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Abstract. The Henry’s law constant is a key property needed
to address the multiphase behaviour of organics in the atmo-
sphere. Methods that can reliably predict the values for the
vast number of organic compounds of atmospheric interest
are therefore required. The effective Henry’s law constant
H ∗ in air-water systems at 298 K was compiled from litera-
ture for 488 organic compounds bearing functional groups of
atmospheric relevance. This data set was used to assess the
reliability of the HENRYWIN bond contribution method and
the SPARC approach for the determination ofH ∗. More-
over, this data set was used to develop GROMHE, a new
Structure Activity Relationship (SAR) based on a group con-
tribution approach. These methods estimate logH ∗ with a
Root Mean Square Error (RMSE) of 0.38, 0.61, and 0.73
log units for GROMHE, SPARC and HENRYWIN respec-
tively. The results show that for all these methods the reli-
ability of the estimates decreases with increasing solubility.
The main differences among these methods lie inH ∗ pre-
diction for compounds withH ∗ greater than 103 Matm−1.
For these compounds, the predicted values of logH ∗ using
GROMHE are more accurate (RMSE = 0.53) than the esti-
mates from SPARC or HENRYWIN.

1 Introduction

The oxidation of hydrocarbons emitted in the atmosphere
involves complex reaction sequences. This oxidation is a
gradual process leading to the formation of oxygenated or-
ganic intermediates usually denoted as secondary organics
(e.g.,Atkinson, 2000). The fate of these secondary organ-
ics remains poorly quantified due to a lack of information
about their speciation, distribution and evolution in the gas
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and condensed phases (e.g.,Goldstein and Galbally, 2007).
A significant fraction of secondary organics may dissolve
into the tropospheric aqueous phase, namely rain, clouds and
deliquescent particles (e.g.,Saxena and Hildemann, 1996;
Facchini et al., 1999). The resulting mass transfer is cur-
rently suggested to contribute to acid production, organic
aerosol formation and the oxidant budget (e.g.,Lelieveld and
Crutzen, 1990; Walcek et al., 1997; Blando and Turpin, 2000;
Ervens et al., 2003, 2008; Legrand et al., 2003, 2005; Yu
et al., 2005; Gelencser and Varga, 2005; Lim et al., 2005;
Hallquist et al., 2009).

In atmospheric models, the partitioning of organics be-
tween the gas and the aqueous atmospheric phases is usu-
ally described in the basis of Henry’s law (e.g.,Jacob et al.,
1989; Aumont et al., 2000; Herrmann et al., 2000, 2005; Er-
vens et al., 2003, 2008; Pun et al., 2002; Griffin et al., 2003).
Henry’s law expresses the relationship between the solubility
of a gas in a liquid and its partial pressure above that liquid:

S=H×P (1)

whereS is the solubility (M),P is the partial pressure (atm)
and H is the Henry’s law constant (Matm−1) at a given
temperature. Henry’s law is a limiting law that strictly ap-
plies to ideally dilute solutions (e.g.,Levine, 2002; Boethling
and Mackay, 2000). Atmospheric models require a knowl-
edge ofH for every water soluble organic species described
in the chemical mechanism. Detailed gas phase or multi-
phase chemical mechanisms involve a vast number of species
(e.g.,Saunders et al., 2003; Aumont et al., 2005; Herrmann
et al., 2005). The collection of Henry’s law constants re-
quired to develop detailed models far exceeds the number
of species for which experimental data is available. For
example, the fully explicit oxidation mechanism developed
by Camredon et al.(2007) for 1-octene includes 1.4×106

species and the gas/aerosol thermodynamic equilibrium for
about 4×105 species. Reliable estimation methods forH

are therefore required to design detailed mechanisms. To
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be useful, estimation methods must be applicable to a wide
range of organics, especially to multifunctional species gen-
erated during the atmospheric oxidation of hydrocarbons.
The aim of this paper is to identify a reliable method for
estimating Henry’s law constants for organic compounds of
atmospheric interest in air-water systems.

Numerous structure activity relationships (SARs) have
been developed to determine the Henry’s law constants in
a response to the difficulties associated with its laboratory
measurement, in particular, for compounds with higher sol-
ubility (Mackay and Shiu, 1981; Russell et al., 1992; Hine
and Mookerjee, 1975; Meylan and Howard, 1991; Suzuki
et al., 1992). These SARs were reviewed and analysed
by Dearden and Schuurmann(2003). This study showed
that the bond contribution method developed byMeylan and
Howard(1991) and updated in the frame of the HENRYWIN
(HWINb) software (Meylan and Howard, 2000) was the most
reliable method available.Dearden and Schuurmann(2003)
analysed 700 compounds with HWINb and found aR2 of
0.88 with a standard deviation of 1.03. Recently, a new
method, SPARC, has been developed byHilal et al. (2008).
This method is based on the product of the activity coefficient
in waterγ∞w and the vapour pressureP o which are estimated
using intermolecular interactions in the pure liquid phase and
in solution (e.g.,Boethling and Mackay, 2000). Hilal et al.
(2008) used an experimental database of 1222 compounds
to test the air-to-waterH . Their results show that for sim-
ple molecular structures, the standard deviation is within a
factor of 2 but reaches a factor of 3 to 4 for more complex
molecules having strong intramolecular and/or dipole-dipole
interactions.

