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Abstract

Goal-Oriented Chatbots in fields such as
customer support, providing specific infor-
mation or general help with bookings or
reservations, suffer from low performance
partly due to the difficulty of obtaining
large domain-specific annotated datasets.
Given that the problem is closely related to
the domain of the conversational agent and
that data belonging to a specific domain
is difficult to annotate, there have been
some attempts at surpassing these chal-
lenges such as unsupervised pre-training
or transfer learning between different do-
mains. A more thorough analysis of the
transfer learning mechanism is justified by
the significant boost of the results demon-
strated in the results section. We de-
scribe extensive experiments using trans-
fer learning and warm-starting techniques
with improvements of more than 5% in
relative percentage of success rate in the
majority of cases, and up to 10x faster con-
vergence as opposed to training the system
without them.

1 Introduction

Goal-Oriented Conversational Agents (GO Chat-
bots) are seeing increased use to help users to
achieve predetermined goals, but they can han-
dle only very simple tasks, such as playing songs,
searching information, set alarms or reminders.
Building a dialogue agent to fulfill complex tasks
remains one of the fundamental challenges for the
Natural Language Processing (NLP) community
and Artificial Intelligence (AI) in general.

There are two dominant approaches for solv-
ing this problem. The first one relies on (fully)
supervised learning, e.g. using sequence-to-

sequence (Sutskever et al., 2014) models, encod-
ing a user’s utterance and its context to decode
the answer provided by the chatbot. However,
this method does not explicitly allow to locate and
make use of specific information such as entity
recognition (e.g. a person’s workplace) and re-
quires large amounts of data in order to flawlessly
extract and process particular pieces of informa-
tion relevant for the task at hand, usually a manda-
tory requirement for GO Chatbots.

The second category entails partitioning the di-
alog system into smaller subsystems, usually im-
plemented and trained separately. An example
of such a system (Li et al., 2017) consists of
several components: Natural Language Under-
standing, Dialog Manager, and Natural Language
Generation. The Dialog Manager is often im-
plemented with the aid of reinforcement learning
(RL) based techniques, for instance using Deep Q-
Nets (DQN) (Mnih et al., 2015) and having the
main goal of learning the policy on account of
which the agent will be able to provide answers.

The first approach is used with more favourable
outcomes in the case of open-domain dialogue
systems (Serban et al., 2016) than in closed-
domain dialogue systems (Peng et al., 2017), be-
cause it does not require a method to reward the
accomplishment of the task. Instead, the suc-
cess of the conversation resides in the engage-
ment of the user, measured in the level of coher-
ence and cohesion of the dialog. The second ap-
proach better fits learning tasks having less labeled
data, where the validity of the answer can be de-
termined through evaluating the task’s completion
(e.g. making a restaurant reservation). These RL-
based dialogue systems have the ability to simu-
late conversations, thus exploring the unknown di-
alogue space efficiently.

Currently reduced performance of domain-
specific conversational agents in fields such as cus-
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tomer support, providing certain information or
general help with reservations etc., is partly due to
the difficulty of obtaining large annotated datasets.
With each new domain and each new conversa-
tion flow introduced by a new task, newly anno-
tated data need to be fed into the system in order
to assimilate them and later provide the best an-
swer for different inputs. The efforts for selecting,
categorising and annotating the data are substan-
tial, no matter the previous experience or domain-
knowledge. This paper analyses the possibility to
alleviate the data annotation endeavor through the
inter-domain transfer learning technique (Ilievski
et al., 2018). Alongside with unsupervised pre-
training and others, transfer learning has proven
a significant contribution to deliver better results,
but it has only been tested with datasets from a
small number of domains. We experiment with
larger datasets, wider scenarios and we offer a
richer understanding of the method, premises and
results for overcoming the lack of data.

