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Abstract
Compared to the amount of research that has been done on English event extraction, there exists
relatively little work on Chinese event extraction. We seek to push the frontiers of supervised
Chinese event extraction research by proposing two extension to Li et al.'s (2012) state-of-the-art
event extraction system. First, we employ a joint modeling approach to event extraction, aiming
to address the error propagation problem inherent in Li et al.'s pipeline system architecture.
Second, we investigate a variety of rich knowledge sources for Chinese event extraction that
encode knowledge ranging from the character level to the discourse level. Experimental results
on the ACE 2005 dataset show that our joint-modeling, knowledge-rich approach significantly
outperforms Li et al.'s approach.

Title and Abstract in Chinese
运用丰富语言学特征的中文事件抽取联合模型

Ϣ㣅文的事件抽取ⷨおⳌ↨ˈᇍѢ中文的事件抽取ⷨおᎹⳌᇍ䕗ᇥǄ Li et al.(2012)的
Ѣⲥⴷ学д的事件抽取㋏㒳⸔Ϟˈ៥ӀᦤߎњϸϾᠽሩҹ䖯ϔℹࡼ中文事件抽取的
ⷨおǄ佪ܜˈ៥ӀՓ用њϔϾ联合模型ˈҹ㾷އ Li et al.ㅵ䘧ᓣ㋏㒳中的䫭䇃Ӵ᪁䯂乬Ǆ
݊ˈ䩜ᇍ中文ֵᙃ抽取ˈ៥Ӏⷨおњϔ㋏߫Ңᄫヺሖ䴶ࠄ文ゴሖ䴶的特征Ǆ ACE2005
᭄Ϟ的ᅲ偠㒧ᵰ㸼ᯢˈ៥Ӏ运用丰富语言学特征的联合模型ᰒ㨫ഄӬѢ Li et al.的ᮍ⊩Ǆ

Keywords: event extraction, Chinese language processing.
Keywords in Chinese:ֵᙃ抽取,中文㞾✊语言໘⧚.
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1 Introduction
Recent years have seen a surge of interest in automatically extracting events from textual docu-
ments. While diverse types of event extraction have been examined in the literature, the one we
will focus on in this paper is ACE event extraction, which involves extracting instances of a prede-
fined event type from documents. For example, consider the following Chinese text segment:

Resneftᬊ䌁ᇸ⫬ᮃܟҬߎњҙ 93.5ғ㕢ܗ
(Resneft acquired Yugansk, paying only 9.35 billion US dollars)

When applied to this example, an ACE event extraction system for Chinese should identify one
event instance, which (1) is triggered by the verb ᬊ䌁 [acquired] whose type is Transfer-
Money, and (2) has three arguments, Resneft, ᇸ⫬ᮃܟ [Yugansk] and 93.5ғ㕢ܗ [9.35 bil-
lion], which fulfill the roles of Buyer, Artifact and Price, respectively.
This example illustrates the four primary subtasks of an ACE event extraction system, namely, (1)
trigger identification (e.g., ᬊ䌁 [acquired] should be identified as the trigger of an event); (2)
trigger type determination (e.g.,ᬊ䌁 [acquired] should be assigned the type Transfer-Money;
(3) argument identification (e.g., Resneft, ᇸ⫬ᮃܟ [Yugansk] and 93.5 ғ㕢ܗ [9.35 billion]
are the arguments of this Transfer-Money event); and (4) argument role determination (e.g.,
Resneft,ᇸ⫬ᮃܟ [Yugansk] and 93.5ғ㕢ܗ [9.35 billion] play the roles of Buyer, Artifact
and Price respectively in this event).
Compared to the amount of research on English event extraction (e.g., Finkel et al. (2005), Grish-
man et al. (2005), Ahn (2006), Hardy et al. (2006), Maslennikov and Chua (2007), Ji and Grishman
(2008), Patwardhan and Riloff (2009), Liao and Grishman (2010), Hong et al. (2011)), there is
considerably less work on Chinese event extraction. Work on end-to-end Chinese event extraction
was pioneered by Chen and Ji (2009b), who adopt a pipeline system architecture composed of four
components that correspond to the four major subtasks mentioned above. More specifically, in
training, they learn a classifier to perform each of the four subtasks independently using primarily
lexico-syntactic features but also a couple of semantic features (see Section 3 for an overview of
these features); and in testing, they feed a raw document through the pipeline of components where
the output of one component is the input of the subsequent one. Li et al.'s Chinese event extraction
system also employs a pipeline architecture, but aims to improve the first component, trigger iden-
tification, via two techniques, namely compositional semantics and discourse consistency. They
show that with these two techniques, their system substantially outperforms Chen and Ji's system,
achieving state-of-the-art results.

