Natural Language Processing (NLP) tasks (Devlin
et al., 2019; Liu et al., 2019). However, they are of-
ten perceived as opaque (Rudin, 2019; Doshi-Velez
and Kim, 2017; Lipton, 2018), sparking significant
interest in the development of algorithms that can
automatically explain the behavior of these mod-
els (Denil et al., 2015; Sundararajan et al., 2017;
Camburu et al., 2018; Rajani et al., 2019; Luo et al.,
2022).

In the field of self-explainable neural models,
two prominent approaches have emerged: (i) Ex-

tractive Rationales (ERs, Zaidan et al., 2007; Bast-
ings and Filippova, 2020), which involve selecting
a subset of input features responsible for a pre-
diction, and (ii) Natural Language Explanations
(NLEs, Park et al., 2018; Hendricks et al., 2016;
Kayser et al., 2021; Camburu et al., 2018), which
generate human-readable justifications for predic-
tions. The key aspects of interest for both ERs and
NLEs are plausibility, which measures the align-
ment between model explanations and ground truth,
and faithfulness, which measures how accurately
the explanations reflect the decision-making pro-
cess of the model. ERs offer concise explanations,
serving as a means for users to assess the trust-
worthiness of a model. However, ERs may lack
important reasoning details, such as feature rela-
tionships (Wiegreffe et al., 2021). On the other
hand, NLEs provide detailed justifications in nat-
ural language, complementing ERs by potentially
offering more comprehensive explanations.

The evaluation of ERs involves assessing their
plausibility and faithfulness. Plausibility refers to
the extent to which a highlight explains a predicted
label, as judged by human evaluators, or accord-
ing to the similarity with gold highlights (Yang
et al., 2020; DeYoung et al., 2020). Faithfulness
measures how accurately a highlight represents the
decision process of the model – for example, by
measuring to which extent the confidence in the
predicted label changes after removing the high-
lighted words (comprehensiveness) or when only
considering the highlighted words (sufficiency) (Al-
varez Melis and Jaakkola, 2018; Wiegreffe and
Pinter, 2019).

Previous works largely focused on rationale ex-
traction, which involves explaining the output of
a model by identifying the input tokens that exert
the greatest influence on model predictions (De-
nil et al., 2015; Sundararajan et al., 2017; Jin et al.,
2020; Lundberg and Lee, 2017) and providing addi-
tional supervision signal (Hase and Bansal, 2022).



588

Negat i veNegat i ve

my poor  
puppy i s a 

depr ess

my poor  
puppy i s a 

depr ess

Task Loss

Make Sense???
( Pl ausi bl e)

Not  Much

Am I  honest ???
( Fai t hf ul )

my poor  puppy i s a depr ess

Figure 1: Explanation Regularization System: model is
trained with human rationales while maintaining high
task performance. In this case, the model predicts the
correct label for incorrect reasons.

The majority of prior works in this area have re-
volved around explanation regularization, a tech-
nique aimed at improving generalization in neural
models by aligning machine rationales with hu-
man rationales (Ross et al., 2017; Huang et al.,
2021; Ghaeini et al., 2019; Kennedy et al., 2020;
Rieger et al., 2020; Liu and Avci, 2019). How-
ever, ERs are discrete distributions over the in-
put text, which can be difficult to learn by neural
models via back-propagation (Niepert et al., 2021).
In this work, we propose REFER, an End-to-end
Rationale Extraction Framework for Explanation
Regularization, which allows to back-propagate
through the rationale extraction process. Specif-
ically, REFER involves a differentiable rationale
extractor, which selects the top-k% most important
words from the textual input, which are then used
by the model to generate a prediction.

2 Related Works

The inherent complexity of neural models has
given rise to concerns regarding their opacity
(Rudin, 2019), particularly about the societal impli-
cations of employing neural models in high-stakes
decision-making scenarios (Bender et al., 2021).
Therefore, explainability is of utmost importance
for fostering trust, ensuring ethical practices, and
maintaining the safety of NLP systems (Doshi-
Velez and Kim, 2017; Lipton, 2018).

Learning to Explain Rationalization offers lo-
cal explanations by providing a unique explanation
for each prediction instead of a global explanation
that covers the entire model (Baehrens et al., 2010;
Ribeiro et al., 2016). These explanations yield valu-
able insights for various purposes, including debug-
ging, quantifying bias and fairness, understanding
model behavior, and ensuring robustness and pri-

vacy (Molnar, 2022). However, obtaining direct
supervision in the form of human-labeled ratio-
nales during training is not always feasible, which
has led to the development of datasets that include
human justifications for the true labels. These ef-
forts enhance the interpretability of NLP models
and address the limitations associated with direct
supervision in learning to explain.

Post-hoc Explanations Post-hoc explanations
are another branch of interpretability research.
These explanations often involve token-level im-
portance scores. In the quest for effective post-hoc
explanations, a balance must be struck between the
clarity of semantics and the avoidance of counter-
intuitive behaviors. Gradient-based explanations
(Sundararajan et al., 2017; Smilkov et al., 2017)
provide clear semantics by describing the local im-
pact of input perturbations on the outputs of the
model. However, they can sometimes exhibit in-
consistent behaviors (Feng et al., 2018), and their
effectiveness relies on the differentiability of the
model. Alternatively, there are model-agnostic
methods that do not rely on specific model prop-
erties. One notable example is Local Interpretable
Model-agnostic Explanations (LIME, Ribeiro et al.,
2016). These approaches approximate the behavior
of the model locally by repeatedly making pre-
dictions on perturbed inputs and fitting a simple,
explainable model over the resulting outputs.