In this paper, we provide a thorough study
on the impact of transfer learning in goal-
oriented chatbots, starting from the work pre-
sented by (Ilievski et al., 2018). They proposed
the possibility to reuse the knowledge gained from
a source domain to boost the training and testing
performance of a machine learning chatbot model
on a different target domain, as described in more
detail in the following sections. They identify two
cases:

• domain overlap - the source and target do-
mains are different, but share a fraction of ac-
tions, and

• domain extension - the source domain is ex-
tended by the target domain.

In both cases, there are common actions that jus-
tify the transfer learning between domains instead
of independently training models for each of them.
This approach has two effects: (1) the success rate
of the model obtained with transfer learning is sig-
nificantly higher than that of the model trained
without any prior knowledge, and (2) transfer
learning can be an alternative or complementary
to warm starting, which also requires labeled data.

The results presented by the aforementioned au-
thors represent a significant improvement for GO
Chatbots, but they are obtained with only three
domains, with relatively small datasets: Movie
Booking, Restaurant Booking, and Tourist Info.

In order to train a model for a more complex do-
main such as customer support, the improvement
has to be validated on multiple datasets from dif-
ferent domains. Also, because the cost of anno-
tating data for such a domain is very high, trans-
fer learning methods should be studied for possi-
ble improvements that increase the automation of
domain-specific conversations with few data.

The rest of the paper is organized as follows.
Section 2 presents the related work for Goal Ori-
ented Chatbots. The model used in our exper-
iments is detailed in Section 3 and the datasets
in Section 4. The results of our experiments are
described in detail and interpreted in Section 5.
Finally, future improvements and conclusions are
presented in Section 6.

2 Related Work

We have already classified the existing solutions
used for building machine learning chatbots in two
categories, based on the learning method: super-
vised learning and reinforcement learning. In this
section, we are providing a more in depth analysis
of these two alternatives.

Serban et al. (2016) propose a solution for
non-goal-driven systems, which uses an encoder-
decoder model and word embeddings to generate
the response of the agent starting from the utter-
ance of the user as input. The architecture is com-
posed from two RNNs: one for the utterance level,
which treats the dialogue as a sequence of utter-
ances, and one at the word level, which processes
an utterance as a sequence of words. This model
is trained on movie scripts and the dialogues in-
clude the speech acts. A detail worth mention-
ing here is that the pre-training is performed on a
large related, but non-dialogue, corpus. The con-
sequence is that the model accomplishes slightly
better results compared with an initialization with
fixed word embeddings.

Another supervised learning model for chatbots
is presented by (Wen et al., 2017). The architec-
ture is significantly more complex, and is divided
in several modules. The utterances received from
the user are converted into two representations:
a probability distribution over the slot-value pairs
called the belief state, and an intent representation
generated by an intent network. A database oper-
ator selects the most probable values in the belief
state and makes a query to the database. A policy
network takes as input the intent representation,
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database result, and belief state and returns a rep-
resentation of the next system action. Finally, a
generation network uses the action representation
to generate a template sequence, which is filled
with actual values from the database. This system
is very similar to the one used in the current pa-
per, but the former is trained in a supervised fash-
ion and, therefore, it is possible to fail at finding
a good policy due to the shortcomings in dialogue
exploration. Firstly, the policy is learned by a net-
work instead of using RL (our case) and, secondly,
the ε− greedy policy used in our experiments en-
sures the exploration of unknown states, instead
of relying entirely on seen training data and rigid
choices.

A possible solution for the disadvantage of us-
ing supervised training in the model presented
above is proposed by Su et al. (2016). The ar-
chitecture is similar, but there is a difference in
the policy network training: it receives the current
state and predicts the next system action in a su-
pervised fashion in the first phase, followed by a
reinforcement learning phase. The purpose of the
second phase is to improve the generalization ca-
pacity of the policy by a better exploration of the
action space using reinforcement learning.