The objective of this paper is to assess the reliability of
HWINb and SPARC methods. To this end an experimental
database of Henry’s law constants was compiled. Special
attention was given to select those compounds withH above
103 Matm−1 which are soluble enough to have significant
partitioning in the atmospheric aqueous phase (e.g.,Seinfeld
and Pandis, 1997; Gelencser and Varga, 2005). Furthermore,
this database was used to develop a new SAR: the GROup
contribution Method for Henry’s law Estimate (hereafter
named GROMHE). HWINb, SPARC and GROMHE are
all SARs based on a multiple linear regression approach.
The main difference between them relies on the selection
of descriptors (i.e. the predictors) used to estimateH . The
descriptors chosen by SPARC are physical parameters
(e.g. volume, molecular polarisability, molecular dipole, H
bonding parameters, dispersion interaction, induction inter-
action, H bond interaction, entropic term, etc.) and quantum
mechanical calculations are required to determine their
values (Hilal et al., 2004). HWINb uses simple molecular
structural descriptors: the number and type of the chemical
bonds and in addition, some correcting factors. GROMHE
follows a similar paradigm but is based on the number and
nature of the functional groups present in the molecule (see
Sect.3.2).

In this paper, we first describe the selection of the database
used to develop and/or assess the estimation methods. We
then describe the development of GROMHE and finally anal-
yse the performance of the three methods considered for this
study.

2 Database

Usually the experimental values found in the literature are
expressed as effective Henry’s law constants,H ∗, which in-
cludes the hydration process. We differentiate the literature
H ∗ values from the intrinsicH values as detailed in the next
section. The database of Henry’s law constants was com-
piled to include species representative of atmospheric oxida-
tion processes occurring in the gas or aqueous phase. Ta-
ble S1 (see the electronic supplement) lists the experimen-
tal values selected in this study in units of Matm−1 and pre-
sented as the logarithm ofH ∗. The database includes 488
organic compounds comprising a wide range of functional
groups detected in either gas or aqueous phase: nitrate, ni-
tro, peroxyacylnitrate, aldehyde, ketone, ester, ether, alcohol,
hydroperoxide, peracid, carboxylic acid and halogen (e.g.,
Finlayson-Pitts and Pitts, 2000; Seinfeld and Pandis, 1997).
The number of species bearing a specific functional group
is given in Table 1. The availability of data for hydroper-
oxides (3 species) and peracids (1 species) is limited and
therefore it is difficult to assess the reliability ofH ∗ esti-
mates for these groups of species. This is a limiting factor
since oxidation proceeds through the formation of such com-
pounds in remote conditions (or low NOx conditions). Ad-
ditional data for these groups of species would be especially
valuable to constrain structure activity relationships for at-
mospheric applications. The database is also poor for mul-
tifunctional oxygenated organics, although special care was
taken to be as comprehensive as possible in the collection of
experimentalH ∗ for these groups of species. Data listed in
Table S1 includesH ∗ for 76 hydrocarbons, 231 monofunc-
tional compounds, 132 difunctional compounds and 49 com-
pounds bearing at least 3 functional groups. Both aliphatic
and aromatic species were considered in the compilation and
the data in Table S1 can be split into 393 aliphatic and 95
aromatic species. The constants included range from 10−4

to 109 Matm−1. Henry’s law constants depend on the type
of functional groups attached to the carbon chain and usu-
ally increase with the number of groups; for hydrocarbon
speciesH ∗ ranges from 10−4 to 10−1 Matm−1 whilst for
monofunctional organic compoundsH ∗ ranges from 10−1

to 105 Matm−1. Difunctionals compounds have the greatest
range ofH ∗, from 10−1 to 109 Matm−1.

Most of the Henry’s law constants used in this study
were collected from three different libraries; NIST (http:
//webbook.nist.gov/chemistry), the Sander data review (http:
//www.mpch-mainz.mpg.de/sander/res/henry.html), and the
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Table 1. Descriptors for the model GROMHE, number of species in the database contributing to the descriptor and their related contribution,
standard error and statistical significance in the MLR.

