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Abstract. We report the direct observation of laboratory
production of spherical, carbonaceous particles – “tar balls”
– from smoldering combustion of two commonly occurring
dry mid-latitude fuels. Real-time measurements of spec-
trally varying absorption̊Angstr̈om coefficients (AAC) indi-
cate that a class of light absorbing organic carbon (OC) with
wavelength dependent imaginary part of its refractive index
– optically defined as “brown carbon” – is an important com-
ponent of tar balls. The spectrum of the imaginary parts
of their complex refractive indices can be described with
a Lorentzian-like model with an effective resonance wave-
length in the ultraviolet (UV) spectral region. Sensitivity
calculations for aerosols containing traditional OC (no ab-
sorption at visible and UV wavelengths) and brown carbon
suggest that accounting for near-UV absorption by brown
carbon leads to an increase in aerosol radiative forcing ef-
ficiency and increased light absorption. Since particles from
smoldering combustion account for nearly three-fourths of
the total carbonaceous aerosol mass emitted globally, inclu-
sion of the optical properties of tar balls into radiative forcing
models has significance for the Earth’s radiation budget, op-
tical remote sensing, and understanding of anomalous UV
absorption in the troposphere.

Correspondence to:R. K. Chakrabarty
(rajan.chakrabarty@dri.edu)

1 Introduction

A recent report by the Intergovernmental Panel on Climate
Change (IPCC) (Forster et al., 2007) highlights large uncer-
tainty in current estimates of direct radiative forcing (RF) due
to organic carbon (OC) aerosols from biomass and fossil fuel
burning. Most RF and optical remote sensing retrieval mod-
els use traditional optical properties of OC particles (i.e., OC
absorption can be neglected in the visible and near visible
spectral region) (Forster et al., 2007; Chung and Seinfeld,
2002). Recently, a class of OC compounds with an imagi-
nary part of its refractive index that increases towards shorter
wavelengths – optically defined as brown carbon (Andreae
and Gelencser, 2006; Moosmüller et al., 2009) – has been
shown to absorb solar radiation in the blue and near ultra-
violet (UV), thereby modifying RF (Forster et al., 2007).
Global inventories of black (BC) and organic carbon (OC)
emitted from combustion (Bond et al., 2004) show that ap-
proximately 88% of total carbonaceous aerosol mass is emit-
ted from biomass combustion, with approximately 80% of
this emitted from the smoldering combustion phase (Einfeld
et al., 1991).

Duff combustion has been shown to be one of the largest
contributors to smoldering smoke production (Hille and
Stephens, 2005; Neary et al., 1999). Duffs are often the
dominant fuel in low intensity wildland fires and prescribed
burns, and may smolder for an extended time period (days to
months) (Rein, 2009). Consumption of duff in wildland fires
is a direct function of fuel moisture and duff with a moisture
content below 14% is totally consumed during a forest fire
(Hille and Stephens, 2005). While flaming combustion pro-
duces mostly fractal-like black carbon (BC) particles, there
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is limited knowledge about the properties of particles from
smoldering duff combustion.

In this article, we report the direct observation of near-
spherical particles (identified as “tar balls” (Chakrabarty et
al., 2006)) produced from the smoldering combustion of two
commonly occurring dry duffs : (a) Ponderosa Pine Duff
(PPDuff), the partly decayed litter in a ponderosa pine (Pinus
ponderosa) forest including a portion of the uppermost soil
layer collected from a rural location near Missoula, Montana,
USA; and (b) Alaskan Duff (AKDuff), the uppermost layer
of soil with live and dead feathermoss (Pleurozium schreberi)
collected from a spruce-feathermoss forest near Tok, Alaska,
USA. Tar balls are a recently named type of near-spherical,
atmospheric aerosol particles consisting of amorphous car-
bonaceous material, and have been found to exist in abun-
dance in polluted continental air masses (Pósfai et al., 2004;
Hand et al., 2005; Alexander et al., 2008). Ponderosa pine
is commonly found in mountainous terrain of southwestern
Canada and the Cascades, Sierra Nevada, and Rocky Moun-
tains of the United States; spruce-feathermoss forests domi-
nate the southern boreal forest zone, which includes a large
portion of Alaska. We discuss the unique optical properties
of tar balls, and highlight the need to include them into RF
and optical remote sensing models due to their impact on cli-
mate change and aerosol retrieval.