Learning from Human Rationales Recent re-
search has focused on leveraging rationales to en-
hance the training of neural text classifiers. Zhang
et al. (2016) introduced a rationale-augmented Con-
volutional Neural Network that explicitly identi-
fies sentences supporting categorizations. Strout
et al. (2019) demonstrated that incorporating ra-
tionales during training improves the quality of
predicted rationales, as preferred by humans com-
pared to models trained without explicit supervi-
sion (Strout et al., 2019). In addition to integrated
models, pipeline approaches have been proposed,
where separate models are trained for rationale ex-
traction and classification based on these extracted
rationales (Lehman et al., 2019; Chen et al., 2019).
These approaches assume the availability of ex-
plicit training data for rationale extraction.

Extractive Rationale Objectives Several prior
works have aimed to enhance the faithfulness of
extractive rationales using Attribution Algorithms
(AAs), which extract rationales via handcrafted
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Figure 2: Computation graphs describing the relation-
ships between post-hoc explanations, learning to ex-
plain, and learning from rationales.

functions (Sundararajan et al., 2017; Ismail et al.,
2021; Situ et al., 2021). However, AAs are not
easily optimized and often require significant com-
putational resources. Situ et al. (2021); Schwarzen-
berg et al. (2021) tackle the computational cost
by training a model to mimic the behavior of an
AA. Jain et al. (2020); Yu et al. (2021); Paranjape
et al. (2020); Bastings and Filippova (2020); Yu
et al. (2019); Lei et al. (2016) use Select-Predict
Pipelines (SPPs) to generate faithful rationales.
However, SPPs only guarantee sufficiency but not
comprehensiveness (DeYoung et al., 2020), and
generally produce less accurate results, since they
can only observe a portion of the input, and due
to the challenges associated with gradient-based
optimization and discrete distributions.

Regarding the plausibility of the rationales, exist-
ing approaches typically involve supervising neu-
ral rationale extractors (Bhat et al., 2021) and
SPPs (Jain et al., 2020; Paranjape et al., 2020; DeY-
oung et al., 2020) using gold rationales. However,
LM-based extractors lack training for faithfulness,
and SPPs sacrifice task performance to achieve
faithfulness by construction. Other works mainly
focus on improving the plausibility of rationales
(Narang et al., 2020; Lakhotia et al., 2021; Cam-
buru et al., 2018), often employing task-specific
pipelines (Rajani et al., 2019; Kumar and Talukdar,
2020). In contrast, REFER jointly optimizes both
the task model and rationale extractor for faithful-
ness, plausibility, and task performance and reaches
a better trade-off w.r.t. these desiderata without suf-
fering from heuristic-based approaches (e.g., AAs)
disadvantages.

3 Model Architecture

Task Model Consider Ftask as the task model
for text classification, where it consists of an en-
coder (Vaswani et al., 2017) and a head. Let xi =
[xti]

n
t=1 be ith input sequence with length n, and

Ftask(xi) ∈ RM be the logit vector for the output of
the task model. We use yi = argmaxj [Ftask(xi)]j

I nput
Ext  Encoder + 
Ext  Head    

Task Encoder + 
Task HeadSel ect or Out put

Figure 3: The pipeline for explanation regularization
is a fully end-to-end approach where the task model’s
output loss is back-propagated through all components,
resulting in a compromised performance that considers
all training criteria.

to denote the class predicted by task model. Given
that cross-entropy loss is used to train Ftask to pre-
dict y∗i , the task loss is defined as follow:

Ltask = LCE(Ftask(xi), y∗i ) (1)

Rationale Extractor Let Fext denote a rationale
extractor, such that si = Fext(xi). Given Ftask, xi,
and yi, the goal of rationale extraction is to output
vector si = [sti]

n
t=1 ∈ Rn, such that each sti is an

importance score indicating how strongly token
xti influenced Ftask to predict class yi. The final
rationales are typically obtained by binarizing si as
r(k)i ∈ {0, 1}n, via the top-k% strategy (DeYoung
et al., 2020; Jain et al., 2020; Pruthi et al., 2022;
Chan et al., 2021).

To capture the degree to which the snippets
within the extracted rationales are sufficient for
a model to make a prediction, we measure the dis-
parity in model confidence when considering the
complete input versus only the extracted rationales.
A small difference suggests the high importance of
extracted rationales.

Lsuff-diff = LCE(Ftask(r
(k)
i ), y∗i )

−LCE(Ftask(xi), y∗i )
(2)

Following Chan et al. (2022), to avoid negative
losses, we can use margin ms to impose a lower
bound on Lsuff-diff, yielding the following margin
criterion:

Lsuff = max(−ms,Lsuff-diff) +ms (3)

To compute comprehensiveness we create contrast
examples for xi, x̃i = xi\r(k)i , which is xi with
the predicted rationales ri removed (Zaidan et al.,
2007). Similar to Equation (2), we measure the
difference in model confidence between consider-
ing the complete input and the contrast set x̃i. A
high score here implies that the rationales were



590

influential in the prediction.