Descriptora
Training dataset All dataset

Number of Contribution Standard p-Value Number of Contribution Standardp-Value
species Error species Error

Functional group and structural descriptors
# of hydroxy groups (-OH) 85 4.56 0.11 0.0000 120 4.56 0.09 0.0000
# of nitro groups (-NO2) 22 3.06 0.12 0.0000 27 3.02 0.10 0.0000
# of nitrate groups (-ONO2) 33 2.06 0.07 0.0000 44 2.04 0.06 0.0000
# of hydroperoxide groups (-OOH) 1 4.98 0.42 0.0000 3 4.87 0.24 0.0000
# of fluorine groups (-F) 15 0.60 0.10 0.0000 19 0.60 0.08 0.0000
# of chlorine groups (-Cl) 26 0.88 0.07 0.0000 51 0.87 0.06 0.0000
# of bromine groups (-Br) 15 1.04 0.10 0.0000 21 1.06 0.09 0.0000
# of iodine groups (-I) 7 1.15 0.18 0.0000 11 1.22 0.13 0.0000
# of aldehyde groups (-CHO) 18 2.63 0.12 0.0000 24 2.59 0.11 0.0000
# of ketone groups (-COR) 22 3.29 0.12 0.0000 35 3.16 0.10 0.0000
# of acid groups (-COOH) 27 5.11 0.11 0.0000 36 5.09 0.09 0.0000
# of peracid groups (-COOOH) 1 4.68 0.41 0.0000 1 4.68 0.40 0.0000
# of peroxyacyl nitrate groups (-PAN) 3 1.94 0.25 0.0000 5 1.93 0.19 0.0000
# of ether groups (-OR) 42 2.44 0.10 0.0000 52 2.40 0.09 0.0000
# of ester groups (-COOR) 37 2.79 0.10 0.0000 55 2.78 0.08 0.0000
# of formate groups (-HCOOR) 3 2.39 0.25 0.0000 4 2.36 0.21 0.0000
# of C atoms 345 0.49 0.02 0.0000 488 0.50 0.02 0.0000
# of H atoms 345 −0.31 0.01 0.0000 488 −0.31 0.01 0.0000
nfcd 26 −0.59 0.07 0.0000 37 −0.52 0.05 0.0000
nfaro 48 −1.10 0.07 0.0000 67 −1.12 0.06 0.0000

Group interaction descriptors
tdescriptor 98 −0.14 0.01 0.0000 138 −0.14 0.01 0.0000
caox-a 9 −1.78 0.17 0.0000 13 −1.77 0.13 0.0000
caox-b 8 −1.31 0.18 0.0000 12 −1.09 0.14 0.0000
hyd-a 18 −0.63 0.13 0.0000 29 −0.60 0.10 0.0000
hyd-b 15 −1.00 0.18 0.0000 23 −1.03 0.14 0.0000

Correction factor descriptors
haloic-a 5 0.98 0.21 0.0000 10 0.97 0.15 0.0000
onitrofol 7 −2.72 0.23 0.0000 10 −2.66 0.19 0.0000
nogrp 52 −0.31 0.11 0.0069 76 −0.28 0.09 0.0028

Intercept – −1.51 0.11 0.0000 – −1.52 0.09 0.0000

a See Sect. 3.2 for the meaning of the descriptor.

Environment Protection Agency HENRYWIN program
(Meylan and Howard, 2000) with a few additional values
taken from recently published papers (see Table S1 in the
electronic supplement). The data were taken from experi-
mental values either from direct or indirect measurements.
The indirect measurements are based on relationships be-
tween thermodynamic variables. In particular, for sparingly
water soluble species,H ∗ is often estimated using the rela-
tionship: H ∗ = Ss

w/P o whereSs
w is the solubility for a sat-

urated solution andP o is the vapour above the pure com-
pound in the condensed phase. BecauseSs

w and P o val-
ues are measured independently in the laboratory, we have
two sources that contribute to the uncertainty in the finalH ∗

value (Mackay and Shiu, 1981).

Most experimentalH ∗ data in Table S1 are provided at
298 K. A small number of species measured at 293 K (20
compounds, see Table S1) were also included to obtain a
better representation of multifunctional oxygenated species.
These values were corrected using the van’t Hoff equation:

H298=H293×exp

(
1Hsolv

R

(
1

293
−

1

298

))
(2)

where1Hsolv is the desolvation enthalpy andR is the gas
constant. The desolvation enthalpy1Hsolv typically ranges
from 10 to 100 kJmol−1 (e.g.,Kuhne et al., 2005). This span
of enthalpies leads to a decrease ofH ∗ ranging from 7 to
50% for a 5 K increase (i.e. from 0.03 to 0.3 log units). Here,
we assume a typical value of 50 kJ mol−1 for all species. For
each species measured at 293 K, the value ofH ∗ in Table S1
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was thus decreased by 0.15 log units. The uncertainty in the
applied correction factor is small compared to the uncertain-
ties from the SAR outputs and experimental data.