2 Experiment and analysis

Experiments were conducted during 2003–2006 in the com-
bustion facility of the United States Department of Agricul-
ture (USDA) Forest Service Fire Sciences Laboratory (FSL)
as part of a comprehensive study to investigate the physi-
cal, optical, and chemical properties of smoke particles emit-
ted from combustion of common mid-latitude wildland fu-
els (McMeeking et al., 2009). The unique combustion fa-
cility was designed to mimic “real-world” combustion sce-
narios with appropriate dilution of the combustion emissions
and fuel arrangement to approximate combustion conditions
found in prescribed forest burns. PPDuff and AKDuff con-
stitute two of the nine major duff species found in boreal
and Northern American forest regions of the Northern Hemi-
sphere (Kasischke et al., 2005). Together, these nine types
of duff species contribute between 46 and 72% of all wild-
land fire carbon emissions in a given year (Kasischke et al.,
2005). Smoldering combustion of approximately 200 g of
PPDuff and AKDuff on a flat fuel bed (Fig. 1) produced
white smoke that filled a large (≈3300 m3) chamber from
which aerosol was sampled through a PM2.5 inlet and dis-
tributed through a manifold (Fig. 1) to a suite of instruments,
namely a particle sampling unit for scanning electron mi-
croscopy (SEM), a dual wavelength (405 nm and 532 nm)
and a single wavelength (780 nm) integrated photoacoustic-
nephelometer (IPNs) (Arnott et al., 1999; Abu-Rahmah et al.,
2006; Lewis et al., 2008), and an electrical low pressure im-
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Figure 1 
Fig. 1. Schematic diagram of the experimental setup used for smol-
dering combustion and characterization of emitted particles.

pactor (ELPI) (Marjam̈aki et al., 2000). Conductive tubing
was used to transport the particles to the various instruments
in order to minimize particle losses. PPDuff had a fuel mois-
ture content (as fraction of dry mass) of 13.9% and burned
with a modified combustion efficiency (MCE) – defined as
the amount of carbon released as CO2 divided by the amount
of carbon released as CO2 plus CO (Ward et al., 1996) – of
0.915, while AKDuff had a fuel moisture content (as a frac-
tion of dry mass) of 9.2% and burned with a MCE of 0.902.
Smoke sampling for each smoldering burn lasted for approx-
imately two hours, with only minimal flaming combustion
during ignition.

Simultaneous measurements, with one-second time reso-
lution, were performed to determine the scattering and ab-
sorption coefficients (IPN), and the particle size distribution
and number concentration (ELPI). The IPN consists of a pho-
toacoustic spectrometer and a reciprocal integrating neph-
elometer in one instrument using the same sample volume
and laser beam. The photoacoustic spectrometer measures
particle light absorption with a power-modulated laser beam
inducing particle temperature changes and subsequent pres-
sure changes of the surrounding air at the modulation fre-
quency (Arnott et al., 1999). The reciprocal integrating neph-
elometer adds a cosine-weighted optical detector to the in-
strument that measures the integrated (over∼4π ) scattering
from the sample volume yielding the scattering coefficient
Bsca (Abu-Rahmah et al., 2006). The two IPNs used in this
study were operated with a modulation frequency of 1500 Hz
to measure the scattering (Bsca) and absorption (Babs) coeffi-
cients of the aerosols. For the SEM analysis, particles were
impacted at a flow rate of 2 L/min onto 10 µm thick nuclepore
clear polycarbonate 13-mm diameter filters (Whatman Inc,
Chicago, IL) mounted on Costar Pop-Top Membrane hold-
ers. The filter exposure times for each of these burns were
chosen, with the help of theoretical calculations involving
factors such as flow rate and particle number concentration,
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to ensure moderate filter loading to help perform single parti-
cle analysis under a SEM. After sampling, the filter samples
were kept in refrigerated storage and later prepared for SEM
analysis by coating them with a 1-nm thick layer of platinum
to prevent aerosol charging during SEM analysis. The coated
filters were analyzed using a Hitachi Scanning Electron Mi-
croscope (Model S-4700).

