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Abstract. The recent increase of atmospheric methane is
investigated by using two atmospheric inversions to quan-
tify the distribution of sources and sinks for the 2006–2008
period, and a process-based model of methane emissions
by natural wetland ecosystems. Methane emissions derived
from the two inversions are consistent at a global scale: emis-
sions are decreased in 2006 (−7 Tg) and increased in 2007
(+21 Tg) and 2008 (+18 Tg), as compared to the 1999–2006
period. The agreement on the latitudinal partition of the flux
anomalies for the two inversions is fair in 2006, good in
2007, and not good in 2008. In 2007, a positive anomaly of
tropical emissions is found to be the main contributor to the
global emission anomalies (∼60–80%) for both inversions,
with a dominant share attributed to natural wetlands (∼2/3),
and a significant contribution from high latitudes (∼25%).
The wetland ecosystem model produces smaller and more
balanced positive emission anomalies between the tropics
and the high latitudes for 2006, 2007 and 2008, mainly due
to precipitation changes during these years. At a global scale,
the agreement between the ecosystem model and the inver-
sions is good in 2008 but not satisfying in 2006 and 2007.
Tropical South America and Boreal Eurasia appear to be ma-
jor contributors to variations in methane emissions consis-
tently in the inversions and the ecosystem model. Finally,
changes in OH radicals during 2006–2008 are found to be
less than 1% in inversions, with only a small impact on the
inferred methane emissions.
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1 Introduction

Atmospheric methane (CH4) is a major greenhouse gas and
plays a key role in the production of tropospheric ozone
(Forster et al., 2007). After a decade of near stable con-
centrations, the growth rate of atmospheric methane has
started to increase again (Rigby et al., 2008), with changes of
8.0±0.6 ppb in 2007 and 6.3±0.6 ppb in 2008 (update from
Dlugokencky et al., 2009). The main sources of CH4 are
natural wetlands, anthropogenic activities (livestock produc-
tion; rice cultivation; production, storage, transmission, and
distribution of fossil fuels; waste waters and landfills), and
biomass burning, both natural and human-induced. Global
emissions are between 500 and 600 Tg CH4 yr−1, with 60–
70% being of anthropogenic origin (Denman et al., 2007).
The destruction of CH4 by OH in the troposphere represents
about 90% of the CH4 loss in the atmosphere, making the
atmospheric CH4 budget very sensitive to OH changes. The
rest of the sink is due to an uptake of CH4 by soils, reaction
with Cl in the marine boundary layer, and to destruction in
the stratosphere by reactions with OH, Cl, and O(1D) (Den-
man et al., 2007).

Because anthropogenic CH4 emissions only change gradu-
ally with time, the year-to-year variability of CH4 emissions
is controlled by wetland emissions (Bousquet et al., 2006;
Chen and Prinn, 2006) and by biomass burning emissions,
the latter being estimated to play a significant (Bousquet et
al., 2006) or a dominant role (Langenfelds et al., 2002) in
particular during climate events such as the 1997–1998 El
Niño or the 2002–2003 dry period over the northern mid-
latitudes (Simmonds et al., 2005). The role of the OH sink
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in atmospheric CH4 variations may be significant (Bousquet
et al., 2005; Prinn et al., 2005; Rigby et al., 2008) but it is
still controversial, given discrepancies in the magnitude of
OH interannual variations computed by atmospheric chem-
istry models (∼1–3%, (Dentener et al., 2003; van Weele et
al., 2009) or estimated by atmospheric inversions based on
1,1,1-trichloroethane (∼4–10%, Bousquet et al., 2005; Krol
and Lelieveld, 2003; Prinn et al., 2001).

Several studies have addressed the question of the appar-
ent stabilization of atmospheric methane during 1990s. The
collapse of the former USSR economy led to a decrease of
CH4 emissions in the 1990s (Dlugokencky et al., 2003). In-
deed, the EDGAR4 inventory of anthropogenic emissions
(EDGAR4 database: European Commission, 2009) do show
a decrease in CH4 emissions from continental Europe (in-
cluding western Russia) between 1990 and 2005, and a stag-
nation in North America, but a significant increase from
emerging countries, especially China, contributing to an in-
crease in tropical and East Asian CH4 emissions. Overall,
global anthropogenic CH4 emissions are estimated to have
increased by 32 Tg since 1990 in the EDGAR4 inventory,
especially after 1999. In the global inversion of Bousquet
et al. (2006), the low growth rates of the late 1990s and
early 2000s, is attributed to competing influences of increas-
ing anthropogenic emissions and decreasing natural wetland
emissions, consistent with the EDGAR4 inventory trends and
with drier conditions encountered in various regions of the
Northern Hemisphere in the late1990s/early 2000s (Hoerling
and Kumar, 2003).

