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Abstract

In this work, we address the evaluation
of distributional semantic models trained
on smaller, domain-specific texts, particu-
larly philosophical text. Specifically, we in-
spect the behaviour of models using a pre-
trained background space in learning. We
propose a measure of consistency which
can be used as an evaluation metric when
no in-domain gold-standard data is avail-
able. This measure simply computes the
ability of a model to learn similar embed-
dings from different parts of some homoge-
neous data. We show that in spite of being a
simple evaluation, consistency actually de-
pends on various combinations of factors,
including the nature of the data itself, the
model used to train the semantic space, and
the frequency of the learned terms, both in
the background space and in the in-domain
data of interest.

1 Introduction

Distributional semantic (DS) models (Turney and
Pantel, 2010; Erk, 2012; Clark, 2015) typically
require very large corpora to construct accurate
meaning representations of words (Bengio et al.,
2003). This big data methodology presents chal-
lenges when working with text in a specific domain
or a low-resource language. In this paper, we are
interested in modeling concepts in philosophical
corpora, which are far smaller than a typical web
corpus. Instead of training directly on the philo-
sophical in-domain data, which is too sparse for
learning, we rely on a pre-trained background se-
mantic space, thus simulating a speaker with some
linguistic knowledge coming to a new domain.

Our focus is the evaluation problem encoun-
tered when working with domain-specific data.

DS models are typically evaluated on gold stan-
dard datasets containing word association scores
elicited from human subjects (e.g. Bruni et al.,
2014; Hill et al., 2015). Beside the limited prac-
tical use of such evaluation metrics (e.g. Gladkova
and Drozd, 2016), this is not a feasible method for
evaluating DS models in low-resource situations.
When domain-specific terminology is used and
the meaning of words possibly deviate from their
most dominant sense, creating regular evaluation
resources can require significant time investment
from domain experts. Evaluation metrics that do
not depend on such resources are valuable. Thus,
we introduce the metric of consistency, which re-
quires a model to learn similar word embeddings
for a given term across similar sources, for exam-
ple, two halves of a book.

Philosophical texts make a suitable case study
for out-of-domain data, as words may have very
different meanings in philosophy than in general
usage. For example, while a proposition is synony-
mous for offer or proposal in ordinary language,
in philosophy it is, among other things, a bearer
of truth-value (McGrath and Frank, 2018). Further-
more, philosophical writing is often precise and ter-
minology tends to be defined or at least discussed
in the text, so there should be enough information
for modeling meaning even when working with
small data, for instance in one or multiple works by
a particular philosopher or from a particular philo-
sophical tradition. Last but not least, the field of
philosophy could benefit from this type of model-
ing — although philosophers have not yet made
broad use of computational methods (Betti et al.,
2019), it has been shown that new insights can be
obtained using an information retrieval tool based
on a distributional semantic model of digitalized
philosophical texts (Ginammi et al., in press).

Using philosophical data, we perform a battery
of tests which reveal interesting properties of con-
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sistency. We show that in spite of being a simple
evaluation, consistency actually depends on vari-
ous combinations of factors, including the nature
of the data itself, the model used to train the seman-
tic space, and the frequency of the learned terms,
both in the background space and in the in-domain
data of interest. This leads us to conclude that the
evaluation of in-domain word embeddings from
small data has to be controlled extremely carefully
in order not to draw incorrect conclusions from ex-
perimental results.

2 Related Work

Learning embeddings for rare words is a very chal-
lenging process (Luong et al., 2013). Word2Vec
(W2V, Mikolov et al., 2013a)’s skipgram model
can learn embeddings from tiny data after modifica-
tion, as shown by Herbelot and Baroni (2017) when
it consists of just a single highly informative defini-
tional sentence. However, philosophical data is typ-
ically small data rather than tiny data. While tiny
data consists of a single definitional sentence, our
small data consists of multiple context sentences
per term that are not necessarily definitional. Her-
belot and Baroni’s (2017) Nonce2Vec (N2V) has
not been tested on this type of data. W2V has been
tested on smaller datasets, but was found to be sub-
optimal (Asr et al., 2016) and surpassed by SVD
models on a 1 million word dataset (Sahlgren and
Lenci, 2016).