Our goal in this paper is to improve the state of the art in Chinese event extraction. Specifically, we
take Li et al.'s event extraction system as a baseline, and investigate two extensions to their system.
Our first extension is a machine learning extension where we employ joint learning for event ex-
traction. As is commonly known in the natural language processing (NLP) community, a pipeline
architecture, such as the one adopted by Chen and Ji and Li et al. , suffers from the error propagation
problem, where the errors made by an upstream component will propagate to and could adversely
affect the performance of a downstream component. We address this problem by recasting event
extraction as two joint learning tasks where we (1) jointly learn trigger identification and trigger
type determination and (2) jointly learn argument identification and argument role determination.1

1A natural alternative would be to jointly learn the four subtasks. Though possible, this would substantially increase the
complexity of the learning task. In fact, our preliminary experiments indicate that this alternative yields inferior results to
our way of applying joint learning to event extraction and therefore will not be pursued in this paper.
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Our second extension is linguistic extension where we employ a knowledge-rich approach, inves-
tigating a variety of knowledge sources for Chinese event extraction. In this extension, not only
do we propose more effective use of existing features such as character-based features, but we
also investigate novel features that exploit results of zero pronoun resolution and noun phrase (NP)
coreference resolution, as well as features that exploit trigger probability and trigger type consis-
tency (see Section 3 for details). The strength of our linguistic extension stems in part from the
richness in the variety of features it considers: these features capture linguistic information ranging
from the character level to the discourse level, and exploit Chinese-specific phenomena such as the
presence of zero pronouns.

We evaluate our approach on the ACE 2005 Chinese event extraction task, which involves identi-
fying event instances that belong to one of 33 predefined event types. Unlike previous work (Chen
and Ji, 2009; Li et al., 2012), which reserves only 10% of the annotated data for testing and uses
the rest for training, we provide a more robust evaluation of our system via performing 10-fold
cross-validation experiments. We discover that the F-scores achieved on different folds can vary
by as many as 10 percentage points for all four subtasks. The sensitivity of the system performance
can be attributed in part to the small size of the ACE 2005 dataset, which is composed of only 633
documents, suggesting that cross validation is needed to more accurately reveal the performance
of an event extraction system when evaluated on this dataset. Overall, our experimental results
demonstrate that our joint-learning, knowledge-rich approach substantially improves Li et al.'s sys-
tem, suggesting that (1) joint learning offers benefits over the pipeline approach; (2) all but the
coreference features improve performance; and (3) while each of our features provide small gains,
their cumulative benefits are substantial.

The rest of the paper is organized as follows. Section 2 discusses related work. In Section 3, we
provide an overview of our baseline Chinese event extraction system. Sections 4 and 5 describe our
machine learning extension and our linguistic extension to the baseline system, respectively. We
present evaluation results in Section 6 and conclude in Section 7.

2 Related Work
Much attention has been devoted to the event extraction task in the NLP community. In the early
years, researchers focused on sentence-level extraction, employing local information from just one
sentence (e.g., Grishman et al. (2005), Hardy et al. (2006), Ahn (2006)).

However, in many cases local information alone is insufficient to make the right decisions, so later
work incorporates more context around a sentence and seeks high level information. For example,
Gu and Cercone (2006) and Patwardhan and Riloff (2009) consider broader sentential context. Ji
and Grishman (2008) extend the scope to a cluster of topic-related documents and utilize global in-
formation from related documents. Gupta and Ji (2009) employ cross-event information to extract
implicit time information. Liao and Grishman (2010) leverage document-level cross-event infer-
ence; Liao and Grishman (2011a) extract topic features to improve event extraction; and Liao and
Grishman (2011b) present a self-training strategy and combine it with global inference. McClosky
et al. (2011) use the tree of event-argument relations in a reranking dependency parser to capture
global event structure properties. Hong et al. (2011) explore entity type consistency to predict event
mentions. Huang and Riloff (2012b) initially identify arguments and then include discourse proper-
ties to model textual cohesion. More recently, some researchers have tried to improve other aspects
of event extractions. For example, Lu and Roth (2012) introduce a novel sequence labeling frame-
work called structured preference modeling, and Huang and Riloff (2012a) propose a bootstrapping
solution for argument extraction with little annotated data.
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As far as work on Chinese event extraction is concerned, Chen and Ji (2009b) point out the Chinese-
specific issue of word segmentation errors and create an errata table to alleviate this problem, ana-
lyzing the impactof different types of features. Chen and Ji (2009a) bootstrap Chinese event extrac-
tion with extra information from an English event extraction system using cross-lingual information
projection. Ji (2009) extracts cross-lingual predicate clusters and uses a cross-lingual information
extraction system to improve Chinese event extraction. Li et al. (2012) explore compositional se-
mantics and discourse consistency to address the unknown trigger problem and word segmentation
errors.

3 Baseline System
In order to establish a strong baseline Chinese event extraction system adopting the pipeline archi-
tecture mentioned in the introduction, we train a classifier for each of the four components by using
a feature set that is the union of the features employed by Chen and Ji (2009b) and Li et al. (2012).
We augment it with compositional semantics and discourse consistency, the two extensions pro-
posed by Li et al. that aim to improve the trigger identification component, as described in detail in
this section. Below we will discuss our implementation of each of the four components of the base-
line Chinese event extraction pipeline. All classifiers are trained using the implementation of SVM
available from the SVMmul ticlass package2. Word segmentation, syntactic parsing, and dependency
parsing are performed using Stanford's Chinese NLP and Speech Processing tool.3.

3.1 Trigger Identification Component
Following Li et al. (2012), we employ a two-step approach to identify triggers. First, in the extrac-
tion step, we use heuristics to extract candidate triggers. Then, in the pruning step, we aim to im-
prove precision by employing two types of pruning, namely heuristic-based pruning and learning-
based pruning. Both steps are detailed below.

Extraction. To extract candidate triggers, we first follow Chen and Ji (2009b), positing a word in
a test document as a candidate trigger if it appears in a training document as a (true) event trigger.
Li et al. (2012) observe that this simple candidate extraction method has a low recall: it fails to
extract many true triggers in a test document since many of them do not appear in the training set.
To improve recall, they propose a technique to extract additional candidate antecedents based on
compositional semantics.