Lcomp-diff = LCE(Ftask(xi), y∗i )

−LCE(Ftask(x̃i), y∗i )
(4)

Repeatedly, we enforce Lcomp-diff to be positive as
follows:

Lcomp = max(−mc,Lcomp-diff) +mc (5)

Finally, the selection of the tokens for matching the
human highlights can be cast as a binary classifica-
tion problem, and the plausibility loss is computed
using the binary cross-entropy (BCE) loss function:

Lplaus = −
∑
t

r∗,ti log(Fext(xti)) (6)

where r∗i is the gold rationale for input xi of length
t. This leads to the following multi-task learning
objective:

L = Ltask + αfLfaith + αpLplaus

= Ltask + αcLcomp, K + αsLsuff, K + αpLplaus

Back-Propagating Through Rationale Extrac-
tion To back-propagate through the rationale ex-
traction process, we use Adaptive Implicit Maxi-
mum Likelihood Estimation (AIMLE, Minervini
et al., 2023), a recently proposed low-variance
and low-bias gradient estimation method for dis-
crete distribution that does not require signifi-
cant hyper-parameter tuning. AIMLE is an ex-
tension of Implicit Maximum Likelihood Estima-
tion (IMLE, Niepert et al., 2021), a perturbation-
based gradient estimator where the gradient of the
loss w.r.t. the token scores ∇sL is estimated as
∇sL ≈ r(s + ϵ) − r(s + λ∇rL + ϵ), where ϵ
denotes Gumbel noise, r denotes the top-k% func-
tion, and λ is a hyper-parameter selected by the
user. AIMLE removes the need for the user to se-
lect λ by automatically identifying the optimal λ
for a given learning task.

4 Research Questions

RQ1: Does training the model on human high-
lights improve the generalization properties of
the model? Nowadays, machine learning sys-
tems can learn to capture spurious correlations
in the data for solving any given task, and of-
ten struggle in more challenging cases (McCoy
et al., 2019). When models are allowed to make
predictions without considering rationales-related

~x z y?

p( z; ?)
di scr et e Pr obabi l i t y  

di st r i but i on

Encoder Decoder

Figure 4: Illustration of the learning problem. z is
the discrete latent structure, x and y are feature in-
puts and target outputs, Encoder maps X 7→ θ, De-
coder maps Z 7→ Y , and p(z; θ) represents the discrete
probability distribution. The dashed path indicates non-
differentiability.

criteria—faithfulness and plausibility—the ratio-
nales extracted by the model can be incomprehen-
sible and lack meaningful interpretations (Vig and
Belinkov, 2019). Without understanding the factors
and information that influence the predictions of
the model, it becomes difficult to trust or explain its
outputs. In certain contexts, faithful explanations
are crucial – for example, they can be used to deter-
mine whether a model relies on protected attributes,
such as gender or religious group (Pruthi et al.,
2020). McCoy et al. (2019) propose the hypoth-
esis that neural natural language inference (NLI)
models might rely on three fallible syntactic heuris-
tics: (i) lexical overlap, (ii) subsequences, and (iii)
constituents. To evaluate whether the models have
indeed adopted these heuristics, we use Heuristic
Analysis for NLI Systems (HANS, McCoy et al.,
2019), which includes a variety of examples where
such heuristics fail, providing a means to assess a
model’s reliance on these heuristics. Table 7 shows
instances of these heuristics in the HANS dataset.

Faithfulness refers to the degree to which an
explanation provided by a model accurately reflects
the information utilized by the model to make a
decision (Jacovi and Goldberg, 2020). they can
be used to determine whether a model is relying
on protected attributes, such as gender or religious
group (Pruthi et al., 2020).

RQ2: How can we make machines imitate human
rationales? Human rationales are often derived
from their extensive background knowledge and
understanding of various concepts. While language
models (LMs) possess some degree of this knowl-
edge, they face challenges in balancing between
optimizing for task performance and meeting the
criteria for extractive explanations. Therefore, bal-
ancing plausibility, faithfulness, and task accuracy
presents a challenging task. A model can reflect its
inner process to make a prediction (faithful), but
it may not make sense for humans (implausible).
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Figure 5: REFER Pipeline. The Task Model is trained using (i) Task Loss, (ii) Sufficiency Loss, and (iii)
Comprehensiveness Loss, while the Rationale Extractor is trained through backpropagation using (i) Plausibility
Loss, (ii) Sufficiency Loss, and (iii) Comprehensiveness Loss. This approach ensures a high level of consistency
across each criterion, as all components are aware of each other’s status and can adapt to strike a balance among the
three criteria.

On the other hand, a model that returns convincing
rationales (plausible) without using them during
decision-making is not very useful (unfaithful).

RQ3: Does training the model on a small number
of human highlights improve its generalization
properties? Humans can efficiently learn new
tasks with only a few examples by leveraging their
prior knowledge. Recent approaches for rational-
izing rely on a large number of labeled training
examples, including task labels and annotated ratio-
nales for each instance. Obtaining such extensive
annotations is often infeasible for many tasks. Ad-
ditionally, fine-tuning LMs, which typically have
billions of parameters, can be expensive and prone
to overfitting. Given the high cost of human anno-
tations, a more practical approach involves incor-
porating a limited amount of human supervision.
We investigate the characteristics of effective ra-
tionales and demonstrate that making the neural
model aware of its rationalized predictions can sig-
nificantly enhance its performance, especially in
low-resource scenarios.

RQ4: Do the learned rationale extractors gen-
eralize to OOD data? The poor performance of
models on OOD datasets can stem from limitations
in the model’s architecture, insufficient signals in
the OOD training set, or a combination of both
(McCoy et al., 2019). An NLI system that correctly
labels an example may not do so by understanding
the meaning of the sentences but rather by relying
on the assumption that any hypothesis with words
appearing in the premise is entailed by the premise
(Dasgupta et al., 2018; Naik et al., 2018). Guru-

rangan et al. (2018) raises doubts about whether
models trained on the SNLI dataset truly learn lan-
guage comprehension or primarily rely on spurious
correlations, also known as artifacts. For instance,
words like "friends" and "old" frequently appear
in neutral hypotheses. To analyze this, we eval-
uate our model on contrast sets (Gardner et al.,
2020) as well as unseen data, which are (mostly)
label-changing small perturbations on instances to
understand the true local boundary of the dataset.
Essentially, they help us understand if the rationale
extractor has learned any dataset-specific shortcuts.
Table 9 shows samples for both label-changing and
and non-label-changing instances modified by Li
et al. (2020).