Various lines of evidence point to natural wetlands playing
a dominant role in the recent increase of CH4 atmospheric
growth rate since 2007. Surface temperature and precipita-
tion anomalies during years 2007 and 2008 were large and
positive over the main wetland regions emitting CH4. A very
high annual mean temperature was recorded over Siberia in
2007 mainly in autumn (+4◦C compared to 1961–1990, Na-
tional Climatic Data Center, 2008), a region with large wet-
land areas. Tropical areas, strong contributor of wetlands
area at a global scale, experienced the 3rd-largest (2007) and
the largest (2008) positive precipitation anomalies from 1986
to 2008 (Dlugokencky et al., 2009; Schneider et al., 2008).
In the tropics, processes relating to hydrology appear to be
the dominant driver of wetland CH4 emissions, whereas tem-
perature is more important at high latitudes (Walter et al.,
2001; Ringeval et al., 2010). An analysis of CO observa-
tions, a tracer used as a proxy for biomass burning emis-
sions, further indicates that the 2007 positive CH4 growth
rate anomaly is not related to biomass burning in northern
latitudes (Dlugokencky et al., 2009). Biomass burning in
the Tropics could have contributed to the 2007–2008 CH4
growth rate anomaly, but not as a dominant factor (Dlugo-
kencky et al., 2009; Rigby et al., 2008). Based on analysis of
observations of CH3CCl3, Dlugokencky et al. (2009) suggest
no significant contribution to the CH4 anomaly in 2007 from
decreasing (OH), contrary to Rigby et al. (2008) who inferred

a −4% decrease of OH from 2006 to 2007 but with a large
uncertainty (±14%) that make the two estimates statistically
compatible.

Atmospheric inversion is a powerful tool to infer the time-
varying distribution of regional sources and sinks of CH4 by
assimilating atmospheric observations in a model of atmo-
spheric chemistry and transport using prior information of
the surface CH4 fluxes (Bousquet et al., 2006; Chen and
Prinn, 2006; Bergamaschi et al., 2005; Hein et al., 1997;
Houweling et al., 1999). However, as with most top-down
approaches using atmospheric observations, atmospheric in-
versions can hardly provide insights on the underlying pro-
cesses causing the emissions. On the other hand, ecosys-
tem models computing wetland or fire emissions incorpo-
rate knowledge of local processes, but often need additional
constraints to up-scale their local estimates to regional and
global scales for producing CH4 large-scale emissions that
are compatible with the global atmospheric signals (e.g.
Spahni et al., 2011).

In this paper, we investigate the changes in atmospheric
CH4 for 2006–2008 using the results of two atmospheric in-
version models (Bousquet et al., 2006; Pison et al., 2009)
and of a recent ecosystem model for CH4 wetland emissions
(Ringeval et al., 2011b).

2 Methods

2.1 Inversion models

We use two different inversion models, both based on the
Bayesian formalism. CH4 observations are assimilated into
an atmospheric chemical-transport model together with prior
information on the spatio-temporal distribution and uncer-
tainties of CH4 sources and sinks, to estimate the magnitude
and the uncertainties of optimized surface emissions.

The first inversion model (hereafter referred as INV1) is
an analytical inversion that has been used to infer the sources
and sinks of CO2 and CH4 (Peylin and Bousquet, 2005;
Bousquet et al., 2000, 2005, 2006) and recently H2 (Bous-
quet et al., 2011). Briefly, it solves for monthly surface
CH4 emissions for the different categories of sources and
sinks and for 11 large regions (10 land regions + 1 ocean),
using monthly mean observations at up to 68 surface sta-
tions from the NOAA/ESRL, CSIRO and IPSL/LSCE sur-
face monitoring networks. The offline version LMDZt ver-
sion 3 of the LMDZ-GCM, nudged to analysed winds (Up-
pala, 2005), is used to model atmospheric transport (Hour-
din and Talagrand, 2006; Hourdin et al., 2002). Prior emis-
sions are taken from inventories (Matthews and Fung, 1987;
Olivier and Berdowski, 2001; van der Werf et al., 2006). The
OH 3-dimensional fields are pre-optimized by an inversion
of CH3CCl3 (MCF) observations as described in Bousquet
et al. (2005). Monthly uncertainties are prescribed for prior
CH4 emissions of±150% for each region each month, and
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Table 1. Description of the 11 inversions defining INV1 ensemble.