Different DS evaluations test different aspects
of the learned embeddings (i.e. Wang et al., 2019).
Most existing methods are however not easily ap-
plicable to our task. The typical evaluation of com-
paring embedding similarities to a gold standard
of word similarity scores, such as the SimLex-999
dataset (Hill et al., 2015) cannot be applied, be-
cause we are interested in the representation of
specific terms: even if these terms are present in
the evaluation set, their meaning in the philosophi-
cal domain is likely to differ. Manually creating a
domain-specific resource requires labor-intensive
effort by domain experts, which makes it imprac-
tical to port standard datasets to a specific type of
corpora. This holds also for other evaluation meth-
ods such as analogy scores (Mikolov et al., 2013b),
as well as coherence (Schnabel et al., 2015), which
is based on the idea that pairs of similar words
should be close in semantic space.

Methods where human raters directly respond
to output of the model, such as comparative intrin-

sic evaluation (Schnabel et al., 2015) are interest-
ing, but require domain experts, as well as instruc-
tions that elicit the desired type of semantic rela-
tion (i.e. similarity). Extrinsic evaluation requires a
downstream task that can be evaluated, but in this
use case we are interested in the information en-
coded by the DS model itself. QVEC (Tsvetkov
et al., 2015) evaluates by aligning dimensions of
a semantic space to linguistic features, but we are
interested only in evaluating some vectors rather
than an entire space (target term vectors but not
the background space vectors), and this approach
requires language-specific resources.

Nooralahzadeh et al. (2018) evaluate domain-
specific embeddings by building a query inven-
tory for their domain from a glossary containing
synonym, antonym and alternative form informa-
tion. Unfortunately, such structured glossaries are
generally not available for specific philosophers.
Hellrich and Hahn (2016) test their models for re-
liability in a study investigating historical English
and German texts, another relatively low-resource
domain. Their reliability metric involves training
three identically parametrized models, and compar-
ing the nearest neighbors of each word in each
model using a modified Jaccard coefficient. This
metric does not require any language-specific data,
but it mainly serves as a test of the impact of the
sources of randomness in Word2Vec, and not as
a measure of the systematic semantic differences
across various data sources.

3 Consistency Metric

We propose consistency as a useful metric to eval-
uate word embeddings in the absence of domain-
specific evaluation datasets. We consider a model
to be consistent if its output does not vary when its
input should not trigger variation (i.e. because it is
sampled from the same text). Thus, a model can
only be as consistent as the input data it is trained
on and it requires the experimenter to compute data
consistency in addition to vector space consistency.

To evaluate data consistency, we create vectors
for target terms in a domain corpus under two con-
ditions: a) random sampling; b) equal split. The
‘equal split’ condition simply corresponds to split-
ting the data in the middle, thus obtaining two
subcorpora of equal size and in diachronic order.
Given a pre-trained background space kept frozen
across experiments, the vector representation of a
target is generated by simple vector addition over
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its context words. Therefore, the obtained vector
directly represents the context the target term oc-
curs in, and consequently, similar representations
(in terms of cosine similarity) mean that the target
term is used in a similar way in different parts of
a book/corpus, and is thus consistently learnable.
Crucially, though, this measure may interact with
data size. Kabbach et al. (2019) recently noted a
sum effect in the additive model, where summed
vectors are close to each other. It may be the case
that additive model vectors summed over more con-
text data contain more information and may have
higher similarity between each other, resulting in
higher consistency scores. We test this in Section 6.
When randomly sampling, we limit the number of
sentences per sample to control for this.

To evaluate space consistency, we create iden-
tically parametrized models as in Hellrich and
Hahn’s (2016) reliability metric, but over different
parts of the data, with the data being split in the
middle, as just described. We consider two ways
of comparing two vectors ~a1 and ~a2: by similar-
ity, where a higher cosine similarity indicates more
consistency, or by nearest neighbor rank, where a
higher rank of ~a1 among the nearest neighbors of
~a2 indicates more consistency. Every vector in the
background space, as well as ~a2, is ranked by co-
sine similarity to ~a1 to compute this rank value.

Although it is more complex than having a sin-
gle metric, we must consider both rank and similar-
ity simultaneously: rank is a more relative metric
and helps to ground the similarity value in the local
context of the target term. A vector with 0.8 simi-
larity but lower rank is a worse result than a vector
with 0.8 similarity and a high rank, as the low rank
means that the vectors are in a dense part of the se-
mantic space and a very high similarity is required
to consistently identify which of the neighbouring
vectors refers to the same concept. Conversely, a
low-similarity, high-rank vector can be a cause for
scepticism, as it may have been placed far out from
the rest of the semantic space.

