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Abstract

This work studies mitigating fact-conflicting
hallucinations for large language model (LLM)
at inference time. Particularly, we propose
a self-endorsement framework that leverages
the fine-grained fact-level comparisons across
multiple sampled responses. Compared with
prior ensemble methods (e.g., self-consistency
(Wang et al., 2022; Chen et al., 2023)) that per-
form response-level selection, our approach can
better alleviate hallucinations for knowledge-
intensive tasks. Our approach can broadly
benefit smaller and open-source LLMs as it
mainly conducts simple content-based com-
parisons. Experiments on Biographies show
that our method can effectively improve the
factuality of generations with simple and intu-
itive prompts across different scales of LLMs.
Besides, comprehensive analyses on TriviaQA
and GSM8K demonstrate the potential of self-
endorsement for broader application.1

1 Introduction

Recent Large Language Models (LLMs) such as
LLaMA (Touvron et al., 2023) and Mixtral (Jiang
et al., 2024) take billions of parameters and are
trained on huge corpora of text documents with bil-
lions of tokens. As a result, they have demonstrated
remarkable capabilities across various tasks such
as longform generation, closed book QA and math
reasoning. However, LLMs can still fail frequently
on these knowledge-intensive and reasoning tasks
where obviously incorrect facts or reasoning steps
are generated. To address this issue, previous work
has explored multiple orthogonal directions, such
as introducing external knowledge and tool (Mallen
et al., 2023; Peng et al., 2023; Wang et al., 2023c),
continual supervised finetuning (Wu et al., 2023;
Tian et al., 2023) and inference-time improvement

∗Corresponding Authors
1Code is available at https://github.com/DeepLearnXMU/

Self-Endorsement.

(Dhuliawala et al., 2023; Chen et al., 2023) to re-
duce hallucination and improve reasoning capabil-
ity. Among these research directions, inference-
time improvement has recently gained popularity.
The motivation behind may stem from various rea-
sons: it can be used on black-box LLMs (e.g., no
requirement on accessing the model weighs); it
can work together with supervised finetuning by
producing high-quality training data (a.k.a., self-
distillation (Huang et al., 2022)).

Many prior approaches of inference-time im-
provement can be grouped into two main direc-
tions. The ensemble methods like self-consistency
(Wang et al., 2022) and universal self-consistency
(Chen et al., 2023) build upon traditional ensemble
learning by picking the optimal prediction from
multiple candidates sampled from the target LLM.
Conversely, in the other direction, self-refinement
methods such as chain-of-verification (Dhuliawala
et al., 2023) and self-reflection (Madaan et al.,
2023; Shinn et al., 2023) leverage the target LLM
to refine its own predictions from varied perspec-
tives. Comparatively, the ensemble methods can
eliminate occasional hallucinations by looking into
multiple peering samples. But, they may fail on
longform generation tasks because the sampled
candidates disagree with each other on too many
places, making it difficult to pick the best predic-
tion. More importantly, they cannot combine the
merits from the peering samples. On the other hand,
the self-refinement methods perform fine-grained
refinement. But they rely on the assumption that
the target LLM is strong enough to provide helpful
critique for refinement, and thus most experiments
on them are conducted on state-of-the-art close-
source LLMs (e.g., GPT4 (Achiam et al., 2023)).

In this work, we follow the line of inference-
time improvement to study how and when fine-
grained cross-response validation (endorsement)
can reduce hallucination and improve reasoning
quality. Particularly, we propose a framework to im-
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Figure 1: The example framework of self-endorsement, where only two sampled candidates are leveraged.

prove LLM predictions by leveraging fine-grained
cross-response endorsements. As shown in Fig-
ure 1, we begin by generating multiple samples
from the target LLM. Next, we extract facts from
each sample and prompt the LLM to verify the en-
dorsement of each fact by cross-referencing with
the other samples. An endorsement score is then
assigned to each fact based on its level of approval.
Finally, to produce the final response, we either
select the sample with the most reliable facts or
regenerate a new one by incorporating the facts
with high endorsement scores as supplementary
inputs to the LLM. Without complex instructions,
the LLM is only required to conduct two tasks: 1)
check whether a fact is consistent with the knowl-
edge in another response at a time; 2) generate a
new response given additional high-quality facts as
inputs. Both tasks are fairly simple, thus we believe
(and our experiments show that) our method can
be broadly helpful to various open-source LLMs of
different capacities.

