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Abstract
Collecting high-quality question-answer (QA)
pairs is vital for the training of large language
models (LLMs), yet this process is traditionally
laborious and time-intensive. With the rapid
evolution of LLMs, the potential for leverag-
ing these models to autonomously generate
QA pairs has become apparent, particularly
through the use of large-scale models like GPT-
4. However, the computational demands and
associated costs often render such approaches
prohibitive for the average researcher. Ad-
dressing this gap, we introduce the Collabo-
rative Small Language Model Framework
(CSLM), an innovative solution that combines
a group of small-scaled, open-source LLMs
to collaboratively produce QA pairs. Exper-
iments on datasets of various domains show
that CSLM unleashes the full potential of di-
verse small models to generate high-quality QA
pairs, making it accessible to a broader range
of researchers.

1 Introduction

The generation of high-quality question-answering
(QA) pairs is crucial for enhancing the capabil-
ities of language models across various applica-
tions. Despite the availability of general domain
QA datasets, a significant gap exists in the avail-
ability of domain-specific datasets, such as law,
medicine, and finance, etc. Manual annotation
of such datasets is not only laborious and time-
consuming but also entails substantial costs due
to the specialized expertise required (Xie et al.,
2023). Moreover, manual datasets such as SQuAD
(Rajpurkar et al., 2016) often suffer from a lack
of diversity, with answers being directly extracted
from the source text without the nuance of deeper
understanding or context, which restricts the poten-
tial of downstream models.

To address this, recent research has explored the
use of large language models (LLMs) to synthesize

*Corresponding author

QA pairs from documents or raw corpora (Wang
et al., 2023; Lee et al., 2023; Wan et al., 2024).
However, to generate high-quality QA pairs, large-
scale models like Llama-70B(Touvron et al., 2023)
or closed-source models like GPT-4 (OpenAI et al.,
2024) are needed, while reliance on such models is
not always feasible due to the substantial computa-
tional resource requirements. Furthermore, using
external APIs, like GPT-4, to generate QA pairs
introduces privacy and confidentiality concerns, es-
pecially when dealing with sensitive data in fields
that demand stringent data protection measures.

In response to these challenges, we introduce the
Collaborative Small Language Model Frame-
work (CSLM) for generating QA pairs. By lever-
aging a group of smaller, open-source language
models connected by a minimal number of extra
trainable parameters, CSLM harnesses the unique
strengths of each model to generate QA pairs that
closely match the performance of larger models but
with significantly reduced computational require-
ments. Furthermore, CSLM allows researchers
to maintain control over their data within secure,
internal environments, ensuring that sensitive infor-
mation is protected.

We demonstrate the effectiveness of CSLM
through extensive experiments on various domain-
specific texts, showcasing its ability to generate
accurate and diverse QA pairs that are not only of
high quality but also respectful of privacy and con-
fidentiality constraints, thereby lowering the barrier
for organizations and researchers to generate their
own datasets.

2 Collaborative Small Language Model
Framework

2.1 Preliminary

In the context of domain-specific data, a QA pair
typically consists of three components: a domain-
relevant text passage T , a question Q and an an-
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Figure 1: CSLM Framework: Illustrating the integration of multiple small language models through intermediate
blocks for QA pair generation.

swer A that corresponds to Q. The objective of
generating QA pairs is to identify Q from T and
subsequently derive A based on the content of T ,
thereby ensuring the coherence and relevance of
the generated pair.

2.2 Components of CSLM
To generate high-quality QA pairs with limited
computational resource, we utilize the collective ca-
pabilities of multiple small language models. Tak-
ing cues from the CALM (Bansal et al., 2024),
we select one model 𝕞𝐴 as the primary augment-
ing model, whose role is to enhance the anchor
model 𝕞𝐵, in the task of question Q extraction.
Concurrently, 𝕞𝐵 plays the secondary role of an
augmenting model, supporting 𝕞𝐶 in formulating
the answer A. This dual-augmentation strategy is
designed to amplify the individual strengths of each
model, thereby enhancing the overall QA pairs gen-
eration process.