Scenario Description

S0 Reference inversion (see text)
S1 Prior natural wetland emissions based on

Kaplan (2002) instead of Matthews and
Fung (1987)

S2 Climatological OH instead of interannually varying
S3 Only NOAA/ESRL observations (up to 50 sites)
S4 Only sites with valid observations along the

1984–2008 period
S5 All sites with at least 5 yr of measurements
S6 Uncertainties on observations divided by two
S7 Uncertainties on observations multiplied by two
S8 Uncertainties on prior fluxes divided by two
S9 Uncertainties on prior fluxes multiplied by two
S10 No filtering to limit the month-to-month noise in

inferred fluxes (see text)

for CH4 observations (from±5 ppb to±50 ppb, with a me-
dian of±10 ppb), with no error correlations. A simple filter
is also added in the time domain: changes of the inferred
fluxes from one month to the next are limited to±250%
(sources with a seasonal cycle in the prior) or to±50%
(sources with no seasonal cycle in the prior) of the prior
month-to-month differences, according to Peylin et al. (1999,
2002). This noise filter avoids the creation of unrealistic large
month-to-month flux differences. A more complete descrip-
tion of the method can be found in Bousquet et al. (2005).
We define a reference inversion scenario (S0) based on these
assumptions, complemented by 10 additional scenarios (Ta-
ble 1). This ensemble of 11 inversions provides monthly-
optimized CH4 emissions per region and per emitting pro-
cess, and their residual uncertainties, for the inversion win-
dow 1984–2009. In this work the focus is put on the analysis
of the 2006–2008 period only.

The second inversion model (here after referred to as
INV2) is a variational inversion based on Chevallier et
al. (2005) coupled with the Simplified Assimilation Chem-
ical System (SACS) developed by Pison et al. (2009) and the
LMDZt transport model version4, which has an improved
parametrization of mixing in the planetary boundary layer
(Hourdin and Talagrand, 2006) as compared to version3 used
in INV1. The SACS assimilation package represents a sim-
plified methane oxidation chain, keeping only the main reac-
tions linking CH4 to CO and H2, through reactions with hy-
droxyl radicals (OH) and formaldehyde (HCHO). The reac-
tion between OH and methyl-chloroform (CH3CCl3) is also
represented within the SACS as a constraint on OH concen-
trations. Only the total CH4 flux is inferred in INV2, and not
the individual source types as in INV1. The prior variance
of fluxes in each grid cell are set to±100% of the max-
imum flux over the eight neighbouring grid cells and the

current grid cell each month (Pison et al., 2009). The er-
ror correlations of the CH4 fluxes are modelled using cor-
relation lengths of 500 km on land and 1000 km on oceans,
without time correlations (Chevallier et al., 2005). Daily
mean CH4 observations at continuous measurement stations
and individual flask observations at flask stations are assim-
ilated for the same stations as in INV1 to estimate weekly
CH4 emissions at the model resolution. The relevant cost
function and the norm of its gradient computed by the ad-
joint of LMDZt and SACS are minimized with the algorithm
M1QN3 (Gilbert and Lemaréchal, 1989). The inversion re-
sults consist of eight-day maps (7081 cells) of CH4 emis-
sion fluxes and of four correction coefficients for the OH
column abundances of four latitudinal bands of the same sur-
face (90◦ S/30◦ S, 30◦ S–0◦, 0◦–30◦ N, 30◦ N–90◦ N). INV2
was run from 1990 up to end of 2009, to avoid border ef-
fects, with 43 iterations and more than 99% reduction of
the norm of the gradient of the cost function. A complete
description on INV2 can be found in Pison et al. (2009).
For comparison, the fluxes from INV2 (global mean of
529 Tg CH4 yr−1 for the period 1999–2006) are scaled to
have the same global mean value as in INV1 for the period
1999–2006 (515 Tg CH4 yr−1).