The use of compositional semantics is motivated by the observation that the meaning of a Chinese
word is largely determined by the meaning of its component characters. For instance, the meaning
ofࠎӸ [injure by stabbing] can be determined from the meaning of its component characters,ࠎ
[stab] andӸ [injure]; similarly, the meaning ofᩲӸ [injure by hitting] can be determined from
the meaning ofᩲ [hit] andӸ [injure]. Now, assume thatᩲӸ appears in a test document. Ifᩲ
Ӹ does not appear in the training data butࠎӸ appears as a trigger in the training data, we want
to be able to infer thatᩲӸ is a trigger from the fact thatࠎӸ is a trigger since the two verbs both
describe an "injure" event.

To be able to do this kind of inference for extracting additional candidate triggers, we employ a
simple method proposed by Li et al.: (1) add all single-character verb triggers to a set (call it BV 4);
(2) split all other verb triggers in the training set into characters and add each character to BV ; and

2http://svmlight.joachims.org/svm_multiclass.html
3http://nlp.stanford.edu/projects/chinese-nlp.shtml
4Li et al. (2012) refer to these verbs as "basic verbs" (BV).
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(3) posit a word in a test document as a candidate trigger if it contains an element in BV . It should
be easy to see that this method can easily handle cases such as theᩲӸ example discussed above.
Heuristic-based pruning. To prune spurious triggers from the list of candidate triggers, we em-
ploy the three heuristics proposed by Li et al.: non-trigger filtering, POS filtering, and verb structure
filtering. We refer the reader to their paper for details of these heuristics.
Learning-based pruning. After heuristic-based pruning, we follow Li et al. and apply learning-
based pruning to further prune the candidate triggers. Specifically, we train a classifier on the
training data to determine whether a candidate is a trigger or not. Since Li et al. did not specify the
training instance creation method, we experiment with several methods and found that creating one
training instance from each word worked best. We train the classifier using 19 linguistic features,
most of which were proposed by Chen and Ji, as shown below:

• Lexical features (6): trigger word; POS of trigger word; previous word + trigger word; previous
POS + trigger POS; trigger word + next word; trigger POS + next POS
• Syntactic features (5): depth of trigger word in syntax parse tree; the path from leaf node of
trigger to the root in syntax parse tree; the phrase structure expanded by the father of the trigger;
phrase type of the trigger; the path from the leaf node of the trigger to the governing clause
• Semantic dictionaries (2): whether trigger word exists in a predicate list from Chinese PropBank
(Xue and Palmer, 2008); the entry number of the trigger in a Chinese synonym dictionary5
• Nearest entity information (6): entity type of the syntactically/physically nearest entity to the
trigger in syntax parse tree; entity type of the syntactically/physically left/right nearest entity to the
trigger in syntax parse tree + entity
Reclassifying unconfidently labeled instances. Not all trigger candidates were classified with
the same confidence by the trigger identifier. For our SVM-based trigger identifier, those instances
that are closer to the hyperplane are classified with less confidence than those that are farther away.
Li et al. propose to improve the accuracy of trigger identification by reclassifying those instances
that were not confidently classified6, specifically by training a discourse consistency (DC) classifier.

Before describing the DC classifier, let us motivate DC. Consider the sentence The talks are serious,
where talks is a trigger of aMeet event whose arguments are not in the same sentence as the trigger
itself. Because of the absence of nearest entity information (and hence the inability to compute
the nearest entity information features), Li et al. observe that the corresponding test instances were
typically classified with low confidence. To address this problem, they make an observation. Given
a candidate trigger word t, if many other occurrences of t in the same discourse are being classified
as a trigger, then t is likely to be a trigger due to DC. Similarly, if many other occurrences of t in
the same discourse are being classified as non-triggers, then t is not likely to be a trigger due to
DC.

Li et al. create five linguistic features that encode this observation (see their paper for details), train
a DC classifier on a feature set composed of these five features as well as the 19 features used by
the trigger identifier, and use it to reclassify those instances not confidently classified by the trigger
identifier. Following Li et al., we train this DC classifier on the development set, which comprises
5% of the available training data reserved solely for the purpose of training this classifier.

5This dictionary is created by Harbin Institute of Technology's NLP Group and is available from
http://ir.hit.edu.cn/phpwebsite/index.php?module=pagemaster&PAGE_user_op=view_page&PAGE_id=162. The en-
try number can be thought of as the equivalent of the synset id in English WordNet.

6Following Li et al., we posit that an instance is not confidently classified if the probability associated with its classifi-
cation is between 0.05 and 0.95. We obtain these probability values by converting the signed distance values returned by
the SVM using a sigmoid function.
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3.2 Trigger Type Determination Component
Given a word identified as a trigger by the preceding component, the trigger type determination
component employs a classifier to classify a word as belonging to one of the 33 predefined subtypes.
Following Li et al., we train this classifier using the same 19 linguistic features that were used to
train the trigger identifier.

3.3 Argument Identification Component
Given a typed trigger produced by the trigger type determination component, the argument iden-
tification component employs a classifier to determine whether a candidate argument is its actual
argument or not. The list of candidate arguments for a trigger includes all and only those entity
mentions, values and time expressions that appear in the same sentence as the trigger under con-
sideration. Hence, training instances are created by pairing each trigger with each of its candidate
arguments. The class value of a training instance is either Yes (if the candidate is a true argument)
or No (if it is not). Following Li et al., we train this classifier using 19 linguistic features, as shown
below.