We mainly conduct experiments to examine the
level of fact-conflicting hallucinations in model pre-
dictions. Specifically, we evaluate on Biographies
(Min et al., 2023), a benchmark of longform gener-
ation, and TriviaQA (Joshi et al., 2017), a popular
dataset on generative QA. Results on popular open-

source models, such as LLaMA2 (Touvron et al.,
2023) and Mixtral (Jiang et al., 2024), show that
our method greatly reduces hallucination by a large
margin. Details analyses suggest that our method
can better select reliable fine-grained facts across
various model sizes. Study on GSM8K (Cobbe
et al., 2021), a benchmark of math word problems,
further validates the promise of self-endorsement
for more pervasive use.

2 Baselines

We take (universal) self-consistency (Wang et al.,
2022; Chen et al., 2023) and chain-of-verification
(Dhuliawala et al., 2023) as the baseline for compar-
ison. They are two popular methods of inference-
time improvement based on ensemble learning and
self-refinement, respectively.

2.1 (Universal) Self-Consistency

Self-consistency (SC) is a majority-voting-based
ensemble approach designed for reasoning tasks.
Specifically, it first samples multiple reasoning
paths and their corresponding answers from the
LLM, e.g., (ri, ai), where ri ⇒ ai. It then selects
the most consistent answer via taking a majority
vote over ai, i.e., maxa∑i 1(ai = a). With chain-
of-thought prompting (CoT), it has demonstrated
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(a) Universal Self-Consistency

(b) Chain-of-Verification

Figure 2: Two main baselines in this work.

remarkable performance gains on complex reason-
ing tasks. However, self-consistency can only be
applied to tasks where the final answer can be ag-
gregated via exact match (e.g., question answering
and math word problems).

To support broader applications, universal self-
consistency (USC) extends self-consistency by tak-
ing the LLM itself (instead of majority voting) to
select the final response from the samples it gener-
ated. Particularly as shown in Figure 2a, the LLM
is first asked to sample multiple candidates, it then
consumes all these candidates to pick one as the
final response. To achieve precise final answer se-
lection, USC may require that the LLM possesses
robust critical analysis capabilities.

2.2 Chain-of-Verification

Different from ensemble-based SC / USC, chain-
of-verification (CoVe) refines factual errors in one
response and then regenerates a new one by the
LLM itself. As shown in Figure 2b, the LLM is
asked to first (I) draft an initial sample; then (II)
plan verification questions to fact-check its draft;
(III) answer those questions independently; and

(IV) generate its final verified response.
The core motivation of CoVe is that LLMs tend

to provide more accurate facts to simple questions
(e.g., the verification questions) than complex ques-
tions (e.g., the original question). Hence it can
improve the factuality of the overall response.

3 Self-Endorsement

As shown in Figure 1, our self-endorsement frame-
work interacts with an LLM by taking the following
steps given a user query X :
(1) Candidate Sampling: It asks the LLM to sample
N candidate responses Y1, Y2, ..., YN .
(2) Fact Decomposition: It breaks down each can-
didate Yi into facts f i

1, f
i
2, ..., f

i
NYi

, where NYi is
the number of facts in Yi.
(3) Fact Verification: It verifies each fact f i

j via
calculating its endorsement scores against other
candidates {Yk ∣ k ≠ i}. We also explore context
pruning, which eliminates unrelated content in can-
didates for verification.
(4) Final Response Production: Produce a final
response via selection or regeneration. Specifically,
we either select the response with facts having the
highest endorsement scores as the final response or
ask the LLM to regenerate a new one Y given the
set of selected facts Z from different candidates.