For empirically based methods, the experimental uncer-
tainties are transferred into the models’ uncertainties. How-
ever, uncertainties for the data reported in Table S1 are
hard to evaluate owing to the large number of experimental
sources and the lack of reported experimental uncertainties
in many of the original papers (Russell et al., 1992). During
the compilation, we found that discrepancies in the measured
H ∗ value for a given compound often exceeded a factor of 2.
The discrepancies tend to increase withH ∗ which indicates
the difficulties of measuring the physical property for those
species with very high Henry’s law constants (Hilal et al.,
2008; Mackay and Shiu, 1981). As a guideline, we assume
that the uncertainty is at least a factor of 2 for species having
H ∗ above 105 Matm−1.

3 Development of the GROMHE estimation method

3.1 Estimation method for hydration constants

Compounds containing carbonyl groups like aldehydes and
ketones may undergo significant hydration. Carbonyls com-
bine with water molecules to form gem diols upon dissolu-
tion according to the equilibrium:

> C = O + H2O ←→ > C(OH)(OH)

The equilibrium of the carbonyls between the hydrated
(> C(OH)(OH)) and non-hydrated (> C=O) form is de-
scribed by the hydration constantKhyd:

Khyd=
[> C(OH)(OH)]

[> C=O]
(3)

Table S2 (see the electronic supplement) shows the compi-
lation of the hydration constants for 61 aldehydes and/or ke-
tones.Khyd is typically about 10−3 and 1 for simple ketones
and aldehydes, respectively.Khyd increases by 1 to 3 or-
ders of magnitude when a strongly polar group is attached
to the carbon atom next to the carbonyl group. Hydration is
therefore a key parameter affecting the solubility of multi-
functional carbonyl compounds.

The partitioning of species that undergo hydration in water
is usually described with the effective Henry’s law constant
H ∗. The effective Henry’s law constant of a compound is
defined as the ratio between the total dissolved concentration
and its pressure:

H ∗=
([> C=O]+ [> C(OH)(OH)])

P>C=O
=H

(
1+Khyd

)
(4)

whereH is the intrinsic Henry’s law constant for the car-
bonyl. The values extracted from the literature and listed in
Table S1 (see the electronic supplement) are thereforeH ∗ for
carbonyls.

Most estimation methods were based on group contribu-
tion methods using logH ∗ as the training data set. Equa-
tion (4) shows that for carbonyls,H ∗ is a function of 2
fundamental properties (H and Khyd). If Khyd� 1 then
logH ∗ ≈ logH + logKhyd. On the other hand, ifKhyd� 1,
then logH ∗ ≈ logH . This conditional addition of logKhyd
is hard to represent by a simple group contribution method
which assumes additive groups. Here we estimated both
Khyd and the intrinsicH for each carbonyl and used Equation
4 to finally computeH ∗. Note that the method performance
was assessed on the accuracy ofH ∗ which is the primary
property being investigated.

A SAR was constructed to estimateKhyd based on a mul-
tiple linear regression approach using the experimental data
shown in Table S2 as training set. This modelling approach
assumes that the relationship between the dependent variable
yi (hereKhyd) and the independent variablesxj (here the
structural descriptors or predictors) is linear. The equation
for this model is given by:

yi =β0+β1x1,i+···+βjxj,i+··· (5)

wherei stands for theith species in the database,xj,i is the
j th descriptors andβj are the regression coefficients (here
the contributions) computed for the descriptorj . The best-
fitting line for the observed data is calculated by minimising
the sum of the squared errors, SSE:

SSE=
n∑

i=1

(
logKhyd,est− logKhyd,exp

)2 (6)

wheren is the number of species included in the database.
The descriptors were selected following their assessment in
the multiple linear regression.

Previous studies have shown thatKhyd is well correlated
with the inductive effect of the neighbouring groups (Le
Henaff, 1968; Betterton and Hoffmann, 1988). Therefore,
Taft and Hammettσ were used as descriptors for aliphatic
and aromatic compounds, respectively (see Table 2). Ham-
mett values for the various functional groups were obtained
from the data reviews ofHansch et al.(1995) andPerrin et al.
(1981). We defined a “Hammett descriptor” (referenced as
hdescriptorin Table 3) as the sum of the contribution of each
group:

hdescriptor =6σo+6σm+6σp (7)

whereσo, σm, σp are the Hammett sigma values for the func-
tional groups in ortho, meta or para positions relative to the
benzaldehyde group (see Table 2). Similarly, we defined a
“Taft descriptor” (tdescriptor) as:

tdescriptor =6σ ∗i (8)

whereσ ∗i are the Taft sigma values for the functional groups
i borne by the molecule in relation to the carbonyl group
(see Table 2). Two additional molecular descriptors were in-
troduced to discriminate aromatic from aliphatic compounds
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Table 2. Sigma Taft and Hammett values for organic functional groups (adapted from Perrin et al., 1981).

