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Abstract

Abstractive text summarization aims at gen-
erating human-like summaries by understand-
ing and paraphrasing the given input content.
Recent efforts based on sequence-to-sequence
networks only allow the generation of a single
summary. However, it is often desirable to ac-
commodate the psycho-linguistic preferences
of the intended audience while generating the
summaries. In this work, we present a rein-
forcement learning based approach to generate
formality-tailored summaries for an input arti-
cle. Our novel input-dependent reward func-
tion aids in training the model with stylistic
feedback on sampled and ground-truth sum-
maries together. Once trained, the same model
can generate formal and informal summary
variants. Our automated and qualitative eval-
uations show the viability of the proposed
framework.

1 Introduction

Efficient content consumption is not only driven
by the contained information but also by the
tone/style of the presentation. The style in text
is its non-informational or non-factual aspect and
usually drives the quality of response from its au-
dience. A persuasive snippet or a teaser might
drive up sales for a marketing message and a piece
of formal text will appeal better to corporate ex-
ecutives as against informal communication. Sim-
ilarly, not all long form content is easy to read.
A succinct representation of the content, i.e. the
summary, plays an important role for its quick and
efficient consumption. While, text summariza-
tion and to some extent style-understanding have
been independently studied, approaches to gener-
ate style-tailored summaries are limited.

∗ Work done when author was a full time employee at
Adobe Research

Models for style predictions (Pavlick and
Tetreault, 2016; Brooke et al., 2010; Danescu-
Niculescu-Mizil et al., 2013) are limited to mea-
suring style in text. There have been multi-
ple attempts towards transfer of style (Artetxe
et al., 2017; Han et al., 2017; Shen et al.,
2017; Tikhonov and Yamshchikov, 2018). Rao
and Tetreault (2018) introduced a parallel corpus
for formality style transfer with neural machine
translation benchmarks. Niu et al. (2017) gener-
ate automatic translations tailored towards formal-
ity. However, none of these approaches account
for the length/succinctness of the created content,
and hence do not address the stylized summariza-
tion task. In this work, we propose an approach
to generate summaries while simultaneously tai-
loring towards formality preferences (Table 1).

Tunable or controlled summary generation has
picked up pace in recent times. Algorithms al-
low for controlling various dimensions of the out-
put summary such as the length or entities (Fan
et al., 2017) and topics (Krishna and Srinivasan,
2018). Since these approaches primarily rely
on the diversity in the given dataset, extending
these approaches for formality tailored summa-
rization would require a diverse summarization
corpus that captures subtleties in various formal
variants. Since such a dataset is difficult to cu-
rate, it is non-trivial to use these methods as is.
Reinforcement learning (RL) based loss functions
have recently shown promise in tuning the output
on rewards such as ROUGE (Paulus et al., 2018).
In such methods, the model receives explicit feed-
back on the sampled sequences while training. If
directly applied for controlling stylistic parameters
like formality, such a method would need two sep-
arately trained models for generating formal and
informal summaries and thus, may miss out on the
common learnings.

In this work, we propose a method to incor-
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porate formality in abstractive text summariza-
tion. To build a formality-rich training dataset,
we merge data from two domains: news and so-
cial media - the first one representing more for-
mal language and the latter, informal. We define
a novel input-dependent reward function which
aids in training the model with stylistic feedback
on sampled and ground-truth summaries together.
Once trained, the same model can generate for-
mal and informal summary variants. We show the
effectiveness of our approach through automated
and crowd-sourced experiments, evaluating both
the quality and formality levels of the generated
summaries. Table 1 shows sample formal and in-
formal summary variants, generated from our ap-
proach on an instance from the testset.