3.1 Candidate Sampling
We follow the common practice of sampling N
responses via nucleus sampling. Each sampling
process is denoted as Yi ∼ LLM(X ).
3.2 Fact Decomposition
Following exiting work (Gao et al., 2022; Liu et al.,
2023), we consider a fact as a statement about
some factual knowledge. There are many ways
to conduct fact decomposition. We first adopt a
naive method used by some previous work (Liu
et al., 2023; Manakul et al., 2023), which takes
each sentence in a response as a fact. However,
it fails to consider the situations that some sen-
tences can contain multiple independent facts (Liu
et al., 2023) or do not contain any fact. Therefore,
we also study prompting the LLM itself to extract
facts from its responses. This process is denoted
as f i

1, f
i
2, ..., f

i
NYi
= LLM(Yi, PD), where PD is the

corresponding LLM instruction shown below:

List all non-repeated facts from the text below
in numerical order. Each fact should be a self-
contained sentence: Yi
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We observe that the LLM-prompting method
can effectively eliminate statements without factual
knowledge and break down complex sentences into
multiple pieces of facts.

3.3 Fact Verification by Self-Endorsement
We verify each fact via its endorsement score: the
degree of the fact being consistent with the content
in other sampled responses. There are multiple
ways to compare two pieces of text, such as query-
ing the LLM or calling a sentence encoder (e.g.
SimCSE (Gao et al., 2021)). For simplicity and to
minimize the effect of extra supervision, we choose
to query the LLM via prompting.

Formally, for a fact f i
j from response Yi, we feed

f i
j and another response Yk (k ≠ i) to the LLM with

prompt PV to determine whether Yk endorses f i
j .

Then, we define the endorsement score of f i
j as

g(f i
j) = 1

N − 1∑k≠i I[LLM(f i
j , Yk, PV ) is true].

The prompt PV is simply defined as

Take the following as truth: Yk
Then the following statement: “f i

j” is true, false,
or inconclusive?

In many situations, especially for longform gen-
eration, most facts in Yk can be irrelevant to f i

j .
Therefore, we propose to further prune the unnec-
essary context and only keep the most related parts
to speed up inference. Particularly, we select top-
K similar facts to f i

j from each Yk using the BM25
algorithm. Then, we concatenate the K selected
facts (denoted as Y ′k ) to verify f i

j .
Generally, the endorsement score reflects the

level of confidence from the LLM to a piece of fact.
Therefore, facts with higher endorsement scores
have higher chances to be faithful.

3.4 Selection / Regeneration for Final
Response Production

Selection After the above steps, a simple option
is to select one from the sampled candidates as
the final response Y . For each candidate Yi, we
average the endorsement scores of its facts (i.e.,
Avg(g(f i

1), ...)) and select the one with the high-
est average score as the final response. However,
this does not fully exploit the potential of our
framework due to the following reasons: (1) There
can still be factual errors in the selected response.
(2) Helpful and complementary facts in other re-
sponses are not efficiently leveraged.

Regeneration We propose another option that
prompts the LLM to regenerate the final response
Y with selected facts (Z) from all samples: Y ∼
LLM(X ,Z, PG), where prompt PG is defined as

Knowledge from other sources: Z
Given the materials above, answer the question:X

To select useful facts, we first discard the facts
whose endorsement scores do not exceed a thresh-
old α (i.e., g(f i

j) ≤ α). Though this can effectively
prune low-quality facts, there can still be facts of
redundant content. We then adopt a K-means al-
gorithm that takes bag-of-words features as the
representation for each fact and groups the facts
into C clusters. Lastly, we select the fact closest to
the centroid for each cluster to form the selected
fact set Z that contains ∣C∣ facts.