5 Experiment

5.1 Baselines

The first class of baselines is AAs, which do not
involve training Fext and is applied post hoc (i.e.,
they do not impact Ftask’s training). Integrated Gra-
dient baseline (AA (IG), Sundararajan et al., 2017)
is utilized as a baseline for this class. Saliency
Guided Training (SGT, Ismail et al., 2021) is an-
other baseline that uses a sufficiency-based crite-
rion to regularize Ftask, such that the AA yields
faithful rationales for Ftask.

Another approach is the Select-Predict Pipeline
(SPP), wherein Ftask is trained to solve a given
task using only the tokens chosen by Fext (Jain
et al., 2020; Yu et al., 2019; Paranjape et al., 2020);
therefore, SPPs aim for "faithfulness by construc-
tion". FRESH (Jain et al., 2020) and A2R (Yu et al.,
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Figure 6: Comparison of models w.r.t. faithfulness NRG (FNRG), plausibility NRG (PNRG), and composite NRG
(CNRG). +P, +F, +FP indicate whether the model was regularized for plausibility, faithfulness, or both.

2019) have been proposed to produce faithful ra-
tionales: FRESH relies on training Ftask and Fext
separately, while A2R aims to improve Ftask’s task
performance by regularizing it with an attention-
based predictor that utilizes the full input (Jain
et al., 2020; Yu et al., 2019).

The most recent pipeline is UNIREX (Chan
et al., 2022), which considers two main architec-
ture variants: (i) Dual LM (DLM), where Ftask
and Fext are two separate Transformer-based LMs
with the same encoder architecture (ii) Shared LM
(SLM), where Ftask and Fext share encoder, while
Fext has its own output head. Figure 10 shows
the architecture for DLM and SLM in UNIREX.
DLM provides more capacity for Fext, which can
help Fext provide plausible rationales. While SLM
leverages multitask learning and improve faithful-
ness since Fext has greater access to information
about Ftask’s reasoning process (Chan et al., 2022).
REFER benefits from both SLM and DLM archi-
tectures by establishing communication between
separate Ftask and Fext using back-propagation.

5.2 Metrics

To evaluate faithfulness, plausibility, and task per-
formance, we adopt the metrics established in
the ERASER benchmark (DeYoung et al., 2020)
and UNIREX (Chan et al., 2022). For assessing
faithfulness, we use comprehensiveness and suf-
ficiency, and calculate the final comprehensive-
ness and sufficiency metrics using the area-over-
precision curve (AOPC). Measuring exact matches
between predicted and reference rationales is likely
too strict; thus, DeYoung et al. (2020) also consider
the Intersection-Over-Union (IOU) which permits
credit assignment for partial matches. We use these
partial matches to calculate the Area Under the
Precision-Recall Curve (AUPRC) and Token F1
(TF1) to quantify the similarity between the ex-

tracted rationales and the gold rationales (DeYoung
et al., 2020; Narang et al., 2020). Also, we use ac-
curacy and macro F1 to evaluate the task model per-
formance on CoS-E and e-SNLI, respectively. To
compare different methods w.r.t. all three desider-
ata, Chan et al. (2022) utilized the Normalized Rel-
ative Gain (NRG) metric that maps all raw scores
to range [0, 1] — the higher the better. Finally, to
summarize all of the raw metrics, we compute sin-
gle NRG score by averaging the NRG scores for
faithfulness, plausibility, and task accuracy.

5.3 Datasets

We primarily experiment with the CoS-E (Rajani
et al., 2019) and e-SNLI (Camburu et al., 2018)
datasets, all of which have gold rationale annota-
tions from ERASER (DeYoung et al., 2020). For
the OOD generalization evaluation, we consider
MNLI (Williams et al., 2018) and HANS (McCoy
et al., 2019).

CoS-E (Rajani et al., 2019) consists of multiple-
choice questions and answers taken from the work
of (Talmor et al., 2019). It includes supporting ra-
tionales for each question-answer pair in two forms.
Extracted supporting snippets and free-text descrip-
tions that provide a more detailed explanation of
the reasoning behind the answer choice.

e-SNLI (Camburu et al., 2018) is an augmen-
tation of the SNLI corpus (Bowman et al., 2015)
and includes human rationales as well as natural
language explanations. For neutral pairs, annota-
tors could only highlight words in the hypothesis.
Furthermore, they consider explanations involving
contradiction or neutrality to be correct as long
as at least one piece of evidence in the input is
highlighted. Focusing on the hypothesis and al-
lowing partial highlighting of evidence leads to the
collection of non-comprehensive highlights in the
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dataset.

MNLI (Williams et al., 2018) covers a broader
range of written and spoken text, subjects, styles,
and levels of formality compared to SNLI. It was
introduced to determine the logical relationship
between two given sentences. To evaluate the plau-
sibility metrics on OOD data, we performed a ran-
dom sampling of 50 instances from the MNLI val-
idation split and annotated them manually w.r.t.
gold labels. We referred to this particular subset
of data as e-MNLI. Table 6 shows instances from
e-MNLI for different labels. To conduct additional
OOD generalization evaluation, we utilized two
OOD Contrast Sets called MNLI-Contrast and
MNLI-Original. These contrast sets were created
by slightly modifying the original MNLI instances
(Li et al., 2020). In MNLI-Contrast, the modifi-
cation changes the original label, while in MNLI-
Original, the original label remains the same. Ex-
amples of these contrast sets are shown in Table 9.