Input Article: katrina had been expressing anxiety for a while now about
how worried she was about the bridal shower and being the center of at-
tention of a bunch of people she did n’t know . that ’s completely normal .
she has been so worried that she determined to send him a short email out-
lining what she would do if she were in his shoes . that absolutely counts
as meddling . that ’s literally the definition of meddling sticking your nose
where it does n’t belong . katrina talked to my mom for about five minutes
and then sat about twenty feet away from her during this tournament while
my mom sat alone . and katrina is n’t obligated to entertain your mother .
your mom could ’ve talked to other people instead ...
Informal: katrina had been so worried that she was abt the bridal shower
& being the center of attention of a bunch of people she did n’t know .
katrina ’s n’t obligated to entertain ur mom .
Formal: katrina had been expressing anxiety for the bridal shower and
being the center of attention of a bunch of people she did not know . she
has been therefore worried that she determined to transmit him a short
email outlining what she were in his shoes .

Table 1: Example formal and informal summary vari-
ants generated on an instance from our testset.

2 Related Work

Early abstractive summarization efforts were ei-
ther template-based (Wang and Cardie, 2013;
Genest and Lapalme, 2011) or employed ILP-
based sentence compression (Filippova, 2010;
Berg-Kirkpatrick et al., 2011; Banerjee et al.,
2015). With the advent of deep sequence-
to-sequence models (Sutskever et al., 2014),
attention-based neural models have been proposed
for long text summarization (Rush et al., 2015;
Chopra et al., 2016). Recent approaches (Nalla-
pati et al., 2017; See et al., 2017) have focused
on larger datasets such as the CNN/DailyMail
corpus (Hermann et al., 2015; Nallapati et al.,
2016). Gulcehre et al. (2016) introduced the abil-
ity to copy out-of-vocabulary words from the ar-
ticle to incorporate rarely seen words like names
in the generated text. Tu et al. (2016) included
the concept of coverage, to prevent the models
from repeating the same phrases while generating

a sentence. See et al. (2017) proposed a pointer-
generator framework which incorporates these im-
provements, and also learns to switch between
generating new words and copying them from
the source article. We use this pointer-generator
framework as the underlying architecture.

2.1 Incorporating additional constraints
Controlled summary generation has only recently
gained popularity. Variational auto-encoders (Hu
et al., 2017) or adversarial training (Shen et al.,
2017) have been explored for non-parallel stylis-
tic text generation. Sennrich et al. (2016) propose
modifications to neural machine translation to tune
the level of politeness in the generated text. Fi-
cler and Goldberg (2017) use a conditional lan-
guage model to control variations like descriptive-
ness and sentiment simultaneously during gener-
ation. Efforts for constrained text summarization
are rather limited with no efforts attempting to in-
corporate psycho-linguistic preferences. Krishna
and Srinivasan (2018) incorporate input topic in-
formation in the output summary using a topic-
vector along with the input word sequence.

Fan et al. (2017) control length and entity in
textual summaries using explicit input indicators
or tokens. Paulus et al. (2018) directly control the
ROUGE evaluation metric using the Self Critical
Sequence Training (SCST) (Rennie et al., 2017)
algorithm. We build on these approaches and show
through our experiments that our approach is able
to generate better formality-tuned summaries in
comparison to these methods.

2.2 Incorporating Formality
Formality is an important style or tone dimension
in written text. Although there are existing works
which model formality in text (Brooke et al., 2010;
Lahiri, 2015; Pavlick and Tetreault, 2016; Chhaya
et al., 2018), there have been limited attempts
to incorporate it in text generation. Sheikha and
Inkpen (2011) used a predefined set of rules based
on formal-informal parallel lists to generate for-
mal and informal sentences. More recently, a par-
allel corpus of formality style transfer (Rao and
Tetreault, 2018) was released with NMT-based
benchmarks. To the best of our knowledge, we
are the first to introduce formality in the space of
abstractive text summarization.

Generating text with varying levels of formality
was studied recently in Machine Translation (Niu
et al., 2017, 2018). A re-ranking mechanism on
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the decoded hypotheses is used to control the for-
mality of the generated translations. We augment
our decoding module with a similar, but simpler
re-ranking method to enhance our approach.