A step forward in solving complex tasks is done
by Peng et al. (2017). They introduce a hier-
archical deep reinforcement learning architecture
for solving composite tasks for travel planning,
that are a collection of subtasks such as: book
air ticket, reserve hotel room, buy train ticket,
etc. This type of tasks are a challenge for RL
approaches because of the reward sparsity, the
slot constraints between different subtasks and
the agent’s tendency to switch between different
subtasks frequently when conversing with users,
which leads to poor user experience. The dialogue
manager consists of (1) a top-level dialogue pol-
icy that selects subtasks, (2) a low-level dialogue
policy that selects the actions in a given subtask,
and (3) a global state tracker that supervises the
cross-subtask constraints.

Ilievski et al. (2018) use the transfer learning
mechanism for chatbots employing neural models
to reduce the amount of training data and speed up
the learning process for new domains. This can
be accomplished with the transfer of the param-
eters learned in a source domain to a target do-
main, which has some common actions with the
former. In order to apply the transfer, it is nec-

essary to have the same state distribution in both
domains, therefore the bots trained on the source
domain must be aware of the actions in the target
domain. They obtain an improvement of 65% in
success rate in the case of domain extension and
20% for domain overlap. This represents a note-
worthy result and one of the reasons we chose to
study this mechanism in more detail. Another rea-
son is the faster learning resulted from the combi-
nation of transfer learning with warm start.

In a more recent paper, Wolf et al. (2019)
present the improvement brought by transfer
learning in generative tasks such as open-domain
dialog generation. A Transformer model (Vaswani
et al., 2017) is pre-trained on a large unlabeled
dataset, followed by a fine-tuning step in which
two loss functions are optimized: (1) a next-
utterance classification loss, and (2) a language
modeling loss. As a result, the model outperforms
the existing systems by a significant margin ob-
taining 51% absolute improvement in perplexity
on the validation dataset.

Given that many works successfully engage un-
supervised learning in various manners, there still
remains the question: how does unsupervised pre-
training work? An answer is formulated by (Erhan
et al., 2010) and a possible explanation is that the
pre-training guides the learning towards basins of
attraction of minima that support better general-
ization from the training dataset. Therefore, it acts
like a regularizer for the supervised fine-tunning
phase, when the parameters are restricted to a rel-
atively small space. This assumption is reinforced
by the results that show an effectiveness’ upgrade
of pre-training as the number of units per layer in-
creases, a better generalization performance, but
worse training errors, and worse performance than
random initialization for small networks, all char-
acteristics of regularization. They also show a
growth in the probability of finding a local min-
ima by increasing the depth of a network with ran-
dom initialization, compared to an unsupervised
pre-training.

The most important advantage of pre-training is
the possibility of using unlabeled data, which is
really helpful given the high costs of data annota-
tion. Therefore, the effect of pre-training with very
large datasets observed in the experiments is the
most surprising result of the paper (Erhan et al.,
2010): the early examples determine the basin of
attraction for the remainder of the training and the
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supervised fine-tuning cannot escape from it. The
hypothesis is that those examples induce changes
in the magnitude of the weights, which decreases
the number of regions accessible to the stochas-
tic gradient descent procedure. This is why, in a
large-scale setting, the influence of unsupervised
pre-training is still present, in contrast to the clas-
sical regularizers, when the effect disappears with
more data.

Nevertheless, fine-tuning large pre-trained
models is parameter inefficient, because each
task requires an entirely new model. A compact
and extensible model is needed in order to solve
this shortcoming. For this purpose, (Houlsby
et al., 2019) introduce adapter-based tuning,
which achieves a mean GLUE score of 80.0
on several text classification tasks, compared
to 80.4 achieved by full fine-tuning, using 1.3
task-specific parameters in total, compared to 9.
This method also facilitates continual learning
(training on a sequence of tasks) and multi-task
learning (training on simultaneous tasks).

3 Model

The system used in this paper is a semantic frames
system (Li et al., 2017). It represents the dialogue
as a set of slot-value pairs and at each step t, given
the user utterance ut, the agent takes an action at,
which can be either the final result or a request for
a value of an empty slot. The architecture consists
of two parts: a User Simulator module and a Di-
alogue Manager module.