4 Experiments

4.1 Setup
Datasets We mainly conduct experiments on Bi-
ographies (Min et al., 2023) and TriviaQA (Joshi
et al., 2017). Biographies is a popular bench-
mark focusing on knowledge-intensive longform
text generation. It contains 183 person entities
used to prompt LLMs about their biographies with
the query “Tell me a bio of <entity>”. Trivi-
aQA (Joshi et al., 2017) is a popular open-domain
question-answering benchmark. We do not add
restrictions (e.g., early stopping or instructing the
LLM to only generate the answer) to encourage the
LLM to generate explanations and relevant knowl-
edge in addition to the answer. For evaluation, we
report answer recall (Ans. Rec.) in addition to
Fact Acc. and #Fact. For math reasoning, we test
self-endorsement on GSM8K (Cobbe et al., 2021).
More details about both datasets are introduced
later in this section.

Evaluation For Biographies, we follow Min et al.
(2023) to evaluate the accuracy of decomposed
facts (Fact Acc.) using their released inst-LLaMA-
7B model together with the Wikipedia dump from
2023/04/01 as judge. Particularly, the correctness
of each fact is evaluated by inst-LLaMA-7B that
takes the top 5 passages retrieved from the wiki
page of the topic entity as extra evidence. Though
inst-LLaMA-7B is much smaller than the start-of-
the-art LLMs such as ChatGPT, Min et al. (2023)
has shown that inst-LLaMA-7B can always give
consistent judging decisions with ChatGPT. In ad-
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dition to Fact Acc., we also report the number of
facts (#Fact), because good responses should con-
tain a decent number of facts of high accuracy.

For TriviaQA, we follow standard practice to
also report answer recall (Ans. Rec.) in addition
to fact accuracy and the number of facts. Answer
recall measures if the target answer is contained
in the generated response. For GSM8K, we report
the quality of the intermediate reasoning steps us-
ing GPT4 as judge (GPT4 (Y) and GPT4 (N)) in
addition to the accuracy of the final answer (Acc.).
More details on the quality of the intermediate steps
are introduced in the corresponding section.

Settings and Hyperparameters We conduct ex-
periments based on LLaMA2-7B-Chat, LLaMA2-
70B-Chat (Touvron et al., 2023) and Mixtral-
8x7B-Inst (Jiang et al., 2024) for Biographies and
TriviaQA. Only Mixtral-8x7B-Inst is adopted for
GSM8K due to its stronger math capabilities.

For our approach, we use nucleus sampling with
a temperature of 1.0 when generating responses
and use greedy decoding otherwise. We prompt
the target LLM to extract facts for Biographies
and TriviaQA and directly take each sentence in
a response as a fact for GSM8K. We empirically
set candidate number N (§3.1), the number of kept
context facts K (§3.3), and fact-filtering threshold
α (§3.4) as 10 / 10, 3 / 3, 1.0 / 0.8 for LLaMA2-7B-
Chat / LLaMA2-70B-Chat. The K-means cluster
number C is dynamically decided by the average
number of facts across the N candidate responses.
We also conduct careful analyses on the effects of
these hyperparameters.

Baselines One obvious baseline is simply calling
LLM to sample a response. We report the average
numbers from N sampled responses to alleviate
the randomness of the sampling process. In addi-
tion, we take the following baselines for a better
understanding of our approach:

• Refine: Considering the power of LLMs, an LLM
might be able to correct its own errors given a
second chance. This baseline is set to quantify
the gain from this effect.

• (Universal) Self-Consistency (SC / USC): They
are implemented as mentioned in §2.1.

• Chain-of-Verification (CoVe): Its implementation
follows the description in §2.2.

Model Fact Acc. #Fact
LLaMA2-7B-Chat 53.2 16.8

+refine 52.6 15.7
+USC 53.5 15.9
+CoVe 54.8 9.8

self-endorsement
+select 58.2** 15.9
+select w/ pruning 59.6** 15.2
+regenerate 67.7** 14.9
+regenerate w/ pruning 65.7** 14.6

LLaMA2-70B-Chat 63.1 20.0
+refine 64.9* 20.2
+USC 61.6 20.4
+CoVe 64.0 16.5

self-endorsement
+select 66.5** 19.4
+select w/ pruning 67.7** 18.8
+regenerate 73.1** 18.3
+regenerate w/ pruning 73.0** 17.9

Table 1: Test results on Biographies. Results using
Mixtral-8x7B-Inst is in Table 5 of Appendix due to
limited space. We conduct bootstrap resampling for
significant test. *, ** denote significantly better results
over the base LLM (the first line in each group) with
significance level p < 0.05 and p < 0.01, respectively.