Functional group Taftσ∗a Hammett orthoσo Hammett metaσm Hammett paraσp

ROH 0.62 0.13 −0.38 1.22
RNO2 1.47 0.74 0.78 1.99
RONOb

2 1.54 0.55 0.7 –
ROOHc 0.62 – – –
RF 1.10 0.34 0.06 0.93
RCl 0.94 0.37 0.24 1.28
RBr 1.00 0.39 0.22 1.35
RI 1.00 0.35 0.21 1.34
RCHO 2.15 0.36 0.44 0.36
RCOR 1.81 0.36 0.47 0.07
RCOOH 2.08 0.35 0.44 0.95
COOOHc 2.08 – – –
PANc 2.00 – – –
ROR 1.81 0.11 −0.28 0.12
ROCORd 2.56 0.32 0.39 0.63
RCOORe 2.00 0.32 0.39 0.63
HCOOR 2.90 – – –

a Reportedσ∗ is the inductive effect that the carbon bearing the functional group exerts on its direct neighbouring groups. According to Perrin et al. (1981)σ∗ for functional
groups attached to carbons at distant positions are determined asσ=σi×(0.4)n wheren is the number of aliphatic carbons separating the functional groups. The 2 carbons forming
a C=C bond are counted as one C only.b Perrin et al. (1981) givesσ∗ = 3.86 for the nitrate group. The value reported here isσ∗=0.4×3.86, estimated for the carbon bearing the
nitrate functional group to its neighbouring groups.c Value set assuming thatσROOH= σROH, σC(O)OOH= σRC(O)OH, σPAN= σRCOOCH3.

d Sigma for ester at the -O- side.e

Sigma for ester at the -CO side.

and ketone from aldehyde groups. Table 3 provides the op-
timised contribution for these 4 descriptors and Fig. 1 shows
the resulting scatter plot. The coefficient of determination is
R2
=0.91. The reliability of the method was assessed using

the root mean square error (RMSE) defined as:

RMSE=

√√√√1

n

n∑
i=1

(
logKhyd,est− logKhyd,exp

)2 (9)

wheren is the number of species included in the database.
The RMSE obtained is 0.47 log units. The method allows
estimatingKhyd within a factor of 3.

3.2 Estimation method for the intrinsic Henry’s law
constants

The GROMHE approach is similar to the method described
by Suzuki et al. (1992) and is based on considering a
molecule as a collection of elemental constituents (functional
groups or atoms) whose contributions are computed using
a multiple linear regression (MLR). The original approach
by Suzuki et al.(1992) was developed for monofunctional
species only. In GROMHE, the approach is extended to
multifunctional species using additional descriptors to ac-
count for group interactions. The identification of descriptors
for the multiple linear regression is complex: increasing the
number of descriptors (increase in the degree of freedom)
usually leads to a better fit of the experimental data. How-
ever, regression models are prone to over-fitting and there is

−2 0 2 4 6

−2

0

2

4

6

log Khyd, exp

lo
g

 K
h

yd
, e

st

R2 = 0.906
N = 61

Fig. 1. Estimated hydration constant versus experimental values.
The line is they= x line.

a requirement to reduce the number of descriptors used as
much as possible. An attempt was thus made to minimise the
number of descriptors and to optimise the regression for the
species of atmospheric interest.

The database was split into two sets: 70% of the data were
used as training set and the remaining 30% were reserved
for validation and were not used during the development of
the method. The training data set was then used to compute
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Table 3. Descriptors for the model to estimate hydration constants
and their related contribution, standard error and statistical signifi-
cance (p-value) in the MLR.

Descriptor Contribution Standard Errorp-Value

tdescriptora 1.27 0.07 0.0000
hdescriptora 0.50 0.17 0.0049
Ketone flagb

−2.50 0.17 0.0000
Aromatic flagb

−1.58 0.24 0.0000
Interceptb 0.08 0.12 0.4968

a See Sect. 3.1.b Flag is Boolean type set to 1 if the criterion is matched.

the contribution of the descriptors selected for the regression.
Species used for validation were randomly selected and are
given in Table S1 (see the electronic supplement). This ran-
dom selection covered structurally diverse compounds rep-
resentative of all type of functional groups included in the
database (see Table 1). The effective Henry’s law constants
collected in our data set were corrected for hydration to de-
termine intrinsic values. The structure activity relationship
(SAR) presented in the previous section was used systemati-
cally to derive the hydration constants for ketones and alde-
hydes and to compute the intrinsic Henry’s law constant (H )
values. These derived intrinsicH values were used as the
training data set for the MLR analysis. Our model uses 28
independent descriptors, presented below. The list of de-
scriptors along with their contributions and standard errors
are shown in Table 1.