The purpose of the User Simulator is to inter-
act with the Dialogue Manager in order to train a
policy for an agent. First, a user goal is chosen
randomly from the goals’ pool and is unknown for
the agent, but it tries to help the user to accom-
plish it during the dialogue. The goal consists of
two types of slots:

• inform slots - represent the constraints im-
posed by the user, hence their values are
known (e.g. {movie name: ”deadpool”, city:
”Madison Heights”, date: ”saturday”, num-
ber of people: ”5”}).

• request slots - represent the values that the
agent should provide, hence they enclose
unknown values to the user (e.g. {price,
start time, critic rating}).

Then, the user utterance ut is generated follow-
ing the Agenda-Based model (Li et al., 2016): the

user has an internal state su composed of a goal G
and an agenda A. The goal consists of constraints
C and requests R. At each step t, the user simulator
generates the user action au,t based on the current
state su,t and the last agent action aa,t and updates
the current state s

′
u,t.

Natural Language Generation (NLG) is the
module that generates natural language text for the
user dialogue actions. For better results, a hy-
brid approach is used, including a model-based
NLG and a template-based NLG. The model-
based NLG is an LSTM decoder, which takes a
dialogue action as input and generates a sentence
with slot placeholders. If the sentence can be
found in the predefined templates, the template-
based NLG is applied for filling the slots, other-
wise, the utterance generated by the model-based
NLG is used.

Natural Language Understanding (NLU) is
the opposite to the NLG module: it takes as in-
put an utterance and determines the user’s in-
tent and the set of slots associated with it (e.g.
{movie name: ”deadpool”, date: ”saturday”,
number of people: ”5”}), in order to form a se-
mantic frame. It is implemented with an LSTM
and its objective is to maximize the conditional
probability of the slots and the intent, given the
utterance.

The Dialogue Management (DM) includes
two submodules: Dialogue State Tracker and
Policy Learning module. The goal of the Dia-
logue State Tracker is to build a representation of
the current state for policy learning, using the se-
mantic frame received from the NLU component.
It keeps the history of the user utterances, system
actions and the query results from the Knowledge
Base.

Policy learning module generates the next ac-
tion of the system at according to the policy π =
P (a|s), given the current state st, in order to ac-
complish the user goal in the smallest number of
steps. The state st includes the latest user action,
the latest agent action, turn information, history
dialogue turns and the available database results.
A DQN (Mnih et al., 2015) is used to approximate
the state-action function Q(s, a|Θ) and contains
the experience replay mechanism.

4 Dataset

In order to study the impact of transfer learn-
ing in multiple domains, we choose MultiWOZ
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(a) Hospital with pre-training on Attraction domain.

(b) Taxi with pre-training on Train domain.

Figure 1: Small number of extra slots in target domain.

2.0 (Budzianowski et al., 2018), a large-scale
multi-domain corpus of natural human-human
conversations, collected through the Wizard-of-
Oz framework (Kelley, 1984). It contains about
10000 samples from seven domains, with an av-
erage of turns per dialogue between 8.9 and 15,
depending on the domain. From this dataset, we
select the following five domains: hotel, attrac-
tion, train, taxi, hospital, and also keep movie
and tourist domains used by Ilievski et al. (2018).
These domains are grouped in source-target pairs
according to their common slots, resulting five
new opportunities for transfer learning. The total
number of slots for source and target domains, re-
spectively, as well as the amount of common slots
is presented in Table1. We call extra source/target
slots the difference between the total domain slots
and the common ones.

The goals can be divided into two categories de-
pending on whether they contain request slots or
not. In the first case, the user sends a list of inform
slots to the agent and the agent should accomplish

the task respecting the constraints imposed by the
user. In the second case, the user sends a list of
request slots besides the list of inform slots, and
the agent should accomplish the task and answer
to the user’s questions.