Figure 1 illustrates the integration of the inter-
mediate blocks between the model pairs 𝕞𝐴 and
𝕞𝐵, as well as 𝕞𝐵 and 𝕞𝐶 , which facilitates it-
erative interactions during inference to refine the
models’ collaborative output. The interactions oc-
cur at some selected layers as indicated in 2.2.1
and the intermediate blocks consist of two major
components: (i) Linear projection block. (ii) Cross-
attention block.

2.2.1 Interaction Layer Selection
We carefully select a subset of layers from each
model, ensuring a uniform distribution across the
models to maintain consistency in the interaction
process. Assume that 𝕞𝐴, 𝕞𝐵 and 𝕞𝐶 has N𝐴,N𝐵

and N𝐶 hidden layers respectively. We first se-
lect a subset of 𝑛 layers 𝕃𝐴 = {𝑖1, 𝑖2, ..., 𝑖𝑛},
𝕃𝐵 = { 𝑗1, 𝑗2, ..., 𝑗𝑛} and 𝕃𝐶 = {𝑘1, 𝑘2, ..., 𝑘𝑛}
from each model. The intervals between consecu-
tive selected layers also remain consistent, which
means 𝑖𝑛 − 𝑖𝑛−1 = 𝑗𝑛 − 𝑗𝑛−1 = 𝑘𝑛 − 𝑘𝑛−1 =
𝑚𝑖𝑛(N𝐴,N𝐵,N𝐶)//𝑛, facilitating a balanced and
structured integration of model layers.

2.2.2 Linear Projection Block
This block aligns the hidden states of different mod-
els by mapping them to a common representation
space. Let 𝑅 ∈ ℝ𝐵∗𝐻∗𝐷 represent the hidden states
within a model, where 𝐵, 𝐻, 𝐷 correspond to the
batch size, the number of attention heads, and the
dimensionality of each hidden state. Between each
pair of models, we introduce a linear projection
function:

𝑓𝑝𝑟𝑜 𝑗 (𝑅 𝑓 ) = 𝑅𝑚𝑖𝑑 ,
𝑅 𝑓 ∈ ℝ𝐵×𝐻×𝐷 𝑓 , 𝑅𝑚𝑖𝑑 ∈ ℝ𝐵×𝐻×𝐷𝑙

which maps the former model’s hidden states to the
representation dimensionality of the latter model.
This block facilitates cross-attention between mod-
els that possess hidden states of varying sizes, align-
ing their representations to ensure compatibility
without re-training the original models.

2.2.3 Cross Attention Block
We introduce cross-attention module between each
pair of models, which is calculated using the mid-
representation 𝑅𝑚𝑖𝑑 as 𝑘𝑒𝑦 and 𝑣𝑎𝑙𝑢𝑒 vectors, with
the layer representation 𝑅𝑙 from the latter model as
the 𝑞𝑢𝑒𝑟𝑦 vectors:

𝐾, 𝑉 = 𝑅𝑚𝑖𝑑𝑊
𝐾 , 𝑅𝑚𝑖𝑑𝑊

𝑉
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𝑄 = 𝑅𝐿𝑊
𝑄

𝑓𝑐𝑟𝑜𝑠𝑠 = 𝐴𝑡𝑡𝑛(𝑄, 𝐾,𝑉)𝑊𝑂

𝑊𝑄, 𝑊𝐾 , 𝑊𝑉 and 𝑊𝑂 ∈ ℝ𝐷𝑙×𝐷𝑙 are trainable
weights. The resulting attention-weighted outputs
𝑓𝑐𝑟𝑜𝑠𝑠 derived from the 𝑖𝑡ℎ layer are then inte-
grated into the subsequent layers of the latter model,
thereby enhancing the models’ mutual understand-
ing and integration of information.