4.2 Results and Analyses

Self-endorsement Helps Improving Factuality
As shown in Table 1, none of the baselines (+re-
fine, +USC and +CoVe) can significantly improve
over the 7B and 70B LLaMA2-Chat model regard-
ing Fact Acc. In contrast, self-endorsement gives
significant improvements over baselines no matter
whether the final response is selected or regener-
ated and whether context pruning is used or not.

Among those baselines, only CoVe can slightly
improve Fact Acc., but it obviously decreases the
#Fact, which is also observed in Dhuliawala et al.
(2023). Refine only benefits LLaMA2-70B-Chat,
while the gain is still much inferior to our self-
endorsement approaches based on self-selected
high-quality facts. The results of Refine also in-
dicate that naive self-refinement demands strong
capabilities of the LLM.

For our methods, because regeneration can in-
clude reliable facts from all candidates and discard
incorrect facts, thus it consistently produces better
responses than selection. Using context pruning or
not gives a minor performance change regarding
Fact Acc. We will provide more analyses in later
experiments.

Endorsement Score Correlates with Factuality
Since endorsement scores play a crucial role in the
success of our approaches, we further investigate
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(a) LLaMA2-7B-Chat (b) LLaMA2-70B-Chat

Figure 3: Statistical correlation between endorsement
scores and factuality scores.

how endorsement scores are correlated with the
actual factuality. To this end, we use inst-LLaMA-
7B with Wikipedia dump to calculate the factuality
score for each piece of fact. Figure 3 presents the
correlation between endorse scores and factuality
scores. Results on both models show clear positive
relationships between endorsement scores and fac-
tuality. LLaMA2-70B-Chat gives a stronger corre-
lation because of its stronger ability over LLaMA2-
7B-Chat. Especially, LLaMA2-7B-Chat tends to
give higher endorsement scores to certain incorrect
facts erroneously.

How the Quality of Selected Facts Affect Final
Responses? Since threshold α decides the qual-
ity of selected facts for regeneration, here we try
several values of α and visualize the correspond-
ing final-response quality in Figure 4a and 4d. We
observe that ranging α from 0 to 1 keeps bene-
fiting LLaMA2-7B-Chat but the performance on
LLaMA2-70B-Chat is increased first and then de-
creased. After a closer look, we find that a high
α may limit the quantity and diversity of selected
facts, which may hurt the regeneration quality. For
example, when α = 1, only an average number of
11.3 facts are selected under LLaMA2-70B-Chat,
while the number is 16.7 for LLaMA2-7B-Chat.
Besides, we observe a decent performance increase
with α ≥ 0.2, showing the effectiveness of our ap-
proach on alleviating the side-effect of low-quality
facts by removing them.

How Candidate Number Affects Final Responses?
Intuitively, increasing the candidate number N can
help to provide more high-quality facts and each
fact can also be better verified with more sam-
ples. As shown in Figure 4b and 4e, the perfor-
mances of both 7B and 70B models generally get

K Fact Acc. #Fact
1 62.5 15.1
3 65.7 14.6
5 66.8 14.7

ALL 67.7 14.9
1 72.4 18.1
3 73.0 17.9
5 73.2 18.2

ALL 73.1 18.3

Table 2: Performances on LLaMA2-7B-Chat (up) and
LLaMA2-70B-Chat (down) when using K facts from
other responses to calculate the endorsement score for
target facts.

improved when increasing N , and the number of
facts in regenerated responses remains stable. For
LLaMA2-7B-Chat, more improvements can be ex-
pected when N is further increased. However, this
will also bring more computational costs that can
be impractical. In contrast, LLaMA2-70B-Chat is
less sensitive, showing that a small N is enough
for stronger LLMs. Encouragingly, we also ob-
serve that our models can significantly outperform
baselines with limited samples (70.4 vs. 63.1 when
N = 2 on LLaMA2-70B-Chat). This suggests the
robustness of our method in some extreme cases.