The main advantage of INV1 is the low computing cost be-
cause of the large-region approach and of the pre-calculation
of transport and chemistry that allows many sensitivity tests
to be performed. Also, in INV1, we separate the different
source types. The main advantage of INV2 is the estimation
of CH4 emissions on a fine grid, the same as the transport
model, which avoids aggregation errors in the flux domain
(Kaminski et al., 2001), and the assimilation of observations
at the time of the measurements (and not as monthly means),
which limits the aggregation error in the time domain.

2.2 Model of natural wetlands emissions

Wetland CH4 emissions are computed using the global vege-
tation model ORCHIDEE, which simulates land energy bud-
gets, hydrology and carbon cycling (Krinner et al., 2005),
and which has been further developed to compute CH4 emis-
sions from natural wetlands (Ringeval et al., 2010, 2011b).
CH4 emissions are computed monthly for each 1◦

× 1◦

model grid cell as the product of an emitting water saturated
area by a flux density for the period 1990–2008 (see Ap-
pendix). The saturated areas within each grid cell are com-
puted by the subgrid hydrology model TOPMODEL. (Beven
and Kirkby, 1979; Ringeval et al., 2011a) and scaled glob-
ally to the inundated areas derived from a suite of satel-
lite observations (Prigent et al., 2001, 2007). The wetland
CH4 flux density is computed in each grid point using an
update of Ringeval et al. (2010) model, which was adapted
from the Walter et al. (2001) model. Three pathways of
transport (diffusion, plant-mediated transport and ebullition)
and oxidation are included. The CRUNCEP dataset devel-
oped by Viovy and Ciais (2009) is used to drive the wetland
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Fig. 1. Anomalies of annual methane emissions in Tg CH4 yr−1 for 2006 to 2008. The reference period for the anomaly calculation is 1999–
2006. From left to right, each year: wetland anomalies from ORCHIDEE model (green), wetland anomalies from INV1 (11 inversions, dark
blue), total anomalies from INV2 (11 inversions, light blue), and total anomalies from INV2 (red). The dark line for each model represents
the mean of the performed simulations. From top to bottom: global,<30◦ N, 30–50◦ N, >50◦ N. Error bars represent the residual uncertainty
returned by the inversion INV1 (1-sigma).

emission model over the 1990–2008 period (Appendix A).
For comparison, the fluxes from ORCHIDEE (global mean
of 206 Tg CH4 yr−1 for the period 1999–2006) are scaled to
have the same global mean value as in INV1 for the period
1999–2006 (165 Tg CH4 yr−1).

3 Results

We use the 8-yr period 1999–2006 during which atmospheric
CH4 abundance was rather stable (Table 2), as a reference
period to calculate annual emission anomalies in 2006, 2007
and 2008 (Fig. 1, Table 3) for natural wetland CH4 emissions
(ORCHIDEE and INV1) and for total CH4 emissions (INV1
and INV2). As INV2 does not separate source types, only the
total CH4 flux can be compared with INV1 total CH4 flux.

3.1 Global scale

At a global scale, the two inversions provide a consistent pic-
ture of CH4 total emission anomalies (Fig. 1, Table 3), with a
negative anomaly in 2006 (−10±4 Tg for INV1 and−3 Tg
for INV2), followed by a positive anomaly in 2007 (21±4 Tg
and 20 Tg) and in 2008 (17±4 Tg and 19 Tg). This makes
average CH4 emission anomalies of−7 Tg in 2006, +21 Tg
in 2007, and +18 Tg in 2008, as seen by the two inversions.
These anomalies are statistically significant considering the
residual uncertainties for INV1. In INV1, the global emis-
sion variations are dominated by natural wetlands in 2006
and 2007, and by a mix of all sources in 2008. In INV1,
the positive emission anomalies from natural wetlands rep-
resents∼80% of the 2007 global flux anomaly and∼50%
in 2008. This result is robust across the 11 inversions of the
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Table 2. Methane surface fluxes averaged for the 1999–2006 period, in Tg CH4 yr−1. From left to right, CH4 fluxes are given: for natural
wetlands from ORCHIDEE model, for four categories of emissions inferred by INV1 (wetlands, other natural, biomass burning, total), and
for the total emissions inferred by INV2. For INV1, values are the mean of the 11 inversion performed. From top to bottom: global,<30◦ N,
30–50◦ N, >50◦ N. Total fluxes are the sum of surface emissions and soil uptake. The uncertainty assigned to INV1 is the residual uncertainty
returned by the inversion procedure (1-sigma). For INV1, regional fluxes are not shown for sources other than wetlands, as we do not discuss
their anomalies (Table 3), which are generally very small.