3 Pointer-Generator Framework

Our approach uses the pointer generator net-
work (See et al., 2017) as the underlying architec-
ture. This section explains this framework briefly
for the sake of completion. The model is based
on an encoder-decoder setup. The bi-directional
LSTM encoder takes the article x as an input
and computes a sequence of encoder hidden states
h1, h2, ..hn. The last state hn becomes the initial
state of the LSTM decoder which uses an attention
mechanism to generate the output summary word
by word. Further, at each time step, the decoder
network computes pgen, the probability of gener-
ating a new word from the vocabulary,

pgen = σ(wT
h h
∗
t + wT

s st + wT
x xt + bgen) (1)

where wh, ws, wx, bgen are trainable parameters.
h∗t is the context vector capturing the attention dis-
tribution, st is the decoder internal state and xt is
the decoder input at tth time step. The total prob-
ability of w being the next word generated in the
summary, p(w), is given by,

p(w) = pgenPvocab(w)+(1−pgen)
∑

i:wi=w

ati (2)

where pgen provides a switch between generating
a new word from Pvocab(w) or copying a word
from the input based on the attention distribution.
The training loss is set to be the average negative
log-likelihood of the ground truth summary:

Lnll = −
1

T

T∑
t=1

log
[
p(y∗t |y∗1, ..., y∗t−1, x)

]
(3)

where y∗ is the ground-truth word sequence. We
propose to modify the above training objective in
order to incorporate psycho-linguistic preferences
of the target audience, with a focus on formality.

4 Generating (In)formal Summaries

A major challenge in incorporating formality
into the summarization system is the lack of a
formality-diverse dataset. To the best of our
knowledge, there exists no data which either has
both formal and informal ground-truth summaries

for the same input article or where the provided
ground-truth summaries are diverse on the formal-
ity scale. This makes the direct use of explicit in-
dicators ineffective (Section 6.2), which have been
shown to capture this diversity in the given dataset
well (Fan et al., 2017; Krishna and Srinivasan,
2018). To address this, we work off a dataset
mixed from two different domains: news and so-
cial, making it more formality-diverse (Section 5).

While diversity in the data helps the model
to learn the (in)formal parts in the text, we fur-
ther employ a modified reinforcement learning
approach which teaches the decoder module to
write (in)formally through explicit feedback. The
model is trained using feedback on the formality
of both sampled and ground-truth summaries to-
gether. The pointer-generator model is trained us-
ing the negative log-likelihood loss Lnll as given
in Equation 3. We make the use of policy gradi-
ents by introducing an additional loss term Lrl in
the training objective:

Lrl = −
[
r(ys)

] T∑
t=1

log
[
p(yst |ys1, .., yst−1, x)

]
,

(4)
where r is the formality-based reward function.
ys is a sampled word sequence generated by sam-
pling from the p(yst |ys1, ys2, .., yst−1, x) distribution
at each time step. In essence, optimizing Lrl im-
proves the expected reward of the generated out-
put. The final loss is a linear combination of neg-
ative log-likelihood loss with the RL loss,

L = (1− α) · Lnll + α · Lrl, (5)

where α governs the strength of the RL-based loss
term.As we will show in Section 4.2, we define
Lrl based on the input tokens and thus the same
trained model can generate formal and informal
summary variants for a given input article.

While decoding, our framework employs a
beam search algorithm to explore plausible out-
puts (or hypotheses) for generating the final sum-
mary. It finally outputs the hypothesis with the
maximum probability of generation. However,
we observe a reasonable difference in the formal-
ity scores among hypotheses with similar gener-
ation probabilities. As a part of post-processing,
we therefore employ hypotheses re-ranking to fur-
ther strengthen our generation following Niu et al.
(2017). We pick the hypothesis with the maxi-
mum formality score among the k hypotheses with
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highest generation probabilities. We also perform
word-replacement using parallel formal-informal
word lists curated from (Sheikha and Inkpen,
2011). This helps to tackle unwanted formal or
informal words which must have been copied di-
rectly from the input article by the pointer gener-
ator frameworks (See et al., 2017). As we show
later, this helps our model to better capture for-
mality oracle.
4.1 Measuring Formality in Text
The first step towards defining our reward func-
tion is to construct an oracle to measure formality.
We define formality using lexical scores (Brooke
et al., 2010; Brooke and Hirst, 2014) leverag-
ing the implementation by Niu et al. (2017)
who incorporate formality into Machine Trans-
lation1. They report best performance using
a combination of a Support Vector Machine
(SVM) model with Word2Vec representations on
the CTRW (Hayakawa and Ehrlich, 1994) and
BEAN (Lahiri, 2015; Pavlick and Tetreault, 2016)
datasets, obtaining 84.4% accuracy on the former
and a Spearman’s ρ of 0.662 on the latter.