The Electrical Low Pressure Impactor (ELPI) incorporates
aerodynamic size classification with the electrical detection
of particles in the range of several nm to 10 µm (Marjamäki
et al., 2000; Marjamaki and Keskinen, 2004; Virtanen et al.,
2001). In ELPI, aerosol undergoes unipolar corona charging
before passing through a low-pressure cascade impactor to
separate particles of different aerodynamic diameters (Da).
Electrometers record the current deposited on each impactor
stage with a time resolution as low as 1 s. Due to such a high
time resolution, ELPI has been deployed to sample transient-
mode particle emission from automotive and biomass burn-
ing sources (Maricq et al., 2006; Latva-Somppi et al., 1998;
Hays et al., 2004). The size resolution of ELPI is limited
by 13 impactor stages (including a filter stage in this study).
Primary particle collection efficiency of each stage is char-
acterized by a size-cutDa,50 and a steepness coefficients.
Beside impaction, secondary collection mechanisms include
diffusion, image charge and space charge effects, which are
dependents of particle mobility diameter (Dp) (Virtanen et
al., 2001). An ELPI response function developed by Marja-
maki et al. (2005) was followed in this study for retrieval of
particle size-number concentration distribution. Kernel func-
tions that transfer particle size-number concentration to mea-
sured current on stages by taking into account all primary
and secondary collection mechanisms were constructed.Da

is related toDp using:

D2
aCc(Da,κi)ρ0 = D2

pCc(Dp,κi)ρp (1)

whereCc: Cunningham slip correction factor, which depends
on particle size and mean free path

κi : Particle mean free path at stagei. i= 1, 2,. . . , 13
ρ0: Reference density (1 g cm−3)
ρp: Effective particle density
Equation (1) assumes nonporous spherical particles (Kelly

and McMurry, 1992), which can apply to the smoldering-
combustion particles observed in this study. An iterative,
least-square-based inversion algorithm similar to (Dong et
al., 2004) was used to retrieve particle size-number concen-
tration from the kernel functions and ELPI current measure-
ments. The size-number concentration was constrained to
bimodal log-normal distributions, though it was found later
that best fits usually consist of only single mode. To ver-
ify the robustness of the solution, multiple runs with random
initial distribution were performed. They were compared
with mobility number size distribution measurements from a
Scanning Mobility Particle Sizer (SMPS) operated by a col-
laborating group during this experiment (McMeeking et al.,
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Figure 2 

b) a) 

Fig. 2. Scanning electron microscopy (SEM) image of a typical tar
ball emitted from smoldering biomass combustion of(a) Ponderosa
Pine Duff, and(b) Alaskan Tundra Duff. Electron dispersive spec-
troscopy (EDX) of tar balls shows that these particles consist pri-
marily of carbon and oxygen with an average molar ratio of about
six.

2009). The ELPI modes generally agreed with those from the
Scanning Mobility Particle Sizer (SMPS). However, due to a
low time resolution of∼10 min and size coverage of∼0.04–
0.6 µm, the SMPS data were not suitable for examining the
optical closure of smoke particles. Further, the SMPS under-
stated the total number concentrations due to the saturation
limit of the condensation particle counter (CPC) detectors
(TSI inc., 2003). Uncertainty of the ELPI retrieval results
partly from the unknown particle density. From the litera-
ture, organic matter from biomass burning showsρp ranging
from 0.79–1.53 g cm−3 (Reid et al., 2005). In this study the
mean value of 1 g cm−3 was used (Radke et al., 1988; Radke
et al., 1991), which gives equal aerodynamic and mobility
diameter.

3 Results and discussions

SEM images (Fig. 2) reveal that typical smoke particles in
this study were spherical and homogeneous tar balls (Pósfai
et al., 2004; Hand et al., 2005; Alexander et al., 2008;
Chakrabarty et al., 2006). A statistically relevant number of
particles have been examined for morphology using SEM,
and it was found that a high fraction (>95%) of all parti-
cles from each of the three samples were tar balls. Electron
dispersive spectroscopy (EDX) further confirmed the occur-
rence of tar balls by showing these particles to consist pri-
marily of carbon and oxygen with an average molar ratio of
about six, in agreement with previous observations (Pósfai et
al., 2004; Hand et al., 2005; Alexander et al., 2008).