Tg CH4 yr−1 1999–2006 period

INV1 INV1 INV1
Natural Other Biomass INV1 INV1 INV2

Region Orchidee Wetlands natural burning Anthropic Total Total

Global 165* 165±9 17±9 36±5 297±15 515±3 515**
< 30◦ N 109 115±9 – – – 304±6 290
30–50◦ N 34 19±4 – – – 136±6 143
> 50◦ N 22 31±5 – – – 76±4 86

* ORCHIDEE global emissions for the 1999–2006 period (206 Tg CH4 yr−1) were scaled to the wetland emissions estimate from scenario S0 of INV1 for the same period
(165 Tg CH4 yr−1). ** INV2 global total flux for the 1999–2006 period (529 Tg CH4 yr−1) was scaled to the global total flux from the scenario S0 of INV1 for the same period
(515 Tg CH4 yr−1).

Table 3. Methane surface flux anomalies for 2006 (a), 2007 (b), and for 2008 (c), relative to the 1999–2006 period (see Table 2), in
Tg CH4 yr−1. From left to right, CH4 fluxes are given: for natural wetlands from ORCHIDEE model, for four categories of emissions
inferred by INV1 (wetlands, other natural, biomass burning, total), and for the total emissions inferred by INV2. From top to bottom:
global,<30◦ N, 30–50◦ N, >50◦ N. Total fluxes are the sum of surface emissions and soil uptake. The first uncertainty assigned to INV1 is
the residual uncertainty returned by the inversion procedure (1-sigma). The second uncertainty is the spread of the 11 inversions of INV1
(1-sigma). For INV1, regional anomalies are not shown for sources other than wetlands as generally very small.

Tg CH4 yr−1 a: 2006 anomaly

INV1 INV1 INV1
Natural Other Biomass INV1 INV1 INV2

REGION ORCHIDEE wetlands natural burning Anthropic Total Total

Global 5 −16±9±3 0±1±1 −1±5±2 7±6±2 −10±4±4 −3
< 30◦ N 4 −11±9±3 – – – −7±6±4 −1
30–50◦ N 2 −1±4± < 1 – – – 1±6±2 −1
> 50◦ N −1 −4±5± < 1 – – – −4±4±4 −1

Tg CH4 yr−1 b: 2007 anomaly

INV1 INV1 INV1
Natural Other Biomass INV1 INV1 INV2

REGION ORCHIDEE wetlands natural burning Anthropic Total Total

Global 5 17±9±3 0±1±1 3±5±1 2±6±2 21±4±4 20
< 30◦ N 2 14±9±3 – – – 17±6±4 12
30–50◦ N −1 −1±4± < 1 – – – 0±6±2 3
> 50◦ N 4 5±5± < 1 – – – 5±4±4 5

Tg CH4 yr−1 c: 2008 anomaly

INV1 INV1 INV1
Natural Other Biomass INV1 INV1 INV2

REGION ORCHIDEE wetlands natural burning Anthropic Total Total

Global 11 8±6±5 0±1±1 3±5±2 6±6±4 17±4±4 19
< 30◦ N 6 8±9±4 – – – 14±7±4 3
30–50◦ N 1 −1±3±1 – – – 1±7±2 20
> 50◦ N 4 2±5±1 – – – 2±5±1 −3
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INV1 ensemble. The inversion using another wetland distri-
bution (scenario S1, Table 1) produces the largest departure
from the reference scenario S0 in 2007 (largest flux anomaly
due to wetlands) and 2008 (smallest flux anomaly due to wet-
lands). This result illustrates the importance of the choice of
the prior estimates and distributions of wetland emissions.
In 2006, the scenario with tight errors on CH4 observations
(S6, Table 1) produces the largest negative anomaly in wet-
land emissions, as a better fit to observations requires larger
changes in the surface fluxes. Another critical point for the
robustness of inverted fluxes appears to be the extension of
the inversion period one year after the last year of analysis.
Indeed, if the inversion stops at the end of 2008, the results
for INV1 are significantly modified, showing the importance
of 2009 observations to constrain 2008 surface fluxes.