2.3 Unified Model for QA Pair Generation

CSLM integrates these three models through a uni-
fied function 𝕞𝐴

⊕
𝐵
⊕
𝐶 = 𝑓 (𝕞𝐴,𝕞𝐵,𝕞𝐶 , P),

where P represents a small set of trainable param-
eters in the intermediate blocks. To elevate the
ability of the collaborative models in QA pairs gen-
eration, we fine-tune the connecting parameters P
using a small amount of data, with the weights of
𝕞𝐴, 𝕞𝐵 and 𝕞𝐶 frozen. During QA pairs genera-
tion, Model 𝕞𝐴 identifies keywords in the original
text and 𝕞𝐵 to extract a question based on the im-
portant parts. Then, the question, along with the
focused attention from 𝕞𝐴, is channeled through
the interaction blocks to 𝕞𝐶 , which leverages this
enriched context to formulate a precise and relevant
answer. The prompts used in each model are listed
in Appendix A.

[t]

3 Experiments

3.1 Experiments Setup

We select five distinct corpora representing gen-
eral, medical, financial and nuclear domains.
These include MS_MARCO(Nguyen et al., 2016)
and SQuAD1.1 for general domain, Asclepius-
Synthetic-Clinical-Notes (ASCN)(Kweon et al.,
2023) for medical domain, Financial-Articles (Let-
tria, 2024) for finance domain and Nuclear-Patent
(Arcee-AI, 2023) for science domain. The details
of these datasets are shown in Appendix B, with
which we can ensure a comprehensive evaluation
of CSLM’s capability.

3.2 Implementation Details

In CSLM framework, We select three smaller-
scale, open-source language models: TinyLLama-
1.1B (Zhang et al., 2024), QWen1.5-1.8B (Bai
et al., 2023) and InternLM2-1.8B (Cai et al., 2024),
denoted as 𝕞𝐴, 𝕞𝐵 and 𝕞𝐶 , respectively. To
connect these models, we introduce intermediate
blocks at the 5𝑡ℎ, 10𝑡ℎ, 15𝑡ℎ, 20𝑡ℎ layers. In total

we introduce 40 million additional trainable pa-
rameters to our collaborative models, facilitating
efficient training compared to the overall 4.6 bil-
lion original parameters that are kept frozen. The
few number of new parameters allows for training
with a modest dataset over a few epochs. For QA
generation in all domains, we only use 500 general
text QA pairs and adopt a five epoch training for
the intermediate blocks to enable the collaborative
model instill basic linguistic capabilities.

3.3 Evaluation Metrics

Evaluating the quality of QA pairs generated by
language models encompasses a multifaceted as-
sessment, extending beyond traditional metrics like
ROUGE(Lin, 2004), due to the content of QA pairs
that are not merely text extractions.

Recently, using LLMs for automatic evaluation
of generated data has gradually matured and been
widely applied, such as overall scoring(Fu et al.,
2023), evaluation paradigms (Lin and Chen, 2023)
and COT(Liu et al., 2023). Among these, the
RACAR metric, a five-dimensional metric crafted
to evaluate the quality of generated QA pairs, in-
troduced by SciQAG (Wan et al., 2024), stands out
for its comprehensiveness. Therefore, we adopt
a similar automatic evaluation approach using a
leading large language model, including four var-
ious aspects to assess the QA pair quality, which
correlates more closely with human judgement.

Relevance. This dimension evaluates how
closely the generated QA pairs align with the origi-
nal text, ensuring that the content is contextually
appropriate.

Comprehensiveness. This dimension measures
how well the generated answer encompasses all
necessary details from the question and the source
text, thereby ensuring thoroughness.

Correctness. This dimension assesses the fidelity
of the generated answer to the information pre-
sented in the source text, highlighting the impor-
tance of factual accuracy.

Coherence. This dimension evaluates whether
the generated QA pair is free from contradictions
and follows a clear, reasonable structure.