Figure 3 shows four-minute, time-averaged number size
distributions of smoke particles determined by the ELPI.
These size distributions are narrow with a single peak at
∼70 nm diameter, similar to the size distributions of tar
balls obtained from the SAFARI and K-pustza samples
(Pósfai et al., 2004). Previous chemical characterization of
the particles, performed using scanning transmission x-ray
microscopy coupled with near-edge x-ray absorption fine
structure spectroscopy (STXM/NEXAF), indicated a high
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Fig. 3. Number size distribution of tar balls from the smolder-
ing combustion of Ponderosa Pine Duff (PPDuff1 and PPDuff2)
and Alaskan Tundra Duff (AKDuff) obtained from Electrical Low
Pressure Impactor (ELPI) measurements. Each curve represents
a four-minute average of second-by-second ELPI retrievals based
on spherical, uniform particles and fitted with bi-modal, lognormal
size-distribution functions.

proportion of oxygen-containing functional groups and very
low sp2 hybridization (Hopkins et al., 2007). These find-
ings clearly differentiate tar ball composition from that of
BC particles, which are fractal-like aggregates of spherules
that consist of concentrically wrapped graphitic layers with a
low proportion of oxygen-containing functional groups and
relatively high sp2 hybridization (Hopkins et al., 2007). The
elemental carbon (EC) content of our aerosol samples was
determined with a thermal-optical analysis method (Chow et
al., 2004) and found to be below the detection limit.

Table 1 summarizes the experimentally determined optical
properties of tar balls emitted from smoldering combustion
of the two fuels described above. The complex refractive
indices of the particles were retrieved from Mie “closure”
calculations based on particle size, scattering, and absorp-
tion measurements. Use of Mie theory is justified by the
near-spherical shape of the particles, and a Mie code simi-
lar to that of Guyon et al. (2003) and Hoffer et al. (2006) was
used. Using the method of quadrature sum of the individual
errors, the measurement errors in the real part of the index of
refraction were calculated to be around 4.1% and that in the
imaginary part were approximately 13.6%.

The absorption̊Angstr̈om coefficient (AAC) for a pair of
wavelengthsλ1 andλ2 is defined as

AAC(λ1,λ2) = −ln
[
βabs(λ1)

/
βabs(λ2)

]/
ln

[
λ1

/
λ2

]
, (2)

whereβabs is the absorption coefficient. The AAC charac-
terizes the wavelength dependence of light absorption with
AAC = 1 typical for BC (Reid et al., 2005; Moosm̈uller et al.,
2009; Lewis et al., 2008). The spectrally varying AAC of the

tar balls indicates that they can be categorized as brown car-
bon. Recent studies on humic-like substances (HULIS, re-
lated to brown carbon) and water-soluble OC (WSOC) (Hof-
fer et al., 2006; Kirchstetter et al., 2004; Moosmüller et al.,
2009) have reported observation of AAC ranging between 6
and 7 for wavelengths between 300 nm and 532 nm. The very
high AAC of 6.4, observed between wavelengths 405 nm and
532 nm for tar balls from AKDuff, suggest the possibility
of HULIS being a primary component. This inference is
further strengthened by the similarities of the complex re-
fractive index of tar balls and HULIS (Hoffer et al., 2006).
The single scattering albedo (SSA) is the ratio of scattering
to extinction coefficients, with the extinction coefficient be-
ing the sum of scattering and absorption coefficients (Bohren
and Huffman, 1983). In the visible and near-visible range
(i.e., 405 nm, 532 nm, and 780 nm), the SSA of tar balls
emitted from smoldering combustion of PPDuff and AKDuff
was fairly high (>0.93) (Lewis et al., 2008), increasing with
wavelength – contrary to the decreasing SSA with increasing
wavelength, typically observed for biomass burning aerosols
(Chen et al., 2008). A very recent study also observed con-
sistently higher SSA at 870 nm than at 405 nm for particles
emitted from wildfires in Northern California (Gyawali et al.,
2009). The SSA values for: PPDuff1 were 0.96 (532 nm) and
0.97 (780 nm); PPDuff2 were 0.93 (405 nm), 0.97 (532 nm)
and 0.98 (780 nm); and AKDuff were 0.95 (405 nm), 0.98
(532 nm) and 0.99 (780 nm). For ultra fine and fine (di-
ameter<1000 nm) aerosol particles containing mixtures of
BC and OC, the wavelength dependence of their scattering
and absorption coefficients are characterized by a scattering
Ångstr̈om coefficient (SAC) of 3<SAC<4 (He et al., 2009)
and AAC of 1<AAC<4 (Bergstrom et al., 2007). Therefore,
the scattering efficiency generally drops faster with increas-
ing wavelength than the absorption efficiency, explaining
why aerosols containing mixtures of BC and OC have been
typically observed to have decreasing SSA with increasing
wavelength, corresponding to a positive SSAÅngstr̈om co-
efficient (defined similarly to AAC in Eq. 2). For the parti-
cles studied here however, their optical properties are domi-
nated by brown carbon yielding an AAC as high as 6.4, sig-
nificantly larger than their SAC. Therefore, for short wave-
lengths, the absorption coefficient drops faster with increas-
ing wavelength than the scattering coefficient yielding neg-
ative SSAÅngstr̈om coefficients as shown in Table 1. For
carbonaceous particles, negative SSAÅngstr̈om coefficients
may become a useful criteria for the definition of brown car-
bon.