• Basic features (6): trigger subtype; type of entity mention; head word of entity mention; event
subtype + head word; event subtype + entity subtype; POS of trigger word
• Neighboring words (6): left/right neighbor word of entity; left/right neighbor word of the entity
+ word's POS; left/right neighbor word of the trigger + word's POS
• Syntactic features (4): the phrase structure expanding the parent of the trigger in the syntactic
parse tree; whether the trigger is before or after the trigger; the minimal path from the entity to the
trigger in the syntactic parse tree; the shortest length of the above minimal path
• Dependency feature (1): the dependency path from the entity to the trigger

3.4 Argument Type Determination Component
Given an entity mention identified as an argument of a trigger, the argument type determination
component employs a classifier to determine its argument role. Following Li et al., we train this
classifier using the same 19 linguistic features that were used to train the argument identifier.

We conclude this section with a note on feature computation. Following the setting of the ACE
diagnostic tasks, we use ground truth entities, times and values in argument identification and argu-
ment type determination, but the rest of the features are all computed entirely automatically. This
is also the setup adopted by Chen and Ji (2009b) and Li et al. (2012).

4 Machine learning Extension
In this section, we present our machine learning extension to the baseline system, which involves
joint modeling of the event extraction subtasks. Unlike in pipeline modeling where we train four
classifiers (i.e., one classifier per subtask), in joint modeling we train only two classifiers: the
joint trigger classifier jointly performs trigger identification and trigger type determination, and the
joint argument classifier jointly performs argument identification and argument role determination.
Below we describe how these two joint models are trained.7

7Like us, Tan et al. (2008) also train two classifiers for event extraction, one related to labeling trigger type and the other
argument type. So, at first glance, it seems that they are also performing some sort of joint learning for event extraction.
However, there is an important difference between our goal and theirs: while we are performing end-to-end event extraction,
they are not. Their first classifier, the trigger type labeler, is a multi-label sentence classifier that assigns to a sentence the
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4.1 The Joint Trigger Classifier

To train the joint trigger classifier, we create one training instance for each word in the training
set. If the word is not a trigger, the class label of the corresponding training instance is None.
Otherwise, the class label is the type of the trigger. Each instance is represented by the same 19
features that were used to train the trigger identifier in the baseline system. As in the baseline, we
employ SVMmul ticlass to train this multiclass classifier.

After training, we apply the resulting SVM classifier to classify the test instances. Test instances
are created via the same trigger candidate extraction process (including the use of compositional
semantics) as described in the baseline system and are represented using the same 19 features as the
training instances. If a test instance is assigned the class None by the classifier, the corresponding
trigger candidate will be posited as a non-trigger. On the other hand, if the instance is classified as
belonging to one of the 33 trigger types, the corresponding trigger is posited as a true trigger, and
its type is the class value assigned by the classifier.

4.2 The Joint Argument Classifier

To train the joint argument classifier, we create a training instance by pairing each predicted trigger
with each of its candidate arguments, where a candidate argument can be an entity mention, a value,
or a time expression that appears in the same sentence as the predicted trigger. If the candidate
argument is indeed a true argument of the trigger, the class label of the training instance is the
argument's role. Otherwise, its class label is None. Each instance is represented by the same 19
features that were used to train the argument identifier in the baseline system. As in the baseline,
we employ SVMmul ticlass to train this multiclass classifier.

After training, we apply the resulting SVM classifier to classify the test instances. Test instances are
created in the same way as the training instances. If a test instance is assigned the class None by
the classifier, the corresponding argument candidate is classified as not an argument of the trigger
under consideration. Otherwise, the argument candidate is indeed a true argument of the trigger,
and its role is the class value assigned by the classifier.

5 Linguistic Extension

In this section, we describe our linguistic extension to the baseline system, where we introduce
six groups of features for Chinese event extraction. Before we describe these features, there are
two points that deserve mention. First, while this is a linguistic extension to the baseline system,
there is nothing that prevents it from being applied to an event extraction system that employs joint
learning. Second, solely for the sake of convenience, we follow the convention adopted in the
baseline system, ensuring that (1) the trigger identifier and the trigger type labeler employ the same
set of features, and (2) the argument identifier and the argument role labeler employ the same set of
features. This implies that any group of features that we introduce below has to be used by either
(1) both trigger-related classifiers; or (2) both argument-related classifiers, or (3) all four classifiers.

set of trigger types of the triggers it contains, but unlike ours, it does not explicitly identify triggers, even though it has some
joint learning flavor in the sense that it allows the Null class to be assigned to a sentence to indicate that it does not contain
any triggers. Their second classifier, the argument type labeler, assumes that the input arguments of a trigger are correctly
identified and simply performs argument labeling.
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5.1 Character-Based Features
Recall that Li et al. (2012) have employed compositional semantics to improve the extraction of
candidate triggers, enabling us to extractᩲӸ [injure by hitting], which appears in the test set but
not the training set, as a candidate trigger ifࠎӸ [injure by stabbing] is present in the training set
as a true trigger, for instance.