The optimized OH fields are lower by 1% and 0.5% in
INV1 and INV2 respectively in 2007 and 2008, as com-
pared to 2006. Therefore more CH4 emissions are required
to match the global growth rate constraint when not account-
ing for OH changes. Indeed, if OH radicals are maintained
constant from one year to the next (sensitivity inversion S2
of INV1, see Table 1), the positive anomalies of 2007 and
2008 are larger by 4 Tg as compared to S0. This small OH
variability is qualitatively, but not quantitatively, in agree-
ment with the results of Rigby et al. (2008), as they find a
much larger decrease in OH in 2007 (−4±14%), implying
a smaller increase in methane emissions in 2007 than in our
study. Neither the simultaneous MCF inversion performed
in INV2, nor the offline MCF inversion performed in INV1,
supports large variations of OH from one year to the next as
in Rigby et al. (2008), Our results are also consistent with
the recent work of Montzka et al. (2011) who inferred only a
small interannual OH variability over the last decade.

The ORCHIDEE model provides a global positive flux
anomaly for the three years 2006–2008 (as compared to the
reference period 1999–2006). There is a good agreement
of ORCHIDEE with the wetland flux anomaly inferred by
INV1 in 2008. However, in 2007, the positive wetland flux
anomaly given by the ecoystsem model (+5 Tg) is only one
third of the wetland anomaly inferred by INV1 (+17 Tg). In
2006, ORCHIDEE does not agree on the sign of the anomaly
with both inversions (see latitudinal analyses in the next sec-
tions).

In INV1, other sources than natural wetlands con-
tributing to the 2007 flux anomaly are biomass burning
(+3±5 Tg, mostly in South America) and anthropogenic
sources (+2±6 Tg). Contributions from landfills, mostly in
Asia, dominate the anthropogenic inverted flux anomaly in
2007 (not shown). In 2008, the anthropogenic flux anomaly
(+6± 6 Tg) explains 35% of the positive flux anomaly in
INV1 with contributions from rice in Asia, ruminant ani-
mals, and landfills. The biomass burning anomaly explains
the remaining 18% (+3±5 Tg). The partition between these
sources may be uncertain because of the negative correlations
of error existing between them (e.g. between biomass burn-

ing and anthropogenic emissions). Error correlations can be
computed using the posterior covariance matrix calculated
during the inverse procedure in INV1. If one assumes that er-
rors are proportional to fluxes, as error correlations between
two source types/regions get closer to−1, these two source
types/regions are less and less well separated by the atmo-
spheric observations. We find rather small error correlations
between individual source types at a global scale, as they
range from 0 to−0.55. This result, although only qualita-
tive, indicates a rather good capacity of INV1 to separate the
different methane source types at a global scale.

The partition between anthropogenic and natural anoma-
lies in methane emissions reveals that, although dominated
by changes in natural wetland emissions, anthropogenic
emissions contribute significantly to the global emission
anomaly at a rate ranging from 2 to 5 Tg CH4 yr−1 for the
2006–2008 period. Indeed, the new EDGAR4.1 database
(EDGAR4.1 database: European Commission, 2009) shows
that the trend of anthropogenic CH4 emissions has been, on
average, of +6 Tg CH4 yr−1 for the 1999–2005 period. Bous-
quet et al. (2006) proposed that this increase has been hid-
den by a simultaneous decrease in wetland emissions due to
droughts in the northern hemisphere. After 2006, the results
proposed here by INV1 is an increase of wetland emissions
together with an increase of anthropogenic emissions at a
slower rate than estimated by EDGAR4.1 for the 1999–2005
period, but still faster than the mean growth rate of anthro-
pogenic emissions for the 1970–2005 period.