Source
Domain

Target
Domain

Source
Slots

Target
Slots

Common
Slots

1 movie restaurant 6 9 3
2 restaurant tourist 9 9 6
3 hotel attraction 13 9 5
4 train taxi 9 6 4
5 movie hotel 17 13 5
6 tourist hotel 9 13 6
7 attraction hospital 9 4 3

Table 1: Number of slots per domain

This is a noteworthy detail, because it can influ-
ence the success rate through the experience ac-
cumulated in the warm start phase. In this phase,
a fixed-size buffer is filled with experiences from
positive-outcome conversations. Thus, the learn-
ing process gains a boost when having to self-
calibrate based on an experience which will lead
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(a) Attraction with pre-training on Hotel domain.

Figure 2: Medium number of extra slots in target domain.

to goal-achievement. We have noticed that the
best results are obtained with warm start on no-
request goals, following that the agent will man-
age to achieve request goals during training. As
we increased the percentage of request goals in
the warm start buffer, the overall success rate
decreases and the learning curve becomes less
smooth.

The total number of goals per domain is dis-
tributed as follows:

• 3000 training and 400 testing user goals in
hotel, train and attraction;

• 2000 training and 200 testing user goals in
taxi datasets;

• 80 training and 15 testing user goals in hos-
pital dataset.

5 Experiments

The experiments are executed on overlapping do-
mains, with the setup from (Ilievski et al., 2018)
and running each experiment 10 times, with
nepochs = 100 epochs. The second set of ex-
periments mimic testing on extension domain by
restricting the slots in the source domain to the
common ones. The warm start technique with
experience replay buffer is used for both trans-
fer learning and scratch agent (the same version,
but without transfer learning), and the experience
buffer is flushed when the agent reaches, for the
first time, a success rate of 0.3. We also keep
the maximal number of allowed turns per dialogue
nmax turns = 20 in most experiments, except in
the case of attraction domain with pre-training on
hotel. In this situation, the number of turns is too

small compared with the number of slots from the
hotel domain, and the agent trained on the source
domain is not able to learn. Consequently, we in-
creased nmax turns to 40 turns.

5.1 Different Domains

The first set of experiments aims to analyze the
convergence for the agent with and without trans-
fer learning on new domains. We group the exper-
iments in three categories, according to the num-
ber of extra slots in the target domain, as follows:
1. small number of extra slots (less than 2 slots);
2. medium number of extra slots (between 3 and
6 slots); and 3. big number of extra slots (greater
than 6 slots). We are interested in the improvement
transfer learning brings to the success rate and the
convergence pace.

Figure 1 presents the learning curve for the tar-
get domains with a small number of extra slots.
For hospital domain with pre-training on attrac-
tion, both agents converge to a success rate greater
than 95%, but the agent with transfer learning con-
verges in a few epochs (<5), while the scratch
agent needs 40 epochs to reach similar accu-
racy values. In the case of taxi domain with
pre-training on train domain, the improvement of
transfer learning is 15% for train dataset and 19%
for test dataset. In absolute terms, the success rate
increases from 80% to 91% for train dataset and
from 76% to 91% on test dataset.

For the attraction domain with pre-training on
hotel, presented in Figure 2, the model obtained
with transfer learning has a success rate 7% higher
than that of the scratch model on train dataset.
This denotes an increase from 68% to 73% in ab-
solute terms. For test dataset, transfer learning im-
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proves the success rate from 68% to 76% or with
12% in relative terms.

The last category registers the lowest overall
success rate for both agents and we consider that
these results stem from the large number of extra
slots in the target domain. The learning curves are
illustrated in Figure 3 and the success rate is sim-
ilar for train and test datasets. Hotel domain with
pre-training on movie has a success rate of 27%
with transfer learning and 8.5% without transfer
learning, with an improvement of 217%. While
the same domain with tourist as source domain
of transfer learning, registers a relative boost of
737%, from 4.3% to 36%.

5.2 Same Domains, Different Number of
Slots

The second set of experiments targets the evolu-
tion of the success rate according to the number
of extra slots, both in the source and target do-
main. The selected experiment evaluates the hotel
domain with pre-training on tourist dataset, given
they each have large number of slots with few
common ones (see Table1). We keep the setup for
the other parameters and only change the number
of extra slots in one domain, while the other re-
mains constant.