Effect on Selecting Facts from Fewer Candidates
for Regeneration We further analyze the effect
of selecting facts from fewer number (denoted as
M and M < N ) of candidates. Note that these facts
from the M candidates can still take all N candi-
dates to calculate their endorsement scores. Results
are shown in Figure 4c and 4f. We again observe
positive effects when increasing M , because the
final responses can directly consult more provided
input facts. Besides, by comparing the results in
Figure 4b and 4c (also Figure 4e vs 4f), we find that
the latter performs better when the candidate num-
ber is small (e.g., 71.3 vs. 70.4 when both N = 2
and M = 2 on LLaMA2-70B-Chat). This indicates
that a fact can be better verified when more can-
didates are available for calculating endorsement
scores.

How Context Pruning Affects Final Responses?
Context pruning aims to eliminate unnecessary
context when calculating the endorsement score
for each fact, while it may hurt the accuracy of
fact selection and overall performance when too
much context is pruned. As shown in Table 2 (up),
LLaMA2-7B-Chat is largely influenced by K, and
its performance stably improves when K increases.
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Figure 4: Hyperparameter analyses on LLaMA-7B-Chat (up) and LLaMA-70B-Chat (down). We present different
choices of α, N and M and their effects on Fact Acc. and #Fact.

Conversely, though growing Fact Acc. scores are
observed as well for LLaMA2-70B-Chat (Table 2
(down)), the growth rate is mild (e.g., 72.4→ 73.2).
This is consistent with the comparison on both can-
didate number N (Figure 4b vs 4e) and candidate
number for fact selection M (Figure 4c vs 4f). For
both 7B and 70B models, we observe Fact Acc.
numbers that are close to when no context pruning
is used. Thus, context pruning is useful overall,
especially considering that it can save 50% of com-
putation cost when K = 5 according to statistics.
Note that we only use the vanilla BM25 algorithm
for selecting related facts. We leave exploring bet-
ter sentence matching algorithms in future work.

Evaluation Results on Question Answering Re-
sults are shown in Table 3. Our method again effec-
tively improves the Fact Acc., which is consistent
with our observations on Biographies. The im-
provements regarding Ans. Rec. are limited. It is
because LLMs have already provided more accu-
rate exact answers to target questions (Dhuliawala
et al., 2023) but tend to ignore other facts in the
responses. Besides, regeneration gives fewer im-
provements over selection on this dataset, which
can be due to the limited fact numbers in short-text
generation thus selection is also easier to select a
good one from enough candidates.

Model Fact Acc. Ans. Rec. #Fact
LLaMA2-7B-Chat 57.4 70.0 4.8

+USC 57.6 69.0 4.8
+CoVe 53.7 71.2 4.3

self-endorsement
+select 63.4** 70.2 4.4
+select w/ pruning 63.8** 69.5 4.3
+regenerate 65.0** 70.7 4.7
+regenerate w/ pruning 64.0** 70.8 4.4

LLaMA2-70B-Chat 65.1 84.1 5.0
+USC 65.0 83.1 5.0
+CoVe 58.9 83.1 5.4

self-endorsement
+select 69.7** 83.8 4.8
+select w/ pruning 70.2** 84.2 4.7
+regenerate 71.7** 85.3* 5.2
+regenerate w/ pruning 70.7** 85.0* 5.2

Table 3: Test results on TriviaQA. Results using Mixtral-
8x7B-Inst is in Table 6 of Appendix due to limited
space.