First, two sets of seed words are chosen,
which represent formal and informal language
respectively. We use the lists curated by
Sheikha and Inkpen (2011). They contain vari-
ous abbreviations with their full forms and ‘in-
formal:formal’ semantically similar word pairs
such as ‘about:approximately’, ‘copy:replica’,
‘risk:jeopardy’, and ‘tasty:palatable’. We combine
these word lists to create a total of 667 formal and
informal seeds. Next, an SVM model is trained to
find a separating hyperplane between vector space
representations (coming from Word2Vec model
trained on Google News corpus) of these formal
and informal seeds. Once the model is trained, for
any given word, Euclidean distance to this hyper-
plane is used as a measure of word level formality.
To compute the formality of a word sequence y,
we use the weighted average function from Niu
et al. (2017):

F (y) =

∑
wi∈y |L(wi)|.L(wi)∑

wi∈y |L(wi)|
, (6)

whereL(wi) is the lexical formality score from the
SVM model described above.
F (y) represents the formality of the word se-

quence y, where larger positive values correspond
1https://github.com/xingniu/computational-stylistic-

variations

to higher levels of formality and negative values
represent informality in text. Using this measure
for formality as an oracle, our objective now is
to teach the model the intricacies of high and low
levels of formality and ultimately, taking this into
consideration while summary generation. This is
achieved through the reward function r, which is
described next.

4.2 Defining the reward function r
We propose an indicator-based rewarding setup to
simultaneously benefit from the common learn-
ings of the two models (formal and informal sum-
maries) and incorporate feedback on the ground-
truth summaries in the dataset, as against using the
formality oracle F (y) described in Section 4.1 di-
rectly as separate reward function for formal and
informal models.

We use explicit indicators along with the in-
put sequence and set the reward function accord-
ingly. For training, first the oracle F (y) from
equation 6 is used to classify ground-truth sum-
maries in the dataset into informal, neutral, or for-
mal classes. We then assign two vocabulary ids
(called tokens or indicators) to each class. While
training, these tokens are added to the beginning
and end of the input article, based on the formality
class of the corresponding ground-truth summary.
For instance, for a given (article, summary) pair
(a, s) in the training dataset, if s is classified as
formal, we add the corresponding two tokens at
the beginning and end of the input a. The usage
of tokens in this manner acts as indicators, provid-
ing the model with feedback on the ground-truth
summary in the training stage. The usage of two
tokens keeps the input symmetric, making it eas-
ier for both the forward and backward LSTM en-
coder networks to absorb the formality informa-
tion at the start of generating their half of the en-
coding states. We then determine our reward func-
tion for RL loss Lrl based on the formality class of
the ground-truth summary:

r(ys) =


F (ys) for formal y∗

0.0 for neutral y∗

−F (ys) for informal y∗
(7)

where y∗ is the ground-truth summary sequence
and F (.) is the score from Equation 6. If the
ground-truth summary is formal (as denoted by the
corresponding tokens), our reward works to max-
imize the expected formality of the output sum-
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mary and minimize it in case of informal ground-
truth summaries. Given an unseen input article,
the two tokens can be added to the input sequence
based on the type of output summary required. An
input-dependent reward function allows the same
model to generate both the summary variants, un-
like the vanilla framework, which loses the op-
portunity to learn the commonalities in the two
spaces.