We take consistency to be a desirable property of
word embeddings at the level of a certain domain.
Of course, consistency only measures one specific
desirable property of embeddings and should thus
not be interpreted as a general quality or accuracy
score. But even taken on its own, we will show that
it exhibits complex behavior with respect to data,
background vectors and term frequency.

4 Task Description

Our overall aim is to obtain consistent embeddings
of terms central to the works of Willard Van Or-
man Quine (1908-2000), an influential 20th cen-
tury philosopher and logician. As the meaning of
terms may differ between authors and even be-
tween books by the same author, we need to learn
such embeddings from small data, bounded by the
occurrences of the term in one particular book.

Quine datasets We build novel datasets based
on a corpus of 228 philosophical articles, books
and bundles written by Quine, with a focus om
two of Quine’s books: A System of Logistic (Quine,
1934) and Word & Object (Quine, 1960). These
Quine texts are part of a larger corpus of philo-
sophical texts, which is still being compiled, that
are central to the history of scientific ideas (Betti
and van den Berg, 2016). We focus on these partic-
ular works from the corpus because testing consis-
tency is best done on homogeneous data, and our
philosophy domain experts informed us that Quine
was a remarkably stable philosopher in his outlook
(Betti and Oortwijn, p.c.).

The first book is a formula-heavy logic book, de-
viating strongly from ordinary language. Such a
technical book is particularly likely to be internally
consistent. It contains 80,279 tokens after tokeniza-
tion and manual replacement of formulas with spe-
cial tokens. The second book is more textual and
consists of standard philosophical argumentation.
Our domain experts consider it conceptually con-
sistent. It contains 133,240 tokens after tokeniza-
tion. The full corpus of the 228 Quine articles con-
tains 1.7 million tokens and is pre-processed with
NLTK (Bird et al., 2009) for sentence splitting and
tokenization. A less common preprocessing step
we took was to remove one-character tokens from
the texts. These works contain many one-letter vari-
able names, logical symbols and other formal lan-
guage that a model might otherwise use to position
vectors of Quine terminology in particular areas
of the semantic space, as these tokens are highly
infrequent in the general domain.

To obtain terms that would be relevant to model,
we automatically extract terms from the two books’
indexes, as the most important terminology is
likely to be listed there. We include multi-word
terms, and divide the terms into 70%/30% subsets
for training and testing, resulting in a 157 / 67 split
for Logistic and a 184 / 79 split for Word & Ob-



135

ject. The target terms thus differ per book, as each
book lists different terms in its index. Instead of
this automatic approach to obtaining target terms,
an expert-created resource could provide a better
set of target terms, if available. If neither this nor a
terms glossary or index of terms is available, key-
word extraction methods could be used as an al-
ternative way of obtaining terms for evaluation. In
cases where the model will not be used for any
analysis of domain-specific content downstream, it
may be sufficient to randomly select words from
the text as target terms.

Next, we derive datasets from this corpus using
our two conditions for data consistency: random
sampling and equal split. In random sampling, for
each target term that meets a frequency cutoff of 10,
we randomly select five non-overlapping samples
of up to 10 random sentences that contain the target
term, divided evenly across the samples if the term
occurs in fewer than 50 sentences. This gives us the
datasets Quine-WordObject-rnd (with Word & Ob-
ject core terms as target terms), Quine-Logistic-rnd
(with System of Logistic core terms) for our two
books of interest, and Quine-all-rnd sampled from
the full Quine corpus, where we also use the Word
& Object core terms as target terms.1 In the equal
split condition, we divide a book into two halves at
a chapter boundary, and extract all sentences con-
taining index terms that meet a frequency cuf-off
of 2 in each half, resulting in the datasets Quine-
WordObject and Quine-Logistic. With random sam-
pling, we intend to capture the basic consistency
of the model. With equal split, we aim to capture
consistency across potential meaning development
throughout the book.2

Wikipedia dataset For cross-domain compari-
son, we apply our method to a 140M word pre-
processed Wikipedia snapshot using the same ran-
dom sampling process. As target terms, we used
300 randomly sampled one-word Wikipedia page
titles, following Herbelot and Baroni (2017).