Source
Slots

Target
Slots

Scratch
Score

TL
Score

Scratch
Epochs

TL
Epochs

1 6 6 0.81 0.88 100 40
2 7 6 0.81 0.86 100 70
3 8 6 0.81 0.84 100 70
4 9 6 0.77 0.83 100 50

5 6 9 0.55 0.72 100 100
6 7 9 0.57 0.63 100 100
7 8 9 0.54 0.70 80 100
8 9 9 0.56 0.70 100 100

Table 2: Source Slots number influence

The final success rate on the test dataset for con-
stant slots in target domain is summarized in Ta-
ble 2. When the target contains only the common
slots, we observe a decrease of the success rate
with less than 2% with each extra slot added in the
source domain, for the model trained with trans-
fer learning. However, it is still by 6.6% greater
than the success rate of the agent trained with any
other prior knowledge. An interesting fact is that
the same test with the common slots plus three
extra slots in target domain has the effect of di-
minishing the success rate by an average of 15%
compared with the previous situation. At the same
time, the improvement over the scratch agent is
equal to 24%.

Source
Slots

Target
Slots

Scratch
Score

TL
Score

Scratch
Epochs

TL
Epochs

1 6 6 0.81 0.88 100 40
2 6 7 0.75 0.85 90 40
3 6 8 0.63 0.79 70 100
4 6 9 0.55 0.72 100 100
5 6 10 0.53 0.59 100 100
6 6 11 0.09 0.52 100 90
7 6 12 0.01 0.44 90 100
8 6 13 0.0 0.39 10 100

9 9 6 0.77 0.83 100 50
10 9 7 0.71 0.82 90 100
11 9 8 0.65 0.76 100 100
12 9 9 0.56 0.70 100 100
13 9 10 0.54 0.59 100 100
14 9 11 0.11 0.52 100 100
15 9 12 0.04 0.42 90 100
16 9 13 0.04 0.36 100 60

Table 3: Target Slots number influence

As expected, the number of extra slots in tar-
get domain has a bigger influence over the final
results. Therefore, the relative average decrease of
the success rate for the agent with transfer learning
is 9.5% for each extra slot, while the source do-
main contains only common slots. Another three
slots added to the source dataset generates an aver-
age decrease of 3.6%, relative to the previous test.
In comparison with the scratch agent, the improve-
ment increases from 79% in the first case, to 274%
in the latter.

6 Conclusions

In this paper, we study the factors that influence
the success of transfer learning approach in Re-
inforcement Learning-based Goal-Oriented Chat-
bots and demonstrate the results on five new cases
of overlapping domains. We found that a big num-
ber of different slots between the source domain
and the target domain leads to a smaller success
rate. Even so, the transfer learning mechanism
brings a betterment of over 79% over the agent
trained with no prior knowledge.

The outcomes encourage the use of transfer
learning with warm start on various cases of over-
lapping and extending source and target domains.
However, the optimal selection in terms of hyper-
parameters of the system, such as the number of
epochs or the number of maximum turns in a con-
versation, need to be determined for each particu-
lar scenario. They are, after all, directly influenced
by the amount of data and its characteristics: num-
ber of slots, types and distribution of goals, and the
degree of overlapping between source and target
slots.

Further work involves developing wider exper-
iment scenarios for hierarchical deep reinforce-
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(a) Hotel with pre-training on Movie domain.

(b) Hotel with pre-training on Tourist domain.

Figure 3: Big number of extra slots in target domain.

ment learning system and introducing the transfer
learning approach into this architecture when the
sub-tasks share slots. Moreover, we can imagine
other transfer learning setups such as sharing sub-
tasks as the learnt common part, instead of slots,
from one composite task to another. All these at-
tempts have the objective of gaining more context
information and better performance with less an-
notated data, which is onerous to obtain.
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