3.2 Tropics

Tropical emissions are the largest contributor to the global
anomalies of CH4 emissions over 2006–2008 for both inver-
sions, with the exception of INV2 in 2008. In 2007, higher
CH4 emissions from tropical regions explain 80% (INV1)
and 60% (INV2) of the global flux anomaly. Natural wet-
lands dominate the tropical flux anomalies in INV1, which
attributes 82% of the Tropical flux anomaly and 67% of
the global flux anomaly in 2007 to natural tropical wetlands
(Table 3). In 2008, both inversions find a smaller tropical
anomaly than in 2007 but the reduction is much more pro-
nounced for INV2 (+3 Tg) than for INV1 (still +14±7 Tg).
About 60% of this tropical anomaly is attributed to natural
wetlands by INV1, the rest being spread over other types of
sources.

As already noticed for the global scale, the magnitude of
the CH4 emission anomalies from tropical wetlands found
by INV1 is not in agreement with the ecosystem model OR-
CHIDEE in 2006 and 2007, but agrees well in 2008. More-
over, the positive anomalies found in ORCHIDEE for trop-
ical regions increase from 2006 to 2008, which is not the
case in INV1 (Fig. 1). We have investigated further this is-
sue by looking at the three tropical large regions: tropical
South America, tropical Africa, and tropical South Asia. It
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appears that South America contributes 90% of the 2006 and
2007 CH4 emission anomalies from tropical wetlands, and
50% of the 2008 one. Sensitivity tests realized after remov-
ing or increasing the year-to-year variability of the precipita-
tion forcing used in ORCHIDEE, show that tropical wetland
emissions are mostly driven by precipitations (not shown),
through the wetland extent (Ringeval et al., 2011a). If one re-
moves the year-to-year variability in precipitations, a smaller
and negative anomaly is found in 2006, more consistent with
INV1 results. In the tropics, 2006, 2007 and 2008 are years
of positive anomalies in precipitations, especially over the
wetland regions (Dlugokencky et al., 2009). Also, observed
tropical land precipitation anomalies are weaker in 2007 than
in 2008 (+3% vs. +10%), which can explain the increase
of the ORCHIDEE computed CH4 flux anomalies between
2007 and 2008. Thus, the dominant control of CH4 tropi-
cal wetland emissions by precipitations can explain both the
positive anomaly in 2006–2008 and the positive trend from
2006 to 2008 in the ORCHIDEE model. ORCHIDEE may
overstate the control of wetland emissions (product of a wet-
land extent by a flux density) by precipitations. First, trop-
ical floodplains are not explicitly represented in the model
and thus cannot buffer the effect of precipitations on wet-
land extent. Second, modelled wetland extent increases con-
tinuously with precipitations but “in reality”, this expansion
does not necessary lead to a raise in methane emissions,
for instance if inundation happens over a non-rich carbon
soil. Third, larger precipitations may lead to an increase of
CH4 oxidation in the water above the ground, thus limiting
methane flux density to the atmosphere. This last effect is
not included in Walter et al. (2001) model and thus in OR-
CHIDEE yet.

In INV1, the largest flux anomalies are found in South
America, and in Africa. However, few surface observations
are available to constrain the inversion over these two re-
gions, making the inversion estimate more uncertain than
for any other region. In this context, the space-based instru-
ment SCIAMACHY on ENVISAT can provide independent
information on the variability of CH4 atmospheric column-
averaged mixing ratios particularly over tropical regions
(Frankenberg et al., 2008). The SCIAMACHY retrievals
from Frankenberg et al. (2008) show a negative anomaly
over South America and Africa of about 5–6 ppb in 2006 (as
compared to 2003–2009 average), which is qualitatively con-
sistent with the negative emission anomaly inferred by INV1
for these tropical regions. We further compared the SCIA-
MACHY CH4 column anomaly over South America with the
CH4 column anomaly computed by LMDZt using optimized
fluxes from INV1 and INV2 (Fig. 2) for the period 2006–
2008. Both inversions show a minimum in tropical CH4
column-averaged mixing ratio in mid-2006, which is con-
sistent with the SCIAMACHY data, albeit less pronounced
and shifted by 2–3 months. In 2007 and 2008, the two in-
versions and SCIAMACHY retrievals agree very well on the
relative magnitude of the methane increase in the atmosphere