HANS (McCoy et al., 2019) is designed to eval-
uate the capability of NLI systems to rely on heuris-
tics and patterns instead of genuine understanding.
HANS consists of sentence pairs carefully crafted
to mislead models using three heuristic categories:
Lexical Overlap, Subsequence, and Constituent.
Instances for each heuristic are given in Table 7.
By evaluating models on the HANS dataset, re-
searchers can gain insights into the limitations and
robustness of NLI systems.

6 Results

RQ1: Does training the model on human high-
lights improve the generalization properties of the
model? We label with +P and +FP the models
trained by optimizing for plausibility and jointly
faithfulness and plausibility, respectively. Figure 6
displays the main results for e-SNLI in terms of
NRG. Overall, REFER+FP achieved the highest com-
posite NRG, improving over the strongest baseline
(UNIREX SLM+FP) by 12%. Regarding plausibility,
models explicitly trained for plausibility (+P) or
both faithfulness and plausibility (+FP) achieved
similar results, with REFER+FP outperforming the
second-best model by 3%. Regarding faithfulness,
REFER achieved the highest score in all three con-
figurations. An interesting finding is that even
when training REFER and A2R solely for plau-
sibility (REFER+P and A2R+P), their faithfulness
NRG scores remain considerably higher than all

Table 1: Comparison of ER metrics for truly predicted
labels and falsely predicted labels. (↑) indicates the
higher value is better and (↓) the lower is better.

Metrics True Predictions Wrong Predictions

Sufficiency AOPC (↓) 0.0488 0.1566
Comprehensiveness AOPC (↑) 0.3311 0.3057
Plausibility TF1 (↑) 0.8016 0.7012
Plausibility AUPRC (↑) 0.8834 0.7350

Table 2: REFER highlights on e-SNLI. Instead of visual-
izing hard tokens selected by the model, we highlighted
all the words w.r.t. their score.

Model Highlights

Original Instance
Premise: A man in green pants and blue shirt pushing a cart.
Hypothesis: A woman is smoking a cigarette.
Label: contradiction

REFER without
ER regularization

Premise: A man in green pants and blue shirt pushing a cart .
Hypothesis: A woman is smoking a cigarette .
Predict: contradiction

REFER with
ER regularization

Premise: A man in green pants and blue shirt pushing a cart .
Hypothesis: A woman is smoking a cigarette .
Predict: contradiction

other methods. Detailed results are shown in Ta-
ble 10 and Table 11. Additionally, we analyzed the
model’s predictions on correctly labeled instances
compared to falsely labeled ones, as presented in
Table 1. Surprisingly, although the model achieves
relatively high plausibility scores, the sufficiency
and comprehensiveness metrics are low when the
model predicts the wrong label. This suggests that
even when human rationales are extracted from the
inputs, the model does not strongly rely on them in
falsely labeled input.

The extracted rationales by the model, shown
in Table 2, demonstrate the impact of regulariza-
tion on explanation regularization. Without ER
regularization, the model’s reasoning tends to rely
on specific data patterns and heuristics rather than
meaningful explanations. In contrast, when the
model is regularized on ER, the quality of the ra-
tionales improves significantly in terms of faithful-
ness and plausibility. For instance, the example
highlights the selection of "man pushing cart" and
"woman smoking cigarette" as rationales to predict
the label contradiction. The evaluation metrics for
faithfulness on e-SNLI in Table 4 further support
the notion that the model genuinely relies on these
rationales for its predictions.

RQ2: How can we make machines imitate hu-
mans’ rationales? Figure 7 shows the distribu-
tion of the results for different combinations of
faithfulness and plausibility loss weights on the
CoS-E validation set. We trained the model for
(αf , αp) ∈ {0.0, 0.5, 1.0}2. Based on the results,
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Figure 7: Results distribution of CoS-E dev split for dif-
ferent faithfulness and plausibility weights and k=50%.
Kernel Density Estimation is used to have smoothed
distribution over discrete data points for visualization
purposes.
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Figure 8: Comaprioson of different models w.r.t. faith-
fulness NRG (FNRG), plausibility NRG (PNRG), and
composite NRG (CNRG).

there is a slight reverse correlation between plausi-
bility and faithfulness. However, the task shows rel-
atively stable behavior over faithfulness and plausi-
bility variation. This means that, with our pipeline,
we cannot reach a higher plausibility and faithful-
ness trade-off from a certain level on CoS-E.

RQ3: How would small supervision of human
highlight help? We conducted experiments to in-
vestigate how our model behaves when different
percentages of human-annotated data are included
in the training set. Figure 8 showcases the out-
comes obtained for all training criteria when vary-
ing percentages of human annotation were used:
0.1%, 1%, 10%, 20%, 50%, and 100%. The results
indicate that until 10% of the data is annotated by
humans, the plausibility remains consistent. On
the other hand, REFER achieves comparable plau-
sibility to 100% human supervision with just 50%
of human annotation. This means REFER enables
effective plausibility optimizations using minimal
gold rationale supervision. In contrast, task perfor-
mance is reduced by increasing the human rationale
supervision since the model should learn from hu-
man highlights instead of repetitive patterns. Faith-
fulness does not exhibit a clear relationship with
the availability of gold rationales, as it relies on
the model’s intrinsic features rather than human-
provided rationales.
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Figure 9: Plausiblity TF1 score of model trained for
top-50% and evaluated for other top-k%s.