4.3 Similarity to SCST method

Equation 4 employs REINFORCE algo-
rithm (Williams, 1992) and can be seen as a
modification to the Self Critical Sequence Train-
ing (SCST) (Rennie et al., 2017) which was
applied to successfully optimize on ROUGE in
summarization (Paulus et al., 2018). In SCST, the
word with the maximum probability is greedily
chosen from the output distribution at each time
step, forming a greedy sequence yb. The model
uses the reward of yb as a baseline in the loss
function. Instead, our formulation can be seen as
using the baseline reward of 0. This compares the
formality level of the sampled sequence ys with
the perfectly neutral summary (with formality
score 0.0), penalizing any sequences lying on the
opposite side of the desired formality levels.

5 Experimental Setup

We evaluate our approach on its ability to gener-
ate formal and informal summaries for an input
article. We compare it with several baselines us-
ing both automated metrics and crowd-sourcing
experiments.
Dataset: A combined dataset from 2 domains:
news and social media is used. For the former,
we use the CNN/DailyMail news dataset (Her-
mann et al., 2015; Nallapati et al., 2016), widely
used for the task of abstractive text summariza-
tion. For the latter, we use the Webis-TLDR-17
corpus (Völske et al., 2017), automatically created
using TL;DR tags on Reddit2. Figure 1 shows
the distribution of lexical formality scores over
these and the complete dataset (based on Equa-
tion 6). As depicted, the combination allows us to
ensure that the dataset contains formality-diverse
‘article:summary’ pairs. For CNN/DM, the aver-
age formality is−0.097, with minimum as−2.451
and maximum as 2.62. For Reddit dataset, the
average formality is −1.068, minimum −2.653

2https://www.reddit.com/

and maximum is 2.783. While the average val-
ues are negative, through a manual analysis, we
found the summaries with more than −0.5 to be
reasonably formal in general. We refer the readers
to Section A in Supplementary material where we
show some sample ground-truth summaries in the
dataset along with their formality scores.

The news dataset contains 287, 226 training in-
stances, 13, 368 validation and 11, 490 test in-
stances. The articles have an average length of
781 tokens and multi-sentence summaries with av-
erage length of 56 tokens. We use these average
values to extract a similar-sized subset of 4 mil-
lion data points in the Reddit dataset and merge
them with the news dataset. We filtered out poor
summaries in Reddit dataset heuristically. Several
summaries which contain edit: actually refer to ad-
ditional information not in the article. We filter
out summaries containing such keywords. Keep-
ing only the most formal and informal pairs, the
training dataset reduces to 286, 358 input-output
pairs. 10, 000 pairs are held out for validation and
testing, each containing data points from both do-
mains.

Figure 1: Distribution of lexical formality (Equation 6)
in CNN/Daily Mail, Reddit and the complete dataset.
Positive values on the X-axis indicate high formality
and negative values indicate informality.

Hyperparameters: All methods are implemented
using the pointer-generator framework described
in Section 3. Following See et al. (2017), the
network uses 256 hidden dimensions, embedding
size as 128, vocabulary size as 50, 000, 400 max-
imum encoding steps and 100 maximum decod-
ing steps. We use these hyper-parameters for all
the approaches. All our models train for approxi-
mately 50, 000 iterations using a batch of size 16.

6 Automated Evaluation

We report the F1 scores for ROUGE-1, ROUGE-
2, and ROUGE-L metrics, evaluating how close
the generated summaries are to the reference sum-
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Informal Summaries Formal Summaries
Method ROUGE F-score Formality Improvement ROUGE F-score Formality Improvement

1 2 L (%) vs PGen 1 2 L (%) vs PGen
SymVoTo (A) 26.95 8.23 23.28 −0.560± 0.902 +6.66 27.00 8.15 23.23 −0.432± 0.822 +17.71
ZeroRL (B) 24.03 6.90 21.08 −0.581± 0.925 +10.66 24.42 6.93 20.90 −0.358± 0.760 +31.80
A+B 24.75 7.27 21.49 −0.603± 0.923 +14.85 25.72 7.51 22.20 −0.399± 0.801 +24.00
Our Approach 23.02 6.54 20.19 −0.727± 0.846 +38.47 24.8 6.72 21.58 −0.052± 0.738 +90.09

Table 2: Performance of various ablations of the proposed approach on automated evaluation metrics in generating
informal and formal summaries. Formality score is computed from the oracle (Eq. 6), averaged over the testset.
SymVoTo refers to the use of two vocabulary tokens in a symmetrical manner, ZeroRL refers to the use of Zero
baseline reward instead of Greedy baseline (Section 4). A+B combines these two methods and the complete
approach further employs post-processing steps.