Each of these dimensions is scored on a scale
from 1 to 3, with the higher scores indicating bet-
ter performance in generating QA pairs that are
not only accurate but also contextually rich and
logically sound. The prompts for evaluation are
presented in Appendix C.
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Metric
Dataset

Model
InternLM2-1.8B QWen1.5-1.8B QWen1.5-4B InternLM2-7B QWen1.5-7B LLaMA3-8B Ushio et al., 2023 CSLM

Relevance

MS_MARCO 2.41 1.90 2.09 2.28 1.91 2.61
SQuAD 2.46 1.06 2.25 2.29 2.17 2.43 1.87 2.68
ASCN 1.32 1.10 2.18 2.20 2.24 2.46
Nuclear 2.32 2.09 2.09 2.40 2.00 2.58

Financial 2.27 1.98 2.02 2.11 1.88 2.54

Comprehensiveness

MS_MARCO 2.75 2.47 2.66 2.75 2.67 2.89
SQuAD 2.70 1.10 2.51 2.80 2.54 2.84 1.35 2.92
ASCN 1.08 1.15 2.79 2.38 2.64 2.67
Nuclear 2.50 2.33 2.53 2.62 2.61 2.88

Financial 2.75 2.64 2.79 2.85 2.64 2.88

Correctness

MS_MARCO 2.75 2.47 2.66 2.75 2.58 2.88
SQuAD 2.73 1.11 2.60 2.78 2.51 2.85 1.39 2.92
ASCN 1.10 1.15 2.79 2.39 2.64 2.73
Nuclear 2.55 2.31 2.54 2.64 2.63 2.87

Financial 2/73 2.53 2.76 2.80 2.57 2.86

Coherence

MS_MARCO 2.45 2.17 2.47 2.48 2.50 2.70
SQuAD 2.44 1.25 2.42 2.45 2.15 2.62 1.51 2.60
ASCN 1.10 1.21 2.64 2.38 2.40 2.68
Nuclear 2.44 1.93 2.37 2.37 2.58 2.66

Financial 2.47 2.13 2.46 2.49 2.52 2.65

Table 1: LLM evaluation of generated QA pairs: Performance metrics across 5 different domains highlighting
Relevance, Comprehensiveness, Correctness, and Coherence.

3.4 Experimental Results

Table 1 offers a comprehensive evaluation of the
QA pairs generated across five distinct domains us-
ing the CSLM framework. Notably, the CSLM
model, with approximately 4.6B parameters, is
compared to several other LLMs with less than 7B
parameters, including InternLM2-1.8B(Cai et al.,
2024) , QWen-1.5-1.8B(Bai et al., 2023), and their
counterparts at 4B and 7B parameter sizes. The
comparison result between CSLM and an estab-
lished question generation method mentioned in
Ushio et al., 2023 as well as a stronger model,
LLaMA3-8B (Dubey et al., 2024) on SQuAD
datasets is also shown in Table 1 which proves
CSLM surpasses the traditional model and some
stronger language model in the domain of QA pairs
generation.

Table 2 shows examples of QA pair generated
by CSLM and other methods to illustrate the align-
ment between human evaluations and RACAR
metric. It is obvious that other baseline models
make errors in logic and fact, while CSLM suc-
cessfully synthesizes the QA pair. Meanwhile, we
can find that the answer generated by Ushio et al.,
2023 can only be extracted directly from the text
which makes it pretty rigid. Besides, Ushio et al.,
2023 can not fully use the information in the text
and sometimes will even generate a wrong answer
when the generated question should be answered
by summarizing the text. Thus CSLM is a better
method to generate QA pairs. And the QA pair gen-
erated by CSLM achieves the highest score on the
automatic evaluation, aligning with human judg-
ment.

We also conduct pairwise comparison on
SQuAD datasets, which asks the judging model
to rank the QA pairs generated by different mod-
els. Table 3 shows the average ranking on the four
dimensions.

These results reveal a compelling advantage of
the CSLM framework. Across all four dimensions
of the evaluation metric, our collaborative mod-
els consistently outperform the individual LLMs,
even surpassing models with larger parameters,
like 7B. This indicates that the CSLM framework
sufficiently utilizes the collective strengths of its
constituent models, thereby achieving a better QA
pairs generation that not only matches but exceeds
the capabilities of larger-scale, single LLMs.