Now, recall that each trigger candidate will be classified by the learned trigger identifier as either a
true trigger or a non-trigger. Consider, for example, how the instance corresponding toᩲӸwill be
classified. One of the linguistic features representing this instance is the word itself. But sinceᩲ
Ӹ never appears in the training set, the word feature is useless as far as classification is concerned.
In other words, althoughᩲӸ andࠎӸ are similar verbs, the word feature does not capture such
similarity, and therefore the classifier cannot exploit this similarity when classifyingᩲӸ.

To address the problem, we decompose a word into two units, putting the two units into separate
bins. There are a four cases to consider: (1) if the word has two characters, we put the first character
into the first bin and the second character into the second bin; (2) if the word has only one character,
we put this character into both bins; (3) if the word has three characters and it can be segmented by
a word segmenter, we put the resulting units into the two bins (for example, given the word݀ᓔ
ֵ [open letter],݀ᓔ [open] is placed in the first bin andֵ [letter] in the second); and (4) if the
word has four characters or the word has three characters that cannot be segmented, we simply put
the first two characters into the first bin and the remaining characters into the second bin.

Given these bins, we create four character-based features for the two trigger-related classifiers: The
first two features come from the characters in the first and second bins respectively. The third and
fourth features consist of the Harbin Institute of Technology NLPGroup's synonym dictionary entry
numbers for characters in the first and second bins respectively.

5.2 Semantic Role Labeling
It should be easy to see why semantic role labeling is useful for event extraction. First, a large
portion of the triggers defined in event extraction task are predicates. Second, if a predicate happens
to be a trigger, the predicate's arguments are essentially its event arguments. Furthermore, even
though a semantic role labeler typically assigns PropBank-style roles (e.g., Arg0, Arg1) and the
event argument roles are FrameNet-style roles, there is a close correspondence between the roles
in these two styles.

Given the above observation, we hypothesize that semantic roles are useful for argument identifica-
tion and argument role labeling. Consequently, we introduce four binary features for the argument
classifiers: whether the trigger under consideration is a predicate according to the semantic role
labeler, and whether the argument is the predicate's Arg0, Arg1, and time argument. We obtain se-
mantic roles automatically using a publicly available semantic role labeling tool (Björkelund et al.,
2009).

In addition, we hypothesize that semantic roles are also useful for trigger identification and trig-
ger type classification. Our hypothesis stems in part from two observations: (1) many predicates
identified by a semantic role labeler are triggers; and (2) knowing the entity types of the arguments
identified by the semantic role labeler can help predict the type of the trigger. As a result, we pro-
pose to employ features that encode semantic role information for trigger identification and trigger
type classification. Specifically, we introduce five features: whether the word under consideration
is a predicate according to the semantic role labeler; if yes, the entity type and subtype of its Arg0;
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the entity type and subtype of its Arg1.

5.3 Trigger Probability Feature
We define trigger probability of a word w as the probability that w appears as a true trigger in the
training set. This probability is potentially useful for trigger identification: a word with a higher
probability is more likely to be a true trigger.

We create a new feature for the two trigger-related classifiers whose value is the trigger probability
of the word under consideration. If the word does not appear in the training set, we determine
whether one of its "similar" verbs appears as a trigger in the training set.8 If so, its trigger probability
is that of its similar verb.9 Otherwise, its trigger probability is set to zero.

5.4 Zero Pronoun Features
To motivate zero pronoun features, consider the following sentence:

ᆊЏᐁ∳⋑⇥ҞᰮϞЬϧᴎ⾏ᓔ⏅ഇࠡᕔ文㦅Ǆ
President Jiang Zemin took the plane tonight, left Shenzhen and went to Brunei.

The verb Ь [took] has an overt subject ∳⋑⇥ [Jiang Zemin]. However, neither of two verbs
⾏ᓔ [left] orࠡᕔ [went] has an overt subject. Here, the two gaps before⾏ᓔ [left] andࠡᕔ
[went] are called zero pronouns. A zero pronoun has as its antecedent an entity mention that can
fill the gap. In this example,∳⋑⇥ [Jiang Zemin] is the entity mention that should be used to fill
the gap: as we can see,∳⋑⇥ [Jiang Zemin] is coreferent with those two zero pronouns.

Kim (2000) studied the difference of the usage of overt subject between English and Chinese. He
found that the usage percent of overt subject in Chinese is only 64%, while for English the percent
is more than 96%. Thus, zero pronoun is a prominent phenomenon in Chinese, and also appears
frequently in the ACE 2005 dataset.

For event extraction, if there is a zero pronoun before a trigger, the entity mention to which this
zero pronoun refers is likely to be an argument of this trigger. Thus, zero pronoun resolution,
which involves (1) detecting zero pronouns and (2) finding their antecedents, is helpful for argument
extraction. To our knowledge, results of zero pronoun resolution have not been exploited to improve
event extraction.

In order to exploit zero pronoun resolution for use in event extraction, we need to build a zero
pronoun resolver. In our experiments, we apply a rule-based method for zero pronoun resolution.
Specifically, to detect zero pronouns, we employ a simple heuristic, which posits that a zero pronoun
exists before a word if it is a verb and it has no overt subject in the corresponding syntactic parse
tree. After detecting a zero pronoun, we resolve it in one of two ways:

Case 1: the verb following the zero pronoun is in a CP node and modifies a NP to its right (i.e., the

8We adopt Li et al.'s (2012) method for determining whether two Chinese verbs are similar. Specifically, we first analyze
the structure of each of the verbs under consideration. According to Li et al.'s empirical observation, Chinese verbs possess
one of six main structures, where BV is one of the elements of the set BV (as defined in Section 3): (1) BV (e.g., " 䘂"
[arrest]); (2) BV + verb (e.g., " 䗑ᴔ" [chase to kill]); (3) verb + BV (e.g., " 䒆䖯" [hide]); (4) BV + complementation
(e.g., "䖯њ" [enter]); (5) BV + noun/adjective (e.g., "ᓔᵾ" [shoot]); (6) noun/adjective + BV (e.g., "[civilݙ" war]).
If the two verbs have the same BV (basic verb) and the same structure, they are considered similar to each other.