Informal Summaries Formal Summaries
Method ROUGE F-score Formality Improvement ROUGE F-score Formality Improvement

1 2 L (%) vs PGen 1 2 L (%) vs PGen
PGen 26.96 8.18 23.18 −0.525± 0.875 - 26.96 8.18 23.18 −0.525± 0.875 -
VoTo 26.61 8.17 22.99 −0.556± 0.883 +5.90 26.76 8.13 23.04 −0.452± 0.821 +13.90
StyleSum 14.84 2.06 13.03 −0.762± 0.815 +45.14 11.18 0.63 9.93 −0.59± 0.800 −12.38
GreedyRL 26.00 7.53 22.39 −0.476± 0.827 −9.33 26.47 7.92 22.72 −0.458± 0.829 +12.76

Our Approach 23.02 6.54 20.19 −0.727± 0.846 +38.47 24.8 6.72 21.58 −0.052± 0.738 +90.09

Table 3: Performance based on Automated Evaluation Metrics for Generating Informal and Formal Summaries.
Formality score is computed from the oracle (Eq. 6), averaged over the testset. All the prior approaches were
adapted for formality, as described in Section 6.2.

maries. To evaluate the efficacy of the methods
in capturing formality, we report the average for-
mality in the output summaries and correspond-
ing percentage improvements in average formal-
ity, relative to PGen (See et al., 2017).

6.1 Ablation study
We performed an ablation study over our approach
to analyze the effect in performance by the use of
two symmetric vocabulary tokens (SymVoTo) and
a zero-reward baseline (ZeroRL) separately.

For training in SymVoTo, three levels of for-
mality are defined based on the scores from the
formality oracle F (y) (Equation 6): informal (less
than −0.2), neutral (between −0.2 and +0.2),
and formal (greater than 0.2). In our training
dataset, 169, 628 summaries were tagged as in-
formal, 31, 129 as neutral and 85, 601 as formal.
While training, the two tokens are added to the
input article based on the formality level of the
ground-truth summary. To generate the formal or
informal summaries for an unseen article, we add
the corresponding two tokens to the input and pass
it through the trained model.

The ZeroRL method is trained using the joint
objective in Equation 5. However, instead of us-
ing the input-dependent reward function in Equa-
tion 7, it directly optimizes on the formality oracle.
Due to the slow training speeds with policy learn-
ing, we first pre-train our network with pointer-
generator method (Section 3). We further train the

model with policy learning for 3000 iterations. We
use a fixed weight of 0.9 for Lrl in Equation 5 and
0.1 for negative log likelihood loss Lnll. To gen-
erate formal and informal summaries in this case,
we train two separate models, one where the re-
ward function is F (y) to maximize the expected
formality, and second, in which the reward func-
tion is−F (y), to minimize the expected formality.

Training for our own approach is similar to
the vanilla RL method described above, but with
three differences. First, in order to use input-
dependent rewards (Equation 7), we first pre-train
the model with SymVoTo model instead of the
pointer-generator method. Secondly, once pre-
trained, we optimize on our input-dependent re-
ward function instead of directly using the formal-
ity oracle. Finally, once completely trained, the
same model can be used to generate formal and
informal summaries by supplying the correspond-
ing tokens at the input. While decoding these re-
spective summaries, we use k=4 for hypothesis re-
ranking.

The results of this study are shown in Table 2.
The models SymVoTo and ZeroRL are indepen-
dently able to beat the baseline from Table 3 in
capturing formality. Our approach which com-
bines these two methods using input-dependent re-
wards and further employs post-processing is able
to better capture the formality oracle.
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6.2 Evaluation against existing baselines

Multiple style transfer and summarization mod-
els are adapted for this task as baselines. Our
first baseline is the vanilla, pointer-generator net-
work described in Section 3. It generates a single,
generic summary, without using any formality in-
formation. We refer to it as PGen.