We also compare the inference speed of CSLM
with other models. Based on generating 1000
QA pairs on a single GPU, CSLM takes 38 min-
utes while InternLM-7B costs 100 minutes and
QWen1.5-4B costs 52 minutes. This demonstrates
that CSLM surpasses the components of it and
larger models not only in terms of generation qual-
ity but also in generation speed.

3.5 Ablation Study

Scalability. We test the flexibility and scalabil-
ity to incorporate larger-scale models of CSLM
framework. We integrate Yi-1.5-6B(AI et al.,
2024), InternLM2-7B, and QWen1.5-7B, against
InternLM2-20B, and conduct QA pairs generation
on MS_MARCO dataset. The results in Table 4
confirm that CSLM maintains its capability when
scaled up, showcasing its versatility in collabora-
tion with LLMs of varying sizes.

11819



Example 1
Original Text: Bacon that has been defrosted in the fridge can be kept for an additional 1 to 2 days in the refrigerator before
cooking; bacon that was thawed in the microwave or in cold water should be cooked immediately.
CSLM
Q: How long can you keep defrosted bacon in the fridge before cooking?
A: Defrosted bacon can be kept for an additional 1 to 2 days in the fridge before cooking.
InternLM2-7B
Q: How long can bacon be stored in the refrigerator after defrosting in the microwave or cold water?
A: Bacon that has been defrosted in the fridge can be kept for an additional 1 to 2 days in the refrigerator before cooking; bacon that
was thawed in the microwave or in cold water should be cooked immediately.
QWen1.5-7B
Q: How long can bacon be stored in the refrigerator after being frozen and thawed, and what should be done with it before cooking?
A: Bacon that has been frozen and thawed can be stored in the refrigerator for an additional 1 to 2 days before cooking, and it should
be cooked immediately after thawing.
Example 2
Original Text:
A GMC truck with a standard cab but a long bed is more than 18 1/2 feet in total length. A truck with a double cab and a regular bed
is slightly more than 19 feet long. If a pickup has a larger crew cab with a standard box, the vehicle is about 20 feet long. However,
if the truck has a crew cab with a short box, the entire length is a little more than 19 feet.
CSLM:
Q: What is the difference between a GMC truck with a standard cab and a GMC truck with a double cab?
A: The difference between a GMC truck with a standard cab and a GMC truck with a double cab is that the standard cab has a
longer length of 18 1/2 feet, while the double cab has a slightly longer length of 19 feet.
Ushio et al., 2023:
Q: What is the total length of a GMC truck with a standard cab and a long bed?
A: 18 1/2 feet

Table 2: Examples of QA pair generated by CSLM and other methods

InternLM2-1B InternLM2-7B QWen1.5-1B QWen1.5-4B QWen1.5-7B CSLM
Relevance 4.70 4.46 3.68 3.24 3.63 1.28

Comprehensiveness 4.52 3.82 3.37 2.97 2.84 3.49
Correctness 3.24 2.49 5.52 4.61 3.89 1.25
Coherence 3.49 2.97 4.69 4.33 3.84 1.69

Table 3: Pairwise comparison assessment of CSLM
framework with other models. A lower score indicates
a higher ranking.

Metric
Model

Yi-1.5-6B InternLM2-7B QWen1.5-7B InternLM2-20B CSLM

Relevance 2.01 2.66 2.27 2.57 2.84
Comprehensiveness 2.02 2.85 2.80 2.88 2.96

Correctness 2.02 2.82 2.48 2.90 2.96
Coherence 2.11 2.41 2.54 2.62 2.81

Table 4: Scalability assessment of CSLM framework
with larger-scale models

Components. We conduct an ablation study on
the MS_MARCO dataset (Table 5) to isolate the
impact of each trainable intermediate block within
CSLM. We drop the trainable intermediate param-
eters while keep the LLMs. The findings under-
score the importance of these blocks, as their re-
moval leads to a significant decrease in perfor-
mance across most dimensions.