9It is, of course, possible for a verb to have more than one similar verb. In this case, we compute its trigger probability
based on one of its randomly selected similar verbs.
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character "的" appears between the verb and the NP), as shown in the following example, where
⅐ᬠ [kills] modifies㚵ׂ䘧 [Hu XiuDao]

⅐ᬠ 280Ҏ的㚵ׂ䘧.
Hu XiuDao, who kills 280 enemies.

In this case, we resolve the zero pronoun to the NP modified by the verb,㚵ׂ䘧 [Hu XiuDao].

Case 2 (default case): we resolve the zero pronoun to the nearest preceding NP that occupies the
subject position and appears in the same sentence as the zero pronoun.

Next we create features that encode the output of the zero pronoun resolver for the two argument-
related classifiers. Recall that each instance in the argument-related classifiers corresponds to a
trigger and one of its candidate arguments. Keeping this in mind, the first feature we create encodes
whether or not there is a zero pronoun before this trigger. If so, the second feature tells whether or
not this argument is coreferent with the zero pronoun.

5.5 Trigger Type Consistency Features
All the features we have described thus far have focused on sentence-level extraction. However,
document-level information also plays an important role in event extraction task. A good example
is DC (Li et al., 2012). In this subsection, we propose another kind of document-level information,
which we call trigger type consistency, to improve event extraction.

Trigger type consistency is motivated by one observation: documents in the ACE 2005 Chinese
corpus are mostly news articles, each of which describes one theme, and most of the true triggers
are compatible with this document theme. For example, if a document is about a fire accident, most
of the annotated triggers in the gold standard are of type DIE. Therefore, knowing the document
theme may help to identify triggers. We represent the theme of a document by the trigger type
that occurs most frequently among the triggers in the document.10 For example, if a document has
10 triggers and six of them have type DIE, then we use DIE to represent its theme. If a candidate
trigger's type is the same as that of the majority of the triggers in the document, it is being trigger-
type-consistent with the other triggers in the document and is more likely be a true trigger.

We create 33 features for the two trigger-related classifiers based on trigger type consistency. Each
feature corresponds to one of the 33 predefined trigger types in the ACE 2005 event extraction task.
We compute the feature values as follows. If, for example, one trigger has type DIE, then (1) the
value of the feature corresponding to DIE is the probability that a trigger in this document has type
DIE; and (2) the values of the remaining 32 trigger type consistency features are all zero.
A natural question is: since the type consistency features are to be used by the trigger-related clas-
sifiers, how is it possible that they are computed based on knowing which words are triggers and
what their types are? The answer is that before computing the type consistency features, we run the
baseline trigger identifier and the trigger type classifier to identify triggers and predict their types
on each document.11

10For another way of computing the document theme, see Liao and Grishman (2011a).
11To identify triggers and predict their types on a test document, we train the two trigger-related baseline classifiers on

the training set. On the other hand, to identify triggers and predict their types on a training document, we employ cross
validation on the training set: we partition the training set into 9 folds, train the baseline classifiers on 8 folds, apply them to
the documents in the remaining fold, and repeat this process 9 times so that we can obtain triggers and their types for each
document in the training set.
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5.6 Argument Consistency Feature
Another piece of document-level information we employ is argument consistency. It is based on
the following observation: the true triggers typically correspond to events that are related to the
main person or some major entities mentioned in the documents. Hence, if a candidate trigger has
arguments that are coreferent with the arguments of true triggers, the candidate trigger will likely
be a true trigger. Consider, for example, the following sentences:

[ϔᆊϝষ ]᯼⏅䲚ԧୱϟݰ㥃 [㞾ᴔ ].

[A family of three] drank pesticide to [suicide] last night.

[ϝϾҎ ]ᘏㅫᰃ〇ԣњ [⮙ᚙ ].

[Three people] finally stabilize the [patient's condition].

Since㞾ᴔ [suicide] is a predicate that is frequently annotated as a trigger in the training data, it
should be fairly easy for the learned trigger identifier to predict㞾ᴔ as a trigger. On the other hand,
it is difficult to predict⮙ᚙ [patient's condition] in the second sentence as a true trigger because
many useful features, such as being a predicate or having many entities nearby, cannot be computed
due to the lack of useful local information. However, if we know that (1)⮙ᚙ takes the argument
ϝϾҎ [Three people]; (2)ϝϾҎ is coreferent withϔᆊϝষ [A family of three]; and (3)ϔᆊ
ϝষ is an argument of a true trigger㞾ᴔ, then we may be able to provide useful document-level
information to make the classifier correctly classify the trigger candidate⮙ᚙ as a true trigger.

Based on the above observation, we create one feature that encodes this kind of document-level
information, which we call argument consistency, for the trigger-related classifiers. The feature
is the role of the argument that is coreferent with a predicted true trigger's argument.12 Here is
the reason behind using roles as feature values: some roles are more important than the others.
Specifically, roles for arguments that serve as subjects or objects, such as Victim, are intuitively
more important than roles of adjunct arguments, such as Place. Using the above two sentences as
an example, the role ofϝϾҎ [Three people] is Victim, so we will set the value of the feature
corresponding to Victim as 1.