Extensive Experiments on GSM8K In addition
to knowledge-intensive tasks, we also briefly ex-
plore self-endorsement on reasoning tasks, choos-
ing GSM8K (Cobbe et al., 2021), a popular math
benchmark, as the testbed. Here we focus more on
the quality of intermediate reasoning steps in ad-
dition to the final-answer accuracy (Acc.). Particu-
larly, we divide the reasoning steps into two groups
(Yes / No) based on whether their corresponding pre-
dicted answers are correct or not. We then prompt-
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Model Acc. GPT4 (Y) GPT4 (N)
Mixtral-8×7B-Inst 68.4 9.87 3.65

+USC 71.6* 9.86 3.90*
+CoVe 56.0 – –
+SC 80.3** 9.87 3.96**
+select 80.8** 9.87 4.08**

Table 4: Test results on GSM8K. We do not report CoVe
results on GPT4 because its answers usually do not
contain complete rationales.

ing gpt-4-0613 with the instruction2 from the MT-
bench (Zheng et al., 2023) to measure the quality
of each group (GPT4 (Y) / GPT4 (N)).

As shown in Table 4, both USC and SC help
improve Acc. while SC performs significantly bet-
ter. This is because SC, which conducts majority
voting on final answers, is more aligned with Acc.
CoVe even severely hurt model performance. This
is because the augmented questions occasionally
inquire about irrelevant topics, which disturb the
main reasoning procedure.

Regarding the intermediate steps, there is a large
performance gap between both groups (Yes / No).
Thus, how to further improve the group of incorrect
final answers has become critical. Our method
reports a slightly better result than SC on Acc, and
the gap on GPT4 (N) is even more (0.12 over 10).
This indicates that our method indeed helps select
relatively better rationales even though the final
answers are incorrect, validating the effectiveness
of our method from another aspect.

5 Related Work

5.1 Inference-time Hallucination Mitigation
Researchers have explored mitigating LLM hallu-
cinations at both training and inference time. Com-
pared with training-time mitigation approaches
(Lee et al., 2022; Lightman et al., 2023; Tian et al.,
2023; Lan et al., 2023; Wu et al., 2023; Zhang et al.,
2024), inference-time improvement is gaining pop-
ularity because it can be more cost-effective and
controllable (Zhang et al., 2023).

Many studies (Shi et al., 2023; Wang et al.,
2023a,b; Huang et al., 2024) have resorted to exter-
nal knowledge for improving factuality of LLMs by
first retrieving relevant knowledge from databases
or tools (e.g., search engines) before providing
LLMs for prediction. In contrast, we delve into
another research line (Lee et al., 2022; Chen et al.,
2023; Dhuliawala et al., 2023; Li et al., 2023;

2See Figure 9 in Appendix.

Chuang et al., 2023; Das et al., 2024) that mitigates
hallucinations exclusively through the utilization
of the LLM itself, without any external assistance.
This can be crucial in situations where external
knowledge sources are unavailable.

Except for the two baselines USC and CoVe
we introduced previously, Lee et al. (2022) pro-
posed factual-nucleus sampling that balances di-
versity and factuality by dynamically adjusting
the hyperparameters of sampling when decoding.
Li et al. (2023) introduced Inference-Time Inter-
vention (ITI) that shifts model activations along
truth-correlated directions after identifying atten-
tion heads with high linear probing accuracy for
truthfulness. Chuang et al. (2023) found that fac-
tual information is encoded in distinct layers, thus
they contrasted the generation probabilities from
different layers of LLMs. Among these studies, our
approach is most related to USC involving check-
ing the consistency across sampled candidates but
is conducted at the fact level.

5.2 Black-box Hallucination Detection

Detecting hallucinations during inference is usu-
ally based on uncertainty estimation. Current work
can be categorized into three types (Zhang et al.,
2023): logit-based (Guo et al., 2017), verbalize-
based (Xiong et al., 2023), and consistency-based
(Manakul et al., 2023; Mündler et al., 2023).