5 Method

Before evaluating whether we have space consis-
tency, we must establish to what extent we have
data consistency, following our argumentation in

1Word & Object touches upon much of Quine’s work, so
its terminology can be considered representative.

2While our datasets are derived from copyrighted works
and cannot be shared, we provide replication instructions,
term lists and code here: https://bloemj.github.io/quine2vec/

Section 3. To obtain an embedding for a new tar-
get term, we use an additive model over its con-
text words, using as background space ordinary lan-
guage representations. For the in-domain context,
we use a window size of 15, with the window being
restricted to the sentence. The background space
is based on a Wikipedia snapshot of 1.6B words
trained with Word2Vec’s Gensim implementation
with default parameters, and containing 259,376
word vectors in 100 dimensions. For each target
term, context words undergo subsampling, which
randomly drops higher-frequency words.3 The vec-
tors of the remaining context words are summed
to create a vector for the target term. This additive
model was used by Lazaridou et al. (2017) for their
textual data, and was shown by Herbelot and Ba-
roni (2017) to work reasonably well on tiny data.
We calculate the vectors separately per sample (or
book half), yielding comparable term vectors.

Next, we turn to space consistency. We use our
consistency metric to evaluate two models that are
suited to learning embeddings from small data:
Nonce2Vec (Herbelot and Baroni, 2017) and an
SVD-reduced count-based model over concatena-
tions of our datasets with general-domain data.

The first model, Nonce2Vec, modifies W2V’s
‘skip-gram’ model (Mikolov et al., 2013a) in a
way that is inspired by fast mapping (Carey and
Bartlett, 1978) in humans. Human learners can
acquire new words from just a single token and
this process of fast mapping appears to build on
concepts that are already known (Coutanche and
Thompson-Schill, 2014). Nonce2Vec models this
through incremental learning, an initial high learn-
ing rate, greedy processing, and parameter decay.
To simulate the existence of background knowl-
edge, Nonce2Vec maps its novel word vectors into
a previously learned semantic space, based on the
aforementioned Wikipedia snapshot and the same
subsampling procedure. Target term vectors are ini-
tialized to their sum vector from the additive model.
For each sentence, the model is trained on the target
term, only updating the weights for that term and
freezing all other network parameters. The learning
rate and context window size decay in proportion
to the number of times the target term has been
seen, and the subsampling rate increases per sen-
tence.

Secondly, we try a count-based approach, creat-

3Some promising alternative subsampling methods for tiny
data were recently discussed by Kabbach et al. (2019).
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Dataset cos-sim rank
Quine-WordObject 0.938 1
Quine-Logistic 0.907 22.4
Quine-WordObject-rnd 0.919 1
Quine-Logistic-rnd 0.935 1
Quine-all-rnd 0.953 1
Wiki-rnd 0.927 1.001

Table 1: Consistency metrics on different data sets
using the additive model.

ing vectors over the general-domain and in-domain
data at the same time. In this procedure, we con-
catenate a particular Quine dataset with a 140M
word Wikipedia corpus sample, in which the Quine
terms are marked with special tokens in order
to be trained separately from the same term in
the Wikipedia data. We create embeddings from
this corpus, applying PPMI weighting and singu-
lar value decomposition (SVD) to reduce the mod-
els to 100 dimensions, to match the dimensionality
of our other models and because factorized count
models have been shown to work well on smaller
datasets (Sahlgren and Lenci, 2016). We use the
Hyperwords implementation of Levy et al. (2015),
with a window size of 5, and other hyperparameters
set to the default values.

In both the above approaches, we can then com-
pute vector space consistency between different
vectors learned for the same term over different
splits of the data.

6 Consistency of Data

We start by applying the additive model to quantify
data consistency on the different datasets described
in Section 4. We compute average similarities and
nearest neighbor ranks over the vectors of all target
terms in a dataset. For the randomly sampled data
sets, we have five vectors per term, one from each
sample, and compute the metrics over all unique
combinations of 2 vectors. For the equal split set-
ting, we compare the term vectors summed over
each half of the book.

The additive model produces highly consistent
embeddings on the training data: for most terms,
the vectors summed over each book half are each
other’s nearest neighbors in the background space.
This trend is also observed for the test sets pre-
sented in Table 1, where we observe high consis-
tency for the embeddings from both books.