Suzuki et al.(1992) have shown thatH can be estimated
for hydrocarbons and monofunctional species using the or-
ganic functionalities as descriptors along with the number of
carbon and hydrogen atoms. We introduced 16 descriptors,
each corresponding to a distinct organic functionality identi-
fied within the compounds comprising the study data set (see
Table 1), and two structural descriptors to account for the
number of hydrogen and carbon atoms.

In contrast toSuzuki et al.(1992) who duplicated the de-
scriptors to differentiate functionalities bound to an aromatic
chain from those bound to an aliphatic chain, we simply de-
fined two additional descriptors to account for the number of
groups bound to an aromatic ring or an olefinic carbon re-
spectively, so as to keep the number of descriptors to a min-
imum. These descriptors are referenced asnfaro andnfcd in
Table 1. An MLR using these 20 structural descriptors was
able to provideH estimates with anR2 of 0.97 for the hy-
drocarbons and monofunctional species included in the data
set.

Extrapolation of our model using the 20 descriptors de-
fined above however leads to errors in the estimated val-
ues exceeding 3 orders of magnitude for some difunctional
species. Additional descriptors were therefore included to
account for intramolecular group interactions. The mutual

inductive effect between functional groups was explored as
a parameter linked to the overestimation ofH identified in
multifunctional species. Here, we introduced Sigma Taft
(σ ∗) as a descriptor for aliphatic species (e.g.,Hansch et al.,
1995). Group interactions were taken into account by adding,
for each groupi, theσ ∗j of the neighbouring groupj :

tdescriptor =
∑

i

∑
j 6=i

σ ∗j (10)

wheretdescriptor is the parameter used as a descriptor for
the regression. Values forσ ∗j are provided in Table 2 for
each of the 16 functional groups encountered in the database.
tdescriptor was found to be statistically significant for the
prediction ofH at the 99.9% confidence level (see p-value
in Table 1). The inclusion oftdescriptor in the set of
descriptors leads to a fairly good estimate ofH for multi-
functional compounds bearing nitro, nitrate and/or halogen
groups. However,H was still overestimated for multifunc-
tional species bearing carbonyl or hydroxyl moieties, so ad-
ditional descriptors were introduced.

Scatter plots showed that species with a−C(=O)−C(X) <

structure where X is an oxygenated moiety (carbonyl, alco-
hol, ether, hydroperoxide or nitro) have lowerH values than
predicted by simple group addition. A specific structural de-
scriptor (caox-ain Table 1) was therefore introduced to ac-
count for this effect. A similar trend was also observed when
the X moiety was located in theβ position relative to the
carbonyl group and was accounted for by the inclusion of
the caox-bdescriptor. Similarly,H was found to be over-
estimated for species having a functional group in theα or
β position relative to an alcohol moiety. This effect might
be linked to some intramolecular H-bonding (e.g.,Hine and
Mookerjee, 1975; Hilal et al., 2008). This effect was taken
into account with the help of two additional structural de-
scriptors:hyd-aandhyd-b. The inclusion of these 4 descrip-
tors was found to greatly improveH estimates for the multi-
functional oxygenated species. However, a bias in predicted
H was still found for 2 groups of species: o-nitrophenols
and halogenated species bearing a carboxylic acid moiety in
theα position. Two additional descriptors (haloic-a, onitro-
fol in Table 1) were introduced to correct this bias. This is
similar to the correction factors applied in the QSAR method
developed byRussell et al.(1992) and in the HENRYWIN
method.

The 27 descriptors listed above were all found to be sig-
nificant for the prediction ofH at the 99.9% confidence level
(see thep-values in Table 1). However, a small bias was
observed in the prediction ofH for hydrocarbons and a fi-
nal descriptor (nogrp in Table 1) was included to correct this
bias. The computed contribution fornogrp remains low and
this factor is the least significant in the regression (see the
p-value in Table 1).