A natural question is: since the argument consistency feature is to be used by the argument-related
classifiers, how is it possible that it is computed based on knowing which words are triggers and
what their arguments and argument roles are? The answer is that before computing this feature, we
run the baseline classifiers to identify triggers, predict their types, their arguments, and the argument
roles on each document (see Footnote 11 for details on how to train these baseline classifiers).

6 Evaluation
Next, we evaluate our joint-learning, knowledge-rich approach to Chinese event extraction.

6.1 Experimental Setup
Dataset and evaluation methodology. All 633 Chinese documents in the ACE 2005 training
corpus13 are used in our evaluation. Unlike previous work (Chen and Ji, 2009b; Li et al., 2012)
which designate 10% of the 633 documents as the test set, we perform 10-fold cross-validation
experiments in order to obtain more accurate estimation of system performance. While we report

12As mentioned at the end of Section 3, since our evaluation setting follows that of the ACE diagnostic tasks, we compute
our argument consistency feature based on gold coreference information.

13Note that the ACE 2005 test documents are not made publicly available.
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results that are averaged over 10 folds, it is worth noting that the results achieved for each of the
four subtasks on different folds vary considerably, sometimes by as many as 10 percentage points in
F-score, due to the small size of the training and test sets. This suggests the importance of reporting
cross-validation results when conducting experiments on the ACE 2005 corpus.

Evaluation measures. For each subtask, we report performance in terms of recall (R), precision
(P), and F-score (F). These performance measures are computed based on the following definitions
of correctness for the subtasks. For trigger identification, a trigger is correctly identified if its off-
sets exactly match a reference trigger. For trigger type determination, a trigger type is correctly
determined if its trigger type and offsets exactly match a reference trigger. For argument identi-
fication, an argument is correctly identified if its offset, related trigger type and trigger's offsets
exactly match a reference argument. Finally, for argument role determination, an argument role
is correctly determined if its offsets, role, related trigger type and trigger's offsets exactly match a
reference argument. Note that these definitions are also adopted by Chen and Ji (2009b) and Li
et al. (2012).

6.2 Feature Selection
To determine which of the feature groups described in Section 5 are useful when used in combina-
tion with the baseline features in Section 3, we conduct feature selection experiments to identify the
best feature subset. There are seven feature groups to be considered in our feature selection exper-
iments: (G1) discourse consistency features (Li et al., 2012); (G2) semantic role labeling features;
(G3) trigger probability features; (G4) character-based features; (G5) the argument consistency fea-
ture; (G6) trigger type consistency features; and (G7) zero pronoun features. Two points deserve
mention. First, among these seven feature groups, G1, G2, G3, G4, G5 and G6 are used for train-
ing the trigger-related classifiers whereas G2 and G7 are used for training the argument-related
classifiers. Second, while G1 is not a feature group proposed by us, we consider it in our feature
selection experiments. The reason is that some of our feature groups (e.g., G5 and G6) also cap-
ture document-level information like G1, and because they overlap in terms of the information they
capture, we may be better off not retaining all of them.

Feature selection is done using cross validation on the training documents. Specifically, we partition
the training documents into 9 folds, train the classifier whose features are to be selected on 8 folds,
apply the classifier to the remaining fold, and repeat this process 9 times in order to select the feature
groups that have the best average performance over the 9 folds when used in combination with the
baseline features.

As far as the feature selection algorithm is concerned, we employ backward elimination. It starts
with the full feature set (containing the 7 feature groups to be selected plus the baseline features),
and removes in each iteration the feature group whose removal yields the best system performance.
We run the algorithm until all but the baseline features are removed, and identify the feature subset
that achieves the best performance during the feature selection process.

Note that feature selection is performed separately for each of the four classifiers used in the pipeline
approach and each of the two classifiers used in the joint learning approach.

Table 1 shows the feature groups selected for each classifier. Let us first consider the classifiers for
the pipeline approach. For trigger identification, all feature groups are retained. For trigger type
identification, only G4 (character-based features) are retained. This makes sense because other
feature groups are designed only to help discriminate true triggers from wrong triggers. Finally,
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G2 (semantic role labeling) and G7 (zero pronoun features) prove to be effective for argument
identification but not argument role labeling. This means that the best result for argument role
labeling is achieved by training the classifier on only the baseline features.

Approach Classifier Selected Features
Pipeline Trigger Identification G1, G2, G3, G4, G5, G6

Trigger Type Determination G4
Argument Identification G2, G7
Argument Role Determination ---

Joint Trigger Component G2, G3, G4, G6
Argument Component G2, G7

Table 1: Feature selection results

Let us turn to the two classifiers in the joint approach. Interestingly, for the trigger classifier, G1
(discourse consistency) and G5 (argument consistency) are removed. This result provides sugges-
tive evidence that G1 and G5 serve overlapping purposes with the rest of the feature groups we
proposed and therefore not all of them need to be retained to achieve the best performance. For the
argument classifier, both G2 (semantic role labeling) and G7 (zero pronoun features) are retained.
This is consistent with the pipeline results, where both feature groups are shown to be useful for
argument identification.