Using the book halves of System of Logistic
(Quine-Logistic) gives us a slightly lower data con-

n cos-sim
1 0.794
2 0.837
3 0.905
4 0.923
8 0.956
all 0.987

Table 2: Data consistency for the term analytical
hypotheses in Word & Object when varying the
number of sentences per sample n.

sistency score than random sampling from that
book (Quine-Logistic-rnd), possibly because the
meaning of a term may evolve from the first half
to the second half of a book. This suggests some
utility of the data consistency measure in quanti-
fying meaning development throughout a text, as
long as other factors are controlled for. We also see
that the Wikipedia domain data (Wiki-rnd) is less
consistent than the Quine domain data (Quine-all-
rnd), which is to be expected as it contains more
diverse text.

These results seem to indicate that the addi-
tive model provides consistent embeddings. This
means that it must be possible to learn consistent
embeddings from these datasets, at least up to the
consistency values reported here, as the additive
model directly represents the contexts that predic-
tive models use for training.

As already mentioned, however, the factor of
data size may interfere with consistency. We do
observe in Table 1 that the consistency of data
sampled across the full Quine corpus is higher. Al-
though we limited our samples to 10 sentences per
term, not every core Quine term is used frequently
enough to have 5 samples with the maximum size
of 10 sentences. Specifically, in the full Quine
dataset, 68.6% of terms reach the maximum size,
while in the Word & Object dataset, only 32.1%
of terms reach it. In the Wiki set, this is 90.9%,
showing that its lower consistency is not explained
by limited data. To fully control for data size, we
would need to use artificial data: if we control for
the number of sentences, the number of words and
the number of words subsampled still affect data
size. As we are mainly interested in the quality of
models on our own philosophical corpus, we leave
this for future work.

Instead, we test the effect of data size by sum-
ming two vectors for the same term over varying
numbers of sentences, and computing the consis-
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tency between them. Table 2 shows a clear effect
of data size: vectors summed over more sentences
have higher data consistency. This shows that data
consistency should ideally be computed within the
constraints of a particular data size, because vec-
tors summed over more context are more informa-
tive and thus more consistent.

7 Consistent Spaces

Having established that our data is consistent even
with fairly small samples, we proceed to use two
small data approaches to place terms consistently
in vector space. We start with Nonce2Vec (N2V),
which uses the sum vectors from the additive
model for initialization and trains only on that vec-
tor, as it does not update the vectors in the back-
ground space, only that of the target term.

For this experiment, we modified N2V in two
ways. Firstly, it now takes multiple sets of input
sentences per target term, one from each sample
or book half, and trains each term on all sets sepa-
rately, resulting in multiple term vectors, one over
each sample. Secondly, we implemented the con-
sistency metrics described in Section 3 for compar-
ing the different sample vectors and analyzing their
position in the background space.

Using N2V’s default parameters, we obtain low
consistency scores. While N2V was designed for
learning from a dataset with one sentence per term,
the terms in our dataset occur in more sentences.
A likely consequence of this difference, having
small data instead of tiny data, is that the default
parameters may include a too high learning rate
and N2V’s parameter decay may be too fast. A
learning rate that is too high can result in mod-
els with low stability. To adapt to small data, we
tune N2V’s parameters on the full Quine dataset
with the training set of target terms. We performed
a grid search following a parameter space con-
taining different learning rates ([0.1, 0.5,1, 1.5]),
the number of negative samples ([1,3, 5]), the sub-
sampling rate ([100, 3000, 5000,10000, 20000]),
learning rate decay ([30,70, 100, 180]), subsam-
pling rate decay ([1.0, 1.3,1.9, 2.5]) window de-
cay ([1, 3,5]), window size ([15]). Bold values are
the best performing values in Herbelot and Baroni
(2017) or defaults of N2V. We obtain our best per-
formance with a learning rate of 0.1, 5 negative
samples, a learning rate decay of 30 and a subsam-
pling decay factor of 2.5.

We obtain fairly consistent embeddings with

Dataset cos-sim rank
Quine-WordObject 0.686 1.21
Quine-Logistic 0.748 1.48
Quine-WordObject-rnd 0.695 2.11
Quine-Logistic-rnd 0.743 1
Quine-all-rnd 0.717 1.59
Wiki-rnd 0.589 507.8

Table 3: Consistency metrics on different data sets
for the Nonce2Vec-based models.