Table 3: Comparison of the performance of REFER with-
out explanation regularization on ID and OOD dataset.

Metrics
ID without ER
regularization OOD Datasets Contrast Test

e-SNLI MNLI HANS e-MNLI MNLI-Contrast MNLI-Original

Task Accuracy (↑) 90.47 74.65 67.09 76.00 82.66 88.72
Task Macro F1 (↑) 90.48 74.80 28.57 75.93 60.25 88.74
Sufficiency AOPC (↓) 0.205 0.206 0.305 0.249 0.226 0.201
Comprehensiveness AOPC (↑) 0.243 0.212 0.272 0.224 0.210 0.249
Plausibility TF1 (↑) 0.254 N/A N/A 0.197 N/A N/A
Plausibility AUPRC (↑) 0.211 N/A N/A 0.167 N/A N/A

Table 4: Comparison of the performance of REFER with
explanation regularization on ID and OOD dataset.

Metrics
ID with ER

regularization OOD Datasets Contrast Test

e-SNLI MNLI HANS e-MNLI MNLI-Contrast MNLI-Original

Task Accuracy (↑) 90.33 74.10 66.06 78.00 82.11 88.37
Task Macro F1 (↑) 90.36 74.13 27.75 78.11 59.92 88.44
Sufficiency AOPC (↓) 0.059 0.109 0.071 0.100 0.091 0.050
Comprehensiveness AOPC (↑) 0.329 0.310 0.320 0.315 0.321 0.329
Plausibility TF1 (↑) 0.792 N/A N/A 0.616 N/A N/A
Plausibility AUPRC (↑) 0.869 N/A N/A 0.445 N/A N/A

RQ4: Does learned rationale extractor generalize
over OOD data? Table 3 and Table 4 show the
REFER results on ID and OOD datasets. In both
Tables REFER is trained on ID dataset and evalu-
ated over ID and OOD sets. We consider the results
from Table 3 as the baseline and analyze the effect
of ER regularization in Table 4. When we train
the model with explanation regularization, faith-
fulness and sufficiency are enhanced. On MNLI,
sufficiency improves from 0.206 to 0.109, while
on HANS, it goes from 0.249 to 0.071. Regard-
ing Comprehensiveness, training the model along
with ER regularization improves the baseline from
0.212 to 0.310 on MNLI and from 0.272 to 0.320
on HANS. Besides, results on e-MNLI in Table 4
show that the plausibility of OOD is significant
and comparable to the ID data. Similarly, the com-
prehensiveness and sufficiency improve on both
MNLI-Contrast and MNLI-Original. However, the
results on MNLI-Original seem to be better, espe-
cially w.r.t task macro F1, which means the model
performs equally well predicting different labels.

Another interesting finding is that the model
trained for a specific top-k% performs well on other
top-k% during inference w.r.t. plausibility. Fig-
ure 9 display roughly stable behavior of the model
trained for top-50% and evaluated for other top-k%
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w.r.t. plausibility TF1. This means the model tends
to select rationales among human highlights even
with a low number of k. Table 8 illustrates the ra-
tionale selected by the model trained for top-50%
and evaluated for different ks.

7 Conclusions

In this paper, we propose REFER, a rationale extrac-
tion framework that jointly trains the task model
and the rationale extractor to optimize downstream
task performance, faithfulness, and plausibility. Be-
ing fully end-to-end, thanks to Adaptive Implicit
Maximum Likelihood Estimation (Minervini et al.,
2023), enables the task model and the rationale
extractor to be jointly optimized for these crite-
ria, therefore aware of each other behavior and
adopting their parameter to improve their perfor-
mance and obtain a better balance. We then an-
alyze several aspects of the rationale extraction
process, investigating how human rationales affect
the model behavior; how the model can imitate
human-generated rationales; and to what extent the
learned models can generalize on OOD datasets.
Finally, by answering all these questions, we com-
pare REFER performance with other methods and
architectures and illustrate that our model outper-
forms previous models in most cases.
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A Model Detail

Transformers-based models, such as BERT, have
been one of the most successful deep learning mod-
els for NLP. Unfortunately, one of their core limita-
tions is the quadratic dependency (mainly in terms
of memory) on the sequence length due to their
full attention mechanism. To remedy this, Zaheer
et al. (2020) proposed BIGBIRD, a sparse attention
mechanism that reduces this quadratic dependency
to linear. They show that BIGBIRD is a universal
approximator of sequence functions and is Turing
complete, thereby preserving these properties of
the quadratic, full attention model. Along the way,
their theoretical analysis reveals some of the bene-
fits of having O(1) global tokens (such as CLS) that
attend to the entire sequence as part of the sparse at-
tention mechanism. The proposed sparse attention
can handle sequences of length up to eight times
what was previously possible using similar hard-
ware. Due to the capability to handle longer con-
texts, BIGBIRD drastically improves performance
on various NLP tasks such as question answering
and summarization.

B Hyperparameters

In our implementation, we utilize BigBird-Base
(Zaheer et al., 2020) as the backbone for both Ftask
and Fext. This choice enables us to effectively han-
dle input sequences of considerable length, accom-
modating up to 4096 tokens. We used AIMLE,
which uses adaptive target distribution with al-
pha and beta initialized to 1 and 0, respectively.
Throughout all experiments, we maintain a con-
sistent learning rate of 2 × 10−5 and employ an
effective batch size of 32. Our training process
spans a maximum of 10 epochs, with early stopping
applied after 5 epochs of no significant improve-
ment. To ensure optimal performance, we focus
our hyperparameter tuning efforts on the weights
associated with faithfulness and plausibility losses,
specifically αc = αs = αf, and αp as well as
top-k%. We applied a grid search across various
configurations and evaluated their impact on com-
prehensiveness, sufficiency, plausibility scores, and
task performance. The entire implementation is car-
ried out using the PyTorch-Lightning framework
(Paszke et al., 2019; Falcon, 2019), which provides
a streamlined and user-friendly environment for
deep learning experiments.