We next implement the use of single vocabulary
tokens from Fan et al. (2017) in the same manner
as SymVoTo except with the usage of one token
instead of two. We refer to this method as VoTo.

In order to show the benefit of incorporating
formality directly into the generation process, we
also implement a style-transfer pipeline where we
first summarize the input article and then trans-
fer its formality to the desired level. For this pur-
pose, we leverage the sequence to sequence imple-
mentation from Jhamtani et al. (2017) and train
it on GYAFC parallel formality dataset (Rao and
Tetreault, 2018). We build two models, one for
formal to informal style transfer and one for in-
formal to formal. Using the output from PGen
method as an input to these two models, gives
us the corresponding informal and formal sum-
maries. We refer to this approach as StyleSum.

Next, we compare our method against the
vanilla RL baseline, adapted from Paulus et al.
(2018). The implementation here is similar to Ze-
roRL (Section 6.1) but with the usage of greedy
baseline rewards instead of 0. We refer to this ap-
proach as GreedyRL.

Table 3 summarizes the results of our exper-
iment for generating informal and formal sum-
maries. First, we observe that as we generate
more formal and informal variants, they deviate
from the ground-truth summaries at lexical level,
as visible in the decreasing ROUGE scores. As we
later show (Section 7) through our human evalua-
tion, this lexical difference does not affect the per-
formance of our approach in comparison to other
baselines in terms of their correctness, meaning
and suitability. Secondly, we observe the desired
shift in average formality scores. For both the vari-
ants, our approach better captures formality over
the baseline methods. While the average formality
is still on the negative spectrum for formal sum-
maries, our method is better able to capture the
oracle as compared to other baseline approaches.

The StyleSum method, although produces
formality-diverse summaries, it fails to preserve
the content of the input article, as visible by huge

decline in ROUGE. This behaviour can be at-
tributed to only a 40% overlap between the vocab-
ulary on which the summarization and style trans-
fer modules were trained. One of the main disad-
vantages for such an approach is the lack of avail-
ability of parallel corpora with the same vocab-
ulary, for both summarization and style transfer-
indicating the challenges in cascading such mod-
els and curating such corpora for these tasks.

(a) Informal summaries (b) Formal summaries

Figure 2: Distribution of formality scores of the gen-
erated summaries. Y-Axis: Fraction of datapoints, X-
Axis: Intervals of formality scores.

We compare the distributions of above ap-
proaches in Figure 2. For visualization, we divide
the formality score from −2.0 (more informal) to
2.0 (more formal) into 10 buckets and plot the
fraction of test data points falling into these bins.
The desired shifts in the distributions are visible
for generating both formal and informal variants,
being more profound for our approach.

Metric Description
Formality How formal is the given summary

Meaning Similarity

How close or similar is the
meaning of the given summary

with respect to the reference
(ground-truth) summary

Semantic Correctness
How correct is the information
present in the summary with

respect to the given input article

Suitability
How well the summary suits the
input article, how well it captures

the key idea behind it

Table 4: Metrics considered for the qualitative analysis
of the summaries generated by our approach.

7 Qualitative Evaluation

The automated evaluation is limited to comparing
the summaries to a single ground-truth summary
based on ROUGE metric. Hence, we further per-
formed a crowd-sourced experiment to evaluate
the quality of the generated summaries while also
evaluating their formality. We compare the sum-
maries generated by our model with those gener-
ated by VoTo and GreedyRL baseline methods.
We did not consider the Pgen and StyleSum for
this comparison since the former only generates a
single, generic summary and the latter deviates too
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Informal Summaries (in %) Formal Summaries (in %)

Method Formality Meaning
Similarity

Semantic
Correctness Suitability Formality Meaning

Similarity
Semantic

Correctness Suitability

All instances
VoTo 40 62 54 52 52 56 66 54
GreedyRL 52 54 66 62 62 66 66 54

CNN/DM instances
VoTo 37.5 70.8 45.8 54.2 54.1 58.3 66.7 50
GreedyRL 54.2 54.2 79.2 58.3 62.5 66.7 58.3 54.2