The derived refractive indices of the observed combus-
tion particles are fuel and time dependent, and agree with
recently reported results (Guyon et al., 2003; Hoffer et al.,
2006; Hungershoefer et al., 2008). The imaginary part of re-
fractive index corresponding to the fuel types in Table 1 can
be fitted with a simple function of wavelengthλ as:
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Table 1. Summary of the experimentally determined optical properties of tar balls emitted from the combustion of two fuels: Ponderosa Pine
Duff (PPDuff, at two sampling times) and Alaskan Duff (AKDuff).

Scattering and Absorption Coefficients Bsca Complex Refractive Index Absorption SSÅAngstr̈om
& Babs(Mm−1) Ångstr̈om Coefficient Coefficient

Fuel Name 405 nm 532 nm 780 nm 405 nm 532 nm 780 nm 405–532 nm 532–780 nm 405–532 nm 532–780 nm
PPDuff1a N/A 1543 & 60.4 731 & 21 N/A 1.72 + 0.008i 1.71 + 0.006i N/A 2.8 N/A 0.027
PPDuff2b 1807 & 36 1527 & 42.8 792 & 18 1.78 + 0.015i 1.87 + 0.006i 1.86 + 0.004i 4.2 2.3 −0.15 −0.027
AKDuff b 1150 & 56 907 & 9.7 467 & 3.9 1.83 + 0.0076i 1.75 + 0.0020i 1.60 + .0014i 6.4 2.4 −0.15 −0.008

a Data set collected four minutes after ignition of fuel. During sampling, the IPN at 405 nm was not operating.
b Data set collected 30 min after ignition of the fuel.

k(λ) =
kBCVBC+kBrCVBrC

VBC+VBrC
= (3)

kBC
VBC

VBC+VBrC
+

a(
λ2−λ2

0

)2

VBrC

VBC+VBrC
,

where λ0 is an effective resonance wavelength anda is
a constant (see Fig. 4a). The retrieved imaginary refrac-
tive index can be described as the sum of a wavelength-
independent componentkBC occurring in the very small BC
volume fraction (VBC) and a wavelength-dependent compo-
nentkBrC occurring in the dominant brown carbon volume
fraction (VBrC). The wavelength-dependent component is
modeled with a simple, Lorentzian-like 1/(λ−λ0)

2 function
(Demtr̈oder, 2003). For wavelengths closer to the effective
resonance wavelength, the line width would have to be ac-
counted for in equation 3. In Fig. 4a, note that the assumption
of identically wavelength dependentkBrC for the two Pon-
derosa Pine Duff data sets still yields excellent fits (fit errors
≈1%) of the data points. CalculatingkBrC by subtractingkBC
from our data (Fig. 4b) makes it obvious that the brown car-
bon component of the imaginary part of the refractive index
is virtually identical for smoke particles from PPDuff1 and
PPDuff2 (Fig. 4b). However, thekBC component of PPDuff2
is less than 2/3 of that of PPDuff1. This is probably due to the
later sampling time for PPDuff2 when additional smoldering
emissions and/or additional condensation of semi-volatile or-
ganic compounds added more brown carbon to the aerosol,
while BC content stayed constant as minor flaming combus-
tion during the ignition of the fire (the source of BC) had
already terminated. The effective resonance wavelength of
smoke particles from PPDuff was found to be further in the
UV (i.e., 289 nm) than that of AKDuff (i.e., 348 nm).