Dataset cos-sim
Quine-WordObject-rnd 0.352
Quine-Logistic-rnd 0.436
Quine-all-rnd 0.440
Wiki-rnd 0.321

Table 4: Consistency on different data sets for the
SVD models.

these parameters on the test set, as shown in Ta-
ble 3: the vectors learned from the two book halves
in the Quine-WordObject and Quine-Logistic
datasets are often each other’s nearest neigh-
bour, with average nearest neighbour ranks of 1.21
and 1.48, respectively. Surprisingly, although this
model is initialized using Wikipedia background
vectors, that domain (Wiki-rnd) fares the worst in
terms of consistency, as it does in the additive
model. In general, these vector space consistency
scores are lower than the data consistency scores
we saw before, so there is room for improvement.

We therefore turn to our other approach that is
not based on the additive model: the SVD models
over the concatenation of in-domain and general-
domain data. When concatenating the datasets, we
have to ensure that the target terms in our random
samples of in-domain data are trained separately
from the same term in the general domain and in
other samples. We therefore mark them with a dif-
ferent ID for each sample. As before, we compute
cosine similarities between these target terms from
different samples to measure consistency.

Table 4 shows that the resulting embeddings are
not very consistent, with much lower average co-
sine similarities between the samples that does not
reflect the consistency of the data, as indicated by
the additive model in Table 1. The consistency
of the SVD vectors is also lower than that of the
Nonce2Vec vectors from the previous experiment.

One possible explanation for the difficulty that
both of these models have in learning from our data
is in the bridging of the domain gap between the
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Group of terms similarity
System of Logistic 0.323
Word & Object 0.366
Q-High-freq W-Low-freq 0.735
Q-Low-freq W-Low-freq 0.417
Q-Low-freq W-High-freq 0.109
Q-High-freq W-High-freq 0.078

Table 5: Average similarities between Quine vec-
tors and Wiki vectors in our SVD model. Q =
Quine, W = Wiki.

Wikipedia general-domain spaces and the Quine
terminology. To quantify the difference between
domains, we selected all sentences from the Quine
corpus containing 35 target terms and concatenated
them with our 140M word Wikipedia sample, as
in the previous experiment. These terms were se-
lected to be either high-frequent or low-frequent in
the Quine domain and either high-frequent or low-
frequent in the general domain. Again, the Quine
terms were marked in order to be trained sepa-
rately from the same term in the Wikipedia domain,
and we created a SVD model. In this SVD model,
we computed the cosine similarities between each
Quine term and its Wikipedia counterpart, and take
this to be a measure of domain difference.

Table 5 shows a clear effect of term frequency.
We grouped all terms according to two factors:
their frequency in the Quine book they were se-
lected for (low, relative frequency4 < 0.0005 or
high, relative frequency > 0.001) and their fre-
quency in the Wikipedia domain (low, RF <
0.000025 or high, RF > 0.00005).5 We observe
that infrequent terms with a dominant philosophi-
cal sense such as stimulus have more similar vec-
tors in both domains despite their sparsity in both
corpora. Generally, terms that are highly frequent
in the Quine-domain but have low frequency in
the Wikipedia domain are more similar between
the two domains (Q-High-freq W-Low-freq). To a
lesser extent, this is also true for terms that are low-
frequent in both domains.

This result indicates that bridging the domain
gap should be easier with these philosophical core
terms than with frequent Wikipedia terms. The fact
that our models are less consistent on Wikipedia
data also indicates that the generality of this do-
main is more relevant than any specific differences
with the Quine domain. It must therefore be possi-

4 F
C

where F is the term frequency and C is the corpus size.
5Different thresholds are necessary for the larger corpus.

Dataset cos-sim rank
Quine-WordObject-rnd 0.352 22,947
Quine-Logistic-rnd 0.353 24,513
Quine-all-rnd 0.382 17,262
Wiki-rnd 0.475 2,902

Table 6: Average similarities between learned
in-domain term vectors and pretrained general-
domain background vector on different data sets
for the Nonce2Vec-based models.

ble to learn good representations from this data by
using background knowledge from the Wikipedia
domain, but the models we tested did not reach the
level of consistency of the additive model.