Task/ RE Encoder

Task Head RE Head

ci si

Task LM
Rat i onal

Ext r act i on
LM

Task Head RE Head

ci si

mi (masked input)

xi (input sequence)

Figure 10: Shared LM (left) and Dual LM (right) archi-
tecture. Using shared LM, the task model and rational
extractor share the same encoder. While in the Dual LM
model, they are completely separate

Table 5: Examples of highlights differing in comprehen-
siveness and sufficiency

Instance with Highlight Type of Highlight

Premise: People are stretching on yoga mats.
Hypothesis: They stretched on bikes.
Label: contradiction

Premise:People are stretching on yoga mats.
Hypothesis:They stretched on bikes.
(sufficient)

Premise: People on bicycles waiting at an intersection.
Hypothesis: There are people on bicycles.
Label: entailment

Premise: People on bicycles waiting at an intersection.
Hypothesis:There are people on bicycles.
(comprehensive)

Premise: People on bicycles waiting at an intersection.
Hypothesis: Some people on bikes are stopped at a junction.
Label: neutral

Premise: People on bicycles waiting at an intersection.
Hypothesis: Some people on bikes are stopped at a junction.
(¬ sufficient)

C OOD Generalization

Out-of-distribution (OOD) generalization refers to
the ability of a model to accurately handle data sam-
ples that deviate from the distribution of its training
data. OOD generalization is a critical challenge in
NLP tasks and plays a pivotal role in ensuring the
reliability and effectiveness of NLP models in real-
world applications. Effective OOD generalization
in NLP requires models to capture and understand
the underlying linguistic properties and generaliz-
able patterns rather than relying on memorization
or overfitting specific training instances. However,
despite the growing interest in OOD generalization,
existing evaluations in the field of explanation ro-
bustness have been limited in scope and coverage.
Existing works primarily evaluate explanation reg-
ularization models via in-distribution (ID) general-
ization (Zaidan et al., 2007; Lin et al., 2020; Huang
et al., 2021), though a small number of works have
done auxiliary evaluations of OOD generalization
(Ross et al., 2017; Kennedy et al., 2020; Rieger
et al., 2020). Consequently, there is a lack of com-
prehensive understanding regarding the impact of
explanation robustness on OOD generalization. To
address this gap, Joshi et al. (2022) introduce ER-
TEST, a unified benchmark specifically designed
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Figure 11: ER-TEST Framework - Apart from existing
ID evaluations of ER criteria, ER-TEST evaluates ER’s
impact on OOD generalization along three dimensions:
A. Unseen datasets, B. Contrast set tests, and C. Func-
tional tests.

Table 6: e-MNLI instances for different labels. Follow-
ing e-SNLI for neutral labels only tokens in hypothesis
are highlighted.

Instances with Highlights Label

Premise: They drive it around the country in a dilapidated ice-cream truck trying to keep it cool.
Hypothesis: They used an ice cream truck to try and keep it from getting warm.

entailment

Premise: Then he turned to Tommy.
Hypothesis: He talked to Tommy.

neutral

Premise: but i’ve lived up here all my life and i’m fifty eight years old so i i could
Hypothesis: I have moved somewhere else in my life.

contradiction

to assess the OOD generalization capabilities of ex-
planation regularization models across three dimen-
sions. These dimensions include evaluating models
on (i) unseen datasets, (ii) conducting contrast set
tests to measure their ability to handle diverse and
challenging inputs, and (iii) functional tests which
include four scopes: vocabulary tests, logic tests,
robustness tests, and entity tests – the functional
test is not included in our work. We leave this field
for future work – to assess their reasoning and in-
ference capabilities. Examples of each dimension
are shown in Figure 11.

Ideally, we would like the explanation regular-
ization model to perform well on all three aspects
during the evaluation of OOD data. However, since
the datasets for OOD evaluation do not contain
human-annotated rationales there is no possibility
of assessing the plausibility criteria. By addressing
the OOD generalization challenge, NLP models
can achieve greater robustness, adaptability, and
practical utility in real-world scenarios, thus ad-
vancing the field of natural language processing

Table 7: The heuristics targeted by the HANS dataset,
along with examples of incorrect entailment predictions
that these heuristics would lead to.

Heuristic Definition Example

Lexical overlap
The premise entails all hypotheses
constructed from its own words.

The judges admired the doctors.
Wrong−−−→ The doctors admired the judges .

Subsequence
The premise entails all of its
contiguous subsequences.

The lawyers believed the bankers resigned.
Wrong−−−→ The lawyers believed the bankers.

Constituent
The premise entails all complete
subtrees in its parse tree.

Probably the tourists waited.
Wrong−−−→ The tourists waited.

Table 8: Comparison of rationales extracted by REFER
trained on k=50%. We forced the model for other k to
see how it selects rationales.

Dataset Test Instance

Gold
Premise: a woman wearing a pink tank top holding a mug of liquid
Hypothesis: A woman in a blue tank top holding a car.
Label: contradiction

k=20%
Premise: a woman wearing a pink tank top holding a mug of liquid
Hypothesis: A woman in a blue tank top holding a car.

k=30%
Premise: a woman wearing a pink tank top holding a mug of liquid
Hypothesis: A woman in a blue tank top holding a car.

k=40%
Premise: a woman wearing a pink tank top holding a mug of liquid
Hypothesis:A woman in a blue tank top holding a car.

k=50%
Premise: a woman wearing a pink tank top holding a mug of liquid
Hypothesis: A woman in a blue tank top holding a car.

k=60%
Premise: a woman wearing a pink tank top holding a mug of liquid
Hypothesis: A woman in a blue tank top holding a car.