This work is most relevant to the consistency-
based approach, which operates on the assump-
tion that LLMs are likely to provide logically in-
consistent responses for the same question when
they are indecisive and hallucinating facts (Zhang
et al., 2023). For instance, SelfCheckGPT (Man-
akul et al., 2023) explored several methods, such
as BERTScore (Zhang et al., 2019), to check infor-
mational consistency between sampled responses.
Mündler et al. (2023) utilized an additional LLM
to detect incorrect facts by checking whether there
is a contradiction between two responses given the
same context. Our method shares similarities with
these approaches in terms of checking consistency
among sampled responses. Nonetheless, our en-
dorsement scores are calculated at a finer level (fact
vs fact). More importantly, we prioritize improv-
ing the quality of final responses after detecting
hallucinations.
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6 Conclusion

In this paper, we present self-endorsement, a frame-
work that alleviates hallucinations and improves
reasoning capability solely by the LLM itself. Par-
ticularly, we first perform fine-grained fact-level
comparisons among multiple sampled candidates
to identify reliable facts. Then, we produce the
final response by either selecting from candidates
or regenerating based on these facts. We evaluate
our approach on popular benchmarks including Bi-
ographies for the longform generation, TriviaQA
for open-domain question answering, and GSM8K
for mathematical multi-step reasoning. Results
show that self-endorsement can significantly ben-
efit small or open-source LLMs without intricate
instructions compared with previous approaches.

Limitations

The main limitation of self-endorsement lies in the
computation cost incurred at the fact verification
phase. The cost escalates dramatically when using
more candidates for collecting verified facts. In
this work, we have demonstrated the trade-off be-
tween candidate numbers and final performance:
limited candidate numbers can still help improve
factuality and larger models exhibit less sensitivity
to hyperparameter selection. Future studies can
also explore quantization (Jacob et al., 2018) or
distilling knowledge into a smaller model (Hinton
et al., 2015) to improve computational efficiency
further. Another limitation is that our method is
fully based on prompting. Given the sensitivity
of LLMs to input prompts, the choice of prompts
can impact final performance. Moreover, a single
prompt may not consistently yield optimal results
across diverse tasks or models. Techniques used
for prompt searching can help solve this problem
(Yang et al., 2023). We leave this as future work.

Self-endorsement follows the line of research
that reduces LLM hallucinations using only the
knowledge from the LLM. Thus, its performance
is inherently limited by the capacity of the target
LLM. For example, statements with high endorse-
ment scores may still contain factual inaccuracies
due to outdated or noisy knowledge embedded in-
side the model parameters. Since the LLM does
not possess accurate information about these facts,
it is impossible to prevent hallucinations without
incorporating external knowledge, as discussed in
(Simhi et al., 2024).
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A Examples of Self-Endorsement
Prompts

We present an example of our implementation on
LLaMA2-70B-Chat, sourced from TriviaQA, as
depicted in Figures 5, 6, 7, and 8. The responses of
this dataset are concise and thus more suitable to
display.

Model Fact Acc. #Fact
Mixtral-8×7B-Inst 76.3 18.2

+USC 76.4 18.1
+CoVe 67.2 11.6

self-endorsement
+select 79.3 18.0
+regenerate 84.1 17.3

Table 5: Test results on Biographies.

B Experiments on Mixtral-8×7B-Inst

We also report results on Mixtral-8×7B-Inst for
Biographies and TriviaQA in this section. Table 5
and Table 6 again demonstrate the effectiveness of
our approach in defeating hallucinations.

Model Fact Acc. Ans. Rec. #Fact
Mixtral-8×7B-Inst 65.5 85.4 4.3

+USC 65.4 87.7 4.3
+CoVe 65.4 87.3 6.5

self-endorsement
+select 67.5 87.2 4.0
+regenerate 68.3 87.3 5.5

Table 6: Test results on TriviaQA.
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Figure 5: Step 1 - candidate sampling. We only display 3 candidate samples here and the input prompt is highlighted
in blue.

Figure 6: Step 2 - fact decomposition. We take sample 0 in Figure 5 as an example.

Figure 7: Step 3 - fact verification. We display 3 examples with different classification results.
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Figure 8: Step 4 - final response production. We present the prompt used for short-text generation.

Figure 9: The prompt fed to GPT4 for evaluating model predicted rationales on GSM8K.
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