The knowledge ofkBrC allows to estimate the radiative
forcing efficiency (RFE; the radiative forcing per unit opti-
cal depth and bandwidth) at 405 nm, 532 nm, and 780 nm by
brown carbon emitted from PPDuff2 and AKDuff combus-
tion (Table 2). In order to assess the contribution of absorp-
tion by brown carbon, the estimated RFE for brown carbon
is compared with that of traditional OC (i.e., complex refrac-
tive index = 1.55 + 0i) (Horvath, 1993). Most calculations
of RF for traditional OC containing aerosols have assumed
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Figure 4 
Fig. 4. (a)Data (individual points) and models (solid lines) of the
imaginary part of the refractive indexk of the volume averaged con-
tributions of black carbon (BC) and brown carbon (BrC) as func-
tion of wavelength for Ponderosa Pine Smoke 1 and 2 and Alaskan
Duff Smoke. The wavelength independent componentskBC of k

are shown as dotted lines for the three individual smoke samples.
(b) Data (individual points) and models (solid lines) of the imag-
inary part of the refractive indexk as function of wavelength for
the brown carbon component of Ponderosa Pine Smoke 1 and 2 and
Alaskan Duff Smoke. The fact that the data points for Ponderosa
Pine Smoke 1 and 2 are nearly identical indicates that differences
in the imaginary parts of their refractive indices are predominantly
due to different black carbon content.
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Table 2. Comparison of radiative forcing efficiency (i.e., radiative forcing per unit optical depth and bandwidth) at 405 nm, 532 nm, and
780 nm for brown carbon emitted from Ponderosa Pine Duff and Alaskan Duff combustion with that of traditional organic carbon.

Fuel Name λ = 405 nm λ = 532 nm λ = 780 nm

Refractive Index RFE
(W/nm m2)

Difference
(W/nm m2)

Refractive Index RFE (W/nm m2) Difference
(W/nm m2)

Refractive Index RFE (W/nm m2) Difference
(W/nm m2)

PPDuff2 1.78 + 0.015i −22.7
+3.3

1.87 + 0.003i −21.5
−0.2

1.86 + 0.0007i −16.6
−0.7OC 1.55 + 0.0i −26.0 1.55 + 0.0i −21.3 1.55 + 0.0i −15.9

AKDuff 1.83 + 0.006i −22.0
+2

1.75 + 0.0006i −19.9
−0.2

1.60 + 0.0001i −15.4 −0.3
OC 1.55 + 0.0i −24.0 1.55 + 0.0i −19.7 1.55 + 0.0i −15.1

that OC does not absorb in the visible and near-visible part
of the spectrum. The aerosol RFE was estimated in a similar
fashion to Dinar et al. (2008) and Randles et al. (2004). The
shortwave aerosol RFE at the top of the atmosphere caused
by a uniform, optically thin aerosol layer in the lower tropo-
sphere was calculated using

1F

τ
= (4)

SD(1−Acld)T
2
atm(1−Rsfc)

2
[
2Rsfc

1−SSA

(1−Rsfc)2
−β(SSA)

]
,

where1F is the change in net solar flux at the top of the at-
mosphere due to the presence of the aerosols,τ is the aerosol
optical depth,S is the solar constant, set to 1370 Wm−2, D

is the fractional day length, set to 0.5,Acld is the fractional
cloud cover, set to 0.6,Tatm is the solar atmospheric trans-
mittance, set to 0.76,Rsfc is the surface albedo, set to 0.15
(appropriate for an urban area), and SSA is the aerosol single
scattering albedo. The parameterβ is the fraction of scat-
tered sunlight that is scattered into the upward hemisphere,
which in turn is a function of hemispheric backscatter frac-
tion, b, defined as the ratio of backscattering coefficient to
total scattering coefficient. The parameterb was determined
from g, the asymmetric parameter, using

b =
1−g2

2g

[
1√

1+g2
−

1

1+g

]
. (5)

Fromb, the parameterβ was calculated using the following
functional relationship derived from the Henyey–Greenstein
phase function (Henyey and Greenstein, 1941) as

β = 0.082+1.85b−2.97b2. (6)

In all of the calculations, the relative humidity is assumed to
be 0%. The values ofkBrC directly affect the values of SSA
andβ in Eq. (4).

In Table 2, positive values of RFE indicate heating and
negative values cooling of the atmosphere by aerosols. As
would be expected, the RFE of brown carbon is significantly
less negative than the RFE of OC at 405 nm, emphasizing the
increasing importance of the absorbance by brown carbon
near the UV compared to the visible.

4 Conclusion

Inclusion of the properties of tar balls into current RF aerosol
models and optical remote sensing retrievals is an important
step towards improving model accuracy. Given their abun-
dance in the atmosphere (Alexander et al., 2008; Lukacs et
al., 2007), these brown carbonaceous tar balls may account
for a significant increase in the RFE (resulting in additional
atmospheric absorption and warming) in the near-UV and
UV region. Additionally, their presence may help explain
anomalously large near-UV and UV solar light absorption
observed in the troposphere (Jacobson, 1999).
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