TL;DR instances
VoTo 42.3 53.8 61.5 50 50 53.8 65.4 57.7
GreedyRL 50 53.8 53.8 65.4 61.5 65.4 73.1 53.8

Table 5: Percentage improvement of the proposed approach w.r.t. baseline methods for formal and informal
summary generation. Each value indicates the %age of cases where the summary by our approach was rated equal
to or higher in comparison to the baseline summary. For example, in 62% of the cases (All instances), the informal
summary generated by our method was rated as being closer to the reference summary in meaning (Meaning
Similarity) with respect to the summary generated by VoTo method. For Informal summaries, lower score on
formality is desirable and for all other comparisons, a higher score is more desirable. For all the metrics, our
method either performs at par or outperforms the two baselines.

much from the content in the article, as depicted
by the ROUGE scores. Table 4 describes the met-
rics on which we perform the comparison.

The crowd-sourced experiment is conducted via
Amazon Mechanical Turk3. 50 samples were ran-
domly chosen from our test data, with 24 coming
from CNN/DM dataset and 26 coming from Red-
dit dataset. The annotators were asked to rate the
summaries on a discrete scale of 1 to 5 for all our
requested metrics. To avoid any inter-annotator
bias, we get every annotator to rate all variants of
the summary generated for each test case. In total,
the summaries for each sample were rated by 5 an-
notators. Our comparisons between any two sum-
mary variants for the same article are based on the
majority opinion of these 5 annotators. To ensure
the quality of the annotations, we also ask the an-
notators to mark all the summaries which they saw
during the survey. We reject all those assignments
where this question was answered incorrectly and
those with less than 150 seconds work time.
Intra-Model Comparison: The annotators rate
the formality of a given summary, with 1 being
the least and 5, most formal. We perform a com-
parative analysis between the formal and informal
summaries generated by the same model. For our
approach, the formal summary was rated as more
formal in comparison to it’s informal counterpart
in 76% of the cases. For VoTo and GreedyRL
method, this number drops down to 66%. Being
consistent with the average formality scores in Ta-
ble 3, this shows that our approach is able to pro-
duce better formality-diverse summaries.
Inter-Model Comparison: In order to measure

3https://www.mturk.com/

the quality of our generated summaries, we also
compare them with baseline outputs on Meaning
Similarity, Semantic Correctness, and Suitability
(Table 4), all being key requirements in any sum-
marization system. We compare the (in)formal
summaries generated by our system with the cor-
responding (in)formal summaries generated by the
two baseline systems. For all these metrics, higher
values are more desirable for both formal and
informal variants. However, for comparison on
Formality, when comparing informal summaries,
lesser values are desirable and while comparing
formal summaries, higher are more desirable. The
results of our comparative study for these metrics
are presented in Table 5. All the values repre-
sent the percentage of cases where our summary
is rated to be better than the corresponding base-
line summary by the majority of annotators. We
also report the values for each dataset separately.
While our method does show a decline in ROUGE
scores in comparison to these methods (Table 3),
probably due to diversion from the ground-truth
summaries, this decline does not translate to the
quality metrics in our human evaluation. We ob-
serve that our summaries either perform at par
or outperform the baseline summaries on all four
metrics. We conclude that our approach produces
better formality-diverse summaries, while still sur-
passing other methods on summarization quality.

8 Conclusion

We presented a framework to generate formality-
tailored abstractive summaries for a given input ar-
ticle. Our approach employs reinforcement learn-
ing to train the model with formality feedback
on both ground-truth and sampled summaries to-
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gether. Automatic and human evaluations show
that although we observe some deviation from the
ground-truth summaries with respect to baseline
methods, the approach is effective in generating
formality-diverse summaries while still preserving
the meaning, semantic correctness and suitability.
Given a suitable oracle, the proposed methodology
can be easily extended to other psycho-linguistic
preferences such as politeness. We plan to per-
form this incorporation of other such preferences
that can arise in textual content.
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