Table 9: MNLI Contrast Test Set. In the MNLI-Original
the original label is unchanged while in the MNLI-
Contrast the label is also changed based on changes
in premise or hypothesis.

Model Contrast Set Instance

MNLI-Contrast

Premise: yeah well that’s not really immigration.
past simple−−−−−−→ Yeah well that wasn’t immigration.
Hypothesis: That is not immigration.
future simple−−−−−−−→ That won’t be immigration.
Label: entail−→ neutral

MNLI-Original

Premise: Clearly, GAO needs assistance to meet its
looming human capital challenges.
it cleft: ARG1−−−−−−−→ Clearly it is GAO who needs assistance
to meet its human capital challenges looming.
Hypothesis: GAO will soon be suffering from a shortage
of qualified personnel.
it cleft: ARG1−−−−−−−→ It is GAO who soon will be suffering from a
shortage of personnel qualified for.
Label: neutral−→ neutral

and can better handle challenging scenarios.
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Table 10: Benchmark on CoS-E dataset. Results of the baselines are obtained from the work done by Chan et al.
(2022).

Configuration Faithfulness Plausibility Task Composite

Model End-to-End Comp (↑) Suff (↓) FNRG TF1 (↑) AUPRC (↑) PNRG Accuracy (↑) TNRG CNRG

AA(IG) FALSE 0.2160 0.3780 0.3306 0.4834 0.4007 0.2935 63.56 0.9772 0.5337
SGT FALSE 0.1970 0.3240 0.3699 0.5100 0.4368 0.3702 64.35 0.9950 0.5783

FRESH FALSE 0.0370 0.0000 0.5463 0.3937 0.3235 0.0849 24.81 0.1007 0.2439
A2R FALSE 0.0140 0.0000 0.5167 0.3312 0.4161 0.1041 21.77 0.0319 0.2176

SGT+P FALSE 0.2010 0.3280 0.3703 0.4795 0.413 0.3020 64.57 1.0000 0.5574
FRESH+P FALSE 0.0130 0.0130 0.5001 0.6976 0.7607 0.9890 20.36 0.0000 0.4964

A2R+P FALSE 0.0010 0.0000 0.5000 0.6763 0.7359 0.9322 20.91 0.0124 0.4816

UNIREX (DLM+P) FALSE 0.1800 0.3900 0.2702 0.6976 0.7607 0.9890 64.13 0.9900 0.7497
UNIREX (DLM+FP) FALSE 0.2930 0.3210 0.4968 0.6952 0.7638 0.9892 62.5 0.9532 0.8131
UNIREX (SLM+FP) FALSE 0.3900 0.4240 0.5000 0.6925 0.7512 0.9714 62.09 0.9439 0.8051

REFER+P TRUE 0.1831 0.2098 0.4867 0.6994 0.7683 1.0000 61.35 0.9272 0.8046
REFER+F TRUE 0.2798 0.0000 0.8584 0.3835 0.6691 0.4595 63.21 0.9692 0.7624

REFER+FP TRUE 0.1206 0.1489 0.4781 0.6881 0.7393 0.9521 64.23 0.9923 0.8075

Table 11: Benchmark on e-SNLI dataset. Results of the baselines are obtained from the work done by Chan et al.
(2022).

Configuration Faithfulness Plausibility Task Composite

Model End-to-End Comp (↑) Suff (↓) FNRG TF1 (↑) AUPRC (↑) PNRG Macro F1 (↑) TNRG CNRG

AA(IG) FALSE 0.3080 0.4140 0.4250 0.3787 0.4783 0.1728 90.78 0.9909 0.5296
SGT FALSE 0.2880 0.3610 0.4557 0.4170 0.4246 0.1551 90.23 0.9766 0.5291

FRESH FALSE 0.1200 0.0000 0.6117 0.5371 0.3877 0.2337 72.92 0.5259 0.4571
A2R FALSE 0.0530 0.0000 0.5000 0.2954 0.4848 0.0989 52.72 0.0000 0.1996

SGT+P FALSE 0.2860 0.3390 0.4789 0.4259 0.4303 0.1696 90.36 0.9800 0.5428
FRESH+P FALSE 0.1430 0.0000 0.6500 0.7763 0.8785 0.9649 73.44 0.5394 0.7181

A2R+P FALSE 0.1820 0.0000 0.7150 0.7731 0.873 0.9562 77.31 0.6402 0.7705

UNIREX (DLM+P) FALSE 0.3110 0.3710 0.4819 0.7763 0.8785 0.9649 90.8 0.9914 0.8127
UNIREX (DLM+FP) FALSE 0.3350 0.3460 0.5521 0.7753 0.8699 0.9552 90.51 0.9839 0.8304
UNIREX (SLM+FP) FALSE 0.3530 0.3560 0.5700 0.7722 0.8758 0.9582 90.59 0.9859 0.8381

REFER+P TRUE 0.3127 0.1768 0.7193 0.7909 0.8411 0.9409 87.81 0.9136 0.8579
REFER+F TRUE 0.3054 0.0000 0.9207 0.4443 0.5958 0.3559 90.69 0.9885 0.7551

REFER+FP TRUE 0.3091 0.0399 0.8786 0.8126 0.8713 0.9927 91.13 1.0000 0.9571