6.3 Test Set Results
Using the features selected for each classifier, we obtain test set results. The average 10-fold cross-
validation results for the pipeline approach and the joint approach are shown in Tables 2 and 3,
respectively. In each case, we compare our approach against two baselines, one where the classifiers
are trained using the baseline feature set without the discourse consistency features, and one where
the classifiers are trained using the baseline feature set including the DC features. This setup enables
us to better evaluate the usefulness of the DC features: since our feature selection experiments
indicate that the DC features are not always useful when used in combination with our proposed
features, we want to examine whether they are always useful when used in combination with the
baseline features.

Trigger Trigger Type Argument Argument Role
Identification Determination Identification Determination

Feature Set R P F R P F R P F R P F
Baseline features without DC 50.6 75.5 60.6 47.5 70.8 56.8 35.1 52.3 42.0 31.2 46.5 37.4
Baseline features with DC 55.6 72.7 63.0 52.0 67.9 58.9 38.9 50.2 43.8 34.8 45.0 39.2
Our selected features 60.5 70.1 64.9 56.6 65.6 60.8 43.8 50.2 46.8 39.3 45.1 42.0

Table 2: Pipeline modeling results on the test set.
Trigger Trigger Type Argument Argument Role

Identification Determination Identification Determination
Feature Set R P F R P F R P F R P F
Baseline features without DC 50.0 77.0 60.7 47.5 73.1 57.6 34.1 58.7 43.2 30.4 52.3 38.5
Baseline features with DC 55.3 75.6 63.9 52.6 71.8 60.7 38.2 57.4 45.9 34.3 51.5 41.1
Our selected features 62.2 71.9 66.7 58.9 68.1 63.2 43.6 57.3 49.5 39.2 51.6 44.6

Table 3: Joint modeling results on the test set.
A few points about these results deserve mention. First, the DC features offer benefits when used
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in combination with the baseline features in both the pipeline and joint approaches. Second, we can
see that joint modeling always offers benefits over pipeline modeling when we consider comparable
rows in the two tables. In fact, using the selected features, the joint approach performs significantly
better than the pipeline approach on all four subtasks (paired t-test; p < 0.05). Finally, our best-
performing system (row 3 of Table 3) significantly outperforms the approach adopted by state-of-
the-art event extraction systems (row 2 of Table 2) on all four subtasks (paired t-test, p < 0.05):
F-score increases by 3.7% for trigger identification, by 4.3% for trigger type determination, by 5.7%
for argument identification, and by 5.4% for argument role labeling.

6.4 Feature Analysis
To gain better insight into the contribution of each feature group to our best-performing system
(row 3 of Table 3), we add each feature group incrementally to the baseline feature set. Results are
shown in Table 4. Recall that theDC features were not selected by the feature selection algorithm for
our best-performing system, so none of the results in this table involves DC features. In particular,
we start with the baseline features without any DC features (row 1), and add the feature groups
incrementally to this baseline feature set.

Trigger Trigger Type Argument Argument Role
Identification Determination Identification Determination

Features R P F R P F R P F R P F
Baseline features without DC 50.0 77.0 60.7 47.5 73.1 57.6 34.1 58.7 43.2 30.4 52.3 38.5
+G2 (Semantic role labeling) 52.1 77.7 62.4 49.8 74.4 59.7 36.9 61.7 46.2 33.2 55.4 41.5
+G3 (Trigger probability) 56.0 75.3 64.3 53.3 71.5 61.1 39.2 59.7 47.3 35.2 53.7 42.5
+G4 (Character features) 59.8 73.8 66.1 56.6 69.6 62.6 41.2 57.9 48.2 37.2 52.3 43.5
+G6 (Trigger type consistency) 62.2 71.9 66.7 58.9 68.1 63.2 42.7 56.5 48.6 38.5 50.9 43.8
+G7 (Zero pronouns) 62.2 71.9 66.7 58.9 68.1 63.2 43.6 57.3 49.5 39.2 51.6 44.6

Table 4: Results of incremental addition of features to the joint model on the test set

As we can see, except for the argument consistency feature, all feature groups provide gains when
added to the feature set in an incremental fashion. For example, in each of the four subtasks, adding
semantic role labeling improves F-score by 1.7%, 2.1%, 3.0%, and 3.0%, respectively. Adding trig-
ger probability next improves F-score by 1.9%, 1.4%, 1.1% and 1.0%. After that, adding character
features improves F-score by 1.8%, 1.5%, 0.9% and 1.0%. Note that the zero pronoun features are
only designed to improve the two argument-related subtasks. So, with the addition of these zero
pronoun features, the two trigger-related subtasks are unaffected, while argument identification and
argument role determination are improved by 0.9% and 0.8% in F-score, respectively.

Conclusion and Perspectives
We proposed a joint-learning, knowledge-rich approach to a relatively under-studied yet important
task, Chinese event extraction, aiming to extend Li et al.'s (2012) state-of-the-art Chinese event
extraction system. Linguistically, not only did we propose more effective use of existing features
such as character-based features, but we also investigated novel features that exploit results of zero
pronoun resolution and noun phrase coreference resolution, as well as those that exploit trigger
probability and trigger type consistency. In 10-fold cross-validation experiments on the ACE 2005
dataset, we showed that our system outperformed Li et al.'s system by 3.7−5.7% on the four event
extraction subtasks. Our results also indicated that all but the argument consistency feature con-
tributed positively to overall performance. In particular, while each of these feature groups provided
small gains, their cumulative benefits were substantial.
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