For better or for worse, our models do move
away from what is in the background space. In
our Nonce2Vec experiment on the Quine-all-rnd
dataset, we also measured the average cosine simi-
larity and nearest neighbour rank of the pretrained
Word2Vec term vector from the background space,
compared to the vectors we learned for that same
term from the in-domain data. These numbers,
shown in Table 6, reveal that the model does not
stay close to the pre-trained background vectors
in order to achieve high consistency, which could
be a risk if consistency was used as a learning
signal in combination with an invariant initializa-
tion. Furthermore, the vectors learned from the
Wiki data are closer to the pre-trained vectors than
those learned from the Quine data. This is expected
of a good model, as there is no domain gap to
bridge when training with Wikipedia context sen-
tences into a Wikipedia background space. This
also means that the vector representations for terms
as used by Quine become more distinct after train-
ing, as our philosophy domain experts would ex-
pect of a good meaning representation of these in-
domain terms.

We must again note that consistency is not the
only desirable property of word embeddings. Un-
fortunately, other properties are more difficult to
evaluate on low-resource data. Without a domain-
specific evaluation set, we can only explore issues
with quality by examining nearest neighbors of
vectors that our metric marks as perfectly consis-
tent. We observe both in our results, illustrated
by cherry-picked examples from the Nonce2Vec
model on the Quine-WordObject dataset. Table 7
shows that the nearest neighbours for both book
half vectors for the term talking (Word & Object)
look bad. The vectors’ nearest neighbours are some
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Term ~a1 NNs ~a2 NNs

talking
1 wrongfulness axiomatically
2 axiomatically epiphenomenon
3 particularized impredicative

verbs

1 logophoric logophoric
2 deverbal resumptive
3 adpositions countability
4 uninflected adverbials

Table 7: Qualitative examination of some nearest
neighbours of target term vectors computed over
book halves 1 and 2 of Word & Object.

apparently unrelated words yet they are closest to
each other (similarity 0.751). We thus have high
consistency, but not a good semantic representa-
tion. The word verb is an example that does work:
all nearest neighbours from the background space
are linguistic terms. The two verbs vectors are also
closest to each other (similarity 0.625).

8 Conclusion

Our results show that it is possible to learn consis-
tent embeddings from small data in the context of
a low-resource domain, as such data provides con-
sistent contexts to learn from. Applying an addi-
tive model that sums general-domain vectors from
a pre-trained background space resulted in similar
vectors for the same terms across different contexts
from the same domain. The Nonce2Vec model also
results in consistent embeddings that are closer to
vectors of the same term trained on different con-
text sentences than to vectors of other terms. The
summed vectors from the additive model applied
to our philosophical small data are highly discrim-
inative, distinguishing the target terms from back-
ground terms almost perfectly.

Our results show the benefits of using consis-
tency as an intrinsic evaluation metric for dis-
tributional semantic models, particularly for low-
resource situations in which no gold standard sim-
ilarity scores are available. While the metric may
appear simple, it proved useful both for evaluating
the homogeneity of a dataset and for evaluating
the stability of vector spaces generated by a given
model. Consistency turns out to depend on vari-
ous combinations of factors, including the nature
of the data itself, the model used to train the seman-
tic space, and the frequency of the learned terms,
both in the background space and in the in-domain
data of interest.

For the specific purpose of modeling philosoph-

ical terminology, consistency helps us assess the
quality of embeddings for philosophical terms,
which may differ in meaning across a book or an
author’s work, and for which no gold standard eval-
uation sets are available. These embeddings can
then be used to aid in the examination of large
volumes of philosophical text (Ginammi et al., in
press). Beyond our use case, the consistency met-
ric is quite broadly applicable — a relevant back-
ground semantic space is necessary, but this can be
constructed from out-of-domain data.

Like any metric, the consistency metric does not
answer all of our questions about the quality of our
embeddings. Although the additive model is more
consistent than the others, both its dependence on
data size and the not-always-great qualitative re-
sults show that exploring other models is worth-
while for small data. Further research is required
to determine whether the representations produced
by the additive model are useful for downstream
tasks. Using the knowledge of domain experts
in a structured evaluation task would be a good,
though resource-intensive, next step. Our metric
helps quantify the reliability of a model before in-
vesting more resources into evaluation.

Our observation that the consistency metric de-
pends on a variety of other factors shows that con-
sistency is a non-trivial aspect of the evaluation
of distributional semantic models that should not
be overlooked. In future work, we will apply the
consistency metric to evaluate other models, and
datasets from other domains.
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