Figure 2 shows the performance of GROMHE. The scat-
ter plot for the training set in Fig. 2 shows that one species,
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Fig. 2. Scatter plot of estimated logH∗ using GROMHE versus experimental logH∗ for the training set (left panel) and the validation set
(right panel). The line is they =x line. The (x) symbol represents oxo-acetic acid.

oxo-acetic acid, behaves as an outlier with logH ∗ overesti-
mated by 3 log units. This species was found to be overesti-
mated by 6 log units using SPARC (see below). The reason
of this large overestimation remains unresolved to us and we
decided to remove that species from the GROMHE optimi-
sation training set. For the purpose of the intercomparison,
oxo-acetic acid was also removed from the statistical analy-
sis. The reliability of the predictions were assessed using the
Root Mean Square Error (RMSE), determined as described
previously in the context of the hydration constant assess-
ment (see Equation 9), the Mean Absolute Error (MAE) and
the Mean Bias Error (MBE):

MAE=
1

n

n∑
i=1

∣∣∣logH ∗est− logH ∗exp

∣∣∣ (11)

MBE=
1

n

n∑
i=1

(
logH ∗est− logH ∗exp

)
(12)

wheren is the number of species included in the database.
The MAE, MBE and RMSE are given in Fig. 2 for the train-
ing and validation data sets. Figure 2 shows that the model
explains 97% of the total variance of the validation data set.
Estimated logH ∗ values for the validation set shows no sig-
nificant bias (MBE = 0.04). The RMSE for the validation set
is 0.39, which corresponds to an estimation ability ofH ∗

within a factor of 2.5. The RMSE, MAE, MBE andR2 val-
ues for the validation set are similar to those calculated for
the training set and show that the model is not over-fitted
(see Fig. 2).

3.3 Analysis of GROMHE estimation method

The previous section shows that GROMHE provides reliable
estimates ofH ∗. The contribution of the descriptors was op-
timised to obtain a more representative model using the full

database. These final contributions agree with those com-
puted for the training data set within their statistical uncer-
tainties (see Table 1). The analysis of GROMHE predictions
were performed using the optimised contributions.

The overall performance of GROMHE is summarised in
the scatter plot shown in Fig. 3a. The RMSE, MAE and
MBE are shown in Fig. 4 together with the box plot of er-
ror distribution. The assessment was also performed for dif-
ferent subsets to identify possible bias for various groups of
species. Three categories of subsets were defined according
to: 1) the number of functional groups (hydrocarbons, mono-
functional, difunctional and multifunctional), 2) the aromatic
or aliphatic structure of the molecule and 3) the range of the
Henry’s law constant to differentiate fairly insoluble species
(with H ∗ below 103 Matm−1) from more soluble species
(H ∗ greater than 103 Matm−1).

The coefficient of determinationR2 between experimen-
tal and predicted logH ∗ is 0.97 (see Fig. 3a). No significant
MBE was found for any of the subsets (see Fig. 4) and thus
the GROMHE method seems to provide no systematic bias.
Box and scatter plots show that the error increases from sim-
ple hydrocarbons to multifunctional species. The RMSE is
0.30 for hydrocarbons and reaches a maximum of 0.52 for
difunctional species (see Fig. 4). Similarly, the error in pre-
dicting logH ∗ for more soluble compounds (i.e. more oxy-
gen substituted compounds) is significantly greater than for
less soluble species. The RMSE is 0.33 and 0.53 for the sub-
set of species havingH ∗ below and above 103 Matm−1, re-
spectively. It was also observed that the method provides
better estimates for the aliphatic subset of species compared
to the aromatic subset (see Fig. 4). For the full database,
GROMHE finally gives fairly reliable logH ∗ estimates, with
RMSE of 0.38 and MAE of 0.27.
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Fig. 3. Scatter plot of estimated versus experimental logH∗ for (a) GROMHE method,(b) HWINb method,(c) HWINb optimised method
and(d) SPARC-v4.2 method. The line is they =x line and the grey area represents agreement within one log unit. The (x) symbol represents
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4 Analysis of HWINb and SPARC estimation methods

HWINb, SPARC methods are able to estimateH ∗ for all the
species selected in the database (see Table S1 in the elec-
tronic supplement).H ∗ estimates from HWINb method were
determined using the software EPIWIN suit (http://www.epa.
gov/oppt/exposure/pubs/episuitedl.htm). The SPARC cal-
culator (http://sparc.chem.uga.edu/sparc) estimates indepen-
dently the intrinsicH and the hydration constantKhyd. These
two properties were jointly used to retrieve the effective
Henry’s law constantH ∗ from Eq. (4). The values reported
in Table S1 refer to the retrieved logH ∗. The overall perfor-
mance of the models HWINb and SPARC are summarised in
scatter plots (Fig. 3b and d). The RMSE, MAE and MBE for

each method are shown in Figs. 5 and 6 together with the box
plot of error distribution.