4 Conclusion

This paper introduces the Collaborative Small Lan-
guage Model Framework (CSLM), an innovative
approach that uses multiple smaller, open-source
language models to achieve a performance compa-
rable to larger models, yet with less computational

Metric
Model

without P1 without P2 without P1 and P2 CSLM

Relevance 2.42 2.89 2.10 2.93
Comprehensiveness 2.68 2.73 2.11 2.93

Correctness 2.67 2.73 2.12 2.89
Coherence 2.43 2.43 2.29 2.82

Table 5: Ablation study on CSLM’s trainable intermedi-
ate blocks

cost. Our extensive experiments across various
domains have demonstrated the robustness and ef-
ficacy of CSLM in QA pairs generation, offering
a viable alternative to large-scale language mod-
els. In general, this study not only offers a novel
perspective on the data generation field but also
presents a viable solution for researchers applying
LLMs with limited computational resource.
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5 Limitation

(1) Owing to constraints in computational resource,
the validation of the generated QA pairs in down-
stream tasks was not conducted, nor was the po-
tential of integrating larger-scale models explored.
Future studies should consider the application of
CSLM in targeted downstream applications and
investigate the performance of model ensembles
of varying scales. (2) The sequence and synergy
among the models within the CSLM framework
remain insufficiently studied. The optimization of
model collaboration requires further exploration.

A Appendix of Input Prompts to CSLM

(i) Prompt inputs to 𝕞𝐴: Please find some key-
words from the following text.

# Text -Start
# Text -End
Limitation: Please only reply keywords ex-

tracted form the text without any other information.
(ii) Prompt inputs to 𝕞𝐵: Please generate a ques-

tion about the provided paragraph.
Limitation: please only reply a question without

any other additional information and do not answer
the question. Here is the paragraph:

# Paragraph -Start
# Paragraph -End
(iii) Prompt inputs to 𝕞𝐶 : Please answer the

question according to the following paragraph.
Limitation: 1. Please answer the question in one

sentence.
2. Please only use the information in the para-

graph to answer the question.
# Paragraph -Start
# Paragraph -End
# Question -Start
# Question -End

B Appendix of Experimental Datasets
Details

Dataset Domain Origin passages amount Chosen passages and generated QA pairs amount
MS_MARCO General over 1000000 10000
SQuAD 1.1 General 18895 10000

ASCN Medical 158000 10000
Nuclear Science 33500 5000

Financial Finance 18400 5000

Table 6: Details of experimental datasets

C Appendix of Evaluation Prompts

(i) Prompt for Relevance evaluation: Given a para-
graph of text and questions generated from it, eval-
uate the relevance of the question to the text and

return a score ranging from 1–3 and give reasons
as to why this score was assigned. The output must
be a list of dictionaries corresponding to each ques-
tion, with the fields ’score’ and ’reasons’. If the
question does not pertain to the text, assign a score
of 1.

(ii) Prompt for Comprehensiveness evaluation:
Given a paragraph of text and question answer pairs
generated from it, evaluate the completeness of the
answer for each question and return a score ranging
from 1–3 indicating the extent to which the answer
fully addresses the question using the information
in the paper, including all subquestions. Also give
reasons for assigning the score. The output must
be a list of dictionaries for each question answer
pair, with the fields ’score’ and ‘reasons’.

(iii) Prompt for Correctness evaluation: Given
a paragraph of text and question answer pairs gen-
erated from the text, evaluate the accuracy of the
answer for each question and return a score ranging
from 1–3 indicating whether the answer is accu-
rately extracted from the text and give reasons as to
why this score was assigned. This involves check-
ing the accuracy of any claims or statements made
in the text, and verifying that they are supported by
evidence. The output must be a list of dictionaries
for each question answer pair, with the fields ’core’
and ’reasons’.

(iv) Prompt for Coherence evaluation: Given
a paragraph of text and statements, evaluate the
reasonableness of the statements with respect to
the text and return a score ranging from 1–3 indi-
cating how logically consistent the content is, with
no obvious contradictions and provide reasons for
assigning the score. The output must be a list of dic-
tionaries for each statement, with the fields ’score’
and ’reasons.’ Assign a score of 1 if the statement
has logical error like contradicts.
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