For the method HWINb, the scatter plot is shown in Fig. 3b
and the performance in Fig. 5. The coefficient of determi-
nation for logH ∗est versus logH ∗exp is R2

=0.91. Hydrocar-
bon and monofunctional compounds are well predicted with
a performance similar to GROMHE’s performance. How-
ever, their prediction error is much larger for multifunctional
compounds with RMSE above 1.0 log unit (see Fig. 5). A
bias was also found with a slight tendency towards overes-
timation of logH ∗ for difunctional species and underestima-
tion for species having more than 2 functional groups. This
prediction error shows a behaviour similar to that seen for
GROMHE, i.e. the error grows with increasing solubility.
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For the subset of species withH ∗ above 103 Matm−1, the
RMSE reaches 1.1 log units which is twice the RMSE given
by the GROMHE method. Furthermore, the error obtained
with GROMHE for each subset is systematically lower than
those obtained using HWINb.

The evaluation of HWINb method was made using the
contributions provided by running the EPIWIN software.
These contributions are computed using another training
database. In an attempt to make a fairer inter-comparison,
a multiple linear regression was performed to optimise the
HWINb model to our database. The contributions of 47 de-
scriptors (35 bonds and/or fragments and 12 correction fac-
tors) were revaluated to describe the structure of the 488
molecules included in the database. The scatter plot obtained
with the optimised HWINb model is shown in Fig. 3c and
the box plot in Fig. 5. The determination coefficientR2 is
0.96 compared to 0.91 for the original model. This optimised
model shows an improvement especially for the estimation
of logH ∗ for the more soluble species (H ∗ > 103 Matm−1)
with an RMSE of 0.66 compared to 1.12 for the original
model. The MBE was also considerably better showing no
bias for all the data subsets. However, the RMSE and the
MAE for the subset of species having at least 3 functional
groups still remain significantly lower for GROMHE.

The correlation logH ∗ estimated using SPARC versus ex-
perimental logH ∗ is shown in Fig. 3d. The coefficient of
determinationR2 is 0.94. SPARC performance is shown in
Fig. 6. SPARC and HWINb show similar reliability with
similar trends in the prediction of logH ∗ for the various sub-
sets. Hydrocarbons and monofunctional compounds are well
represented (RMSE< 0.5) whilst errors become large for
multifunctional species (RMSE= 0.97). Similar to HWINb
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Fig. 5. Mean bias error (MBE), mean absolute error (MAE), root
mean square error (RMSE) and box plot for the error distribution in
the estimated logH∗ value with the HWINb (top panel) and HWINb
optimised method (bottom panel). The whiskers of the box plot
show the 5th and 95th percentiles, the box shows the second and
third quartile and the red line gives the median value of the distri-
bution.

results, a bias towards logH ∗ overestimation is found for
difunctional species and towards underestimation for tri or
more functional species. Like GROMHE and HWINb the
reliability of SPARC estimates decreases with increasing sol-
ubility. The error is about one order of magnitude for species
havingH ∗ above 103 Matm−1 (see Fig. 6). Here again, a
fair comparison would require to revaluate the contribution
of the SPARC descriptors using our database. However, the
SPARC method is based in physical parameters which are
determined using quantum mechanical calculations. These
calculations are beyond the scope of this paper. Additional
work would thus be required to evaluate the inherent per-
formance of the SPARC method before reaching any final
conclusions.

5 Conclusions

A new group contribution method, GROMHE, was devel-
oped in this study to estimateH ∗ for organic compounds
at 298 K. A multiple linear regression was performed using
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the training data set including 345 organics representative
species of atmospheric interest. A set of 28 descriptors
was found to be statistically significant for the prediction of
logH ∗. The resulting method predicts logH ∗ with a root
mean square error of 0.39 for a validation set including 142
species. No statistically significant bias was observed. The
regression fit of predicted versus observed logH ∗ shows a
coefficient of determination ofR2

=0.97.
TheH ∗ values for hydrocarbon and monofunctional com-

pounds were well predicted with similar performance with
all the methods assessed (GROMHE, HWINb and SPARC).
The results show that the reliability of the predicted values
decreases whenH ∗ increases. Species havingH ∗ above
103 Matm−1 are of particular interest in the context of at-
mospheric chemistry. For the subset of species havingH ∗

above that threshold, the RMSE obtained for GROMHE is
0.53 log units. For the same subset, the reliability of the pre-
diction using HWINb or SPARC was appreciably lower with
RMSE of about 1 log unit. However, to some extent this large
error can be explained by changing the dataset used for train-
ing and validation. In particular, the performance of HWINb
was found to be significantly improved when the contribution
of the descriptors was recalculated using the data compiled
in this work. The results show that GROMHE performs well
compared to the other SARs. These results give confidence
in the ability of GROMHE to determine theH ∗ for organics
known to be important in atmospheric chemistry.

Supplementary material related to this
article is available online at:
http://www.atmos-chem-phys.net/10/7643/2010/
acp-10-7643-2010-supplement.pdf.
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