Fig. 2. Mean CH4 column-averaged mixing ratio anomalies for
South America for the 2005–2008 period (in ppb), as retrieved by
SCIAMACHY on ENVISAT (solid black), by INV1 (dashed blue)
and by INV2 (dotted red). A 12-month running mean was applied
to the monthly column-averaged mixing ratios, and their mean over
2006–2008 was subtracted to compute the anomaly.

for South America (Fig. 2) and also for other tropical regions
(not shown). This shows a consistency between tropical CH4
flux changes inferred from surface-based inversions and from
independent satellite data of column-averaged mixing ratios.
However, this agreement also reveals that we cannot really
discriminate the significant tropical negative anomalies in-
ferred by INV1 (−7±6 Tg) from the small negative anomaly
of INV2 (only −1 Tg) over South America in 2006 using
the SCIAMACHY data. Indeed, this indicates that SCIA-
MACHY retrievals may not be very sensitive to the ampli-
tude of regional anomalies of the surface fluxes, but probably
integrates larger regions.

3.3 Mid latitudes

At mid latitudes (30–50◦ N), the CH4 anomalies are not sta-
tistically different from zero for the different models. This
is interesting because the mid-latitudes contain 30% of the
global source, but this source seems to vary little from one
year to the next. One exception is inversion INV2 in 2008
(anomaly of +20 Tg). This large anomaly is hard to explain
because there is less wetland area present at mid latitudes
(only 14% of the global wetland source) and anthropogenic
emissions are unlikely to vary that much from one year to
the next. INV2 may produce more variability at mid lati-
tudes because of the assimilation of daily data from 5 con-
tinuous stations at these latitudes. These continuous data in-
crease the relative weight of mid latitudes in the cost function
from less than 25% in INV1 to more than 33% in INV2, as
compared to other latitudes. When tightening the prior un-
certainties on these five sites in INV2 from±15 ppb (refer-
ence case) down to±3 ppb, the variability at mid-latitudes
increases even more (not shown). As we assimilate an
increasing number of types of observation in atmospheric
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inversions (flasks, continuous, aircraft, and satellites), the
relative weights among these data appears to be an issue that
will have to be further investigated as initiated in Bergam-
aschi et al. (2009).

3.4 High latitudes

At high latitudes (>50◦ N), the two inversions provide total
flux anomalies of the same sign in 2006 and 2007 but not
in 2008, although only the 2007 anomalies are significant
considering the residual uncertainties for INV1 (Table 3).
In 2007, a consistent positive wetland emission anomaly of
+5±5 Tg (INV1) and +4 Tg (ORCHIDEE) is found, explain-
ing the total boreal positive anomaly of INV1 (+5±4 Tg) and
possibly explaining the one of INV2 (+5 Tg). In the inver-
sions, the boreal total flux anomaly represents about 25% of
the 2007 global flux anomaly. In ORCHIDEE, boreal wet-
land anomalies explain∼50% (2007) and∼35% (2008) of
the global wetland anomalies, which represents a larger con-
tribution than inferred by INV1 (∼25% in 2007 and 30%
in 2008), especially in 2007. Again, ORCHIDEE provides
more balanced anomalies between boreal and tropical re-
gions.

In ORCHIDEE, the 2007 and 2008 positive anomalies are
of the same magnitude (Table 3), and Boreal Eurasia ex-
plains∼100% (2007) and∼68% (2008) of the boreal anoma-
lies. We find that the 2007 positive anomaly is due to higher
temperatures and changes in precipitations impacting both
methane flux densities and wetland extent, especially during
summer and autumn. In INV1, boreal America and boreal
Eurasia are found to have contributed almost equally to the
positive flux anomaly. This may reflect a difficulty for the in-
version to partition emissions between these two regions with
regional error correlations reaching−0.3/−0.4 in INV1.

In 2007, the boreal CH4 flux anomaly represents only
30% (INV1) and 40% (INV2) of the tropical flux anomaly.
This result may appear to contradict the larger anomaly in
atmospheric surface growth rate found by Dlugokencky et
al. (2009) at high latitudes as compared to the tropics. To
investigate this issue, we have performed a test with the
LMDZt model. A pulse of 1 Tg of CH4 was emitted over
one month for each of the two regions: Boreal Eurasia
(13 millions km2) and tropical Asia (6 millions km2). After
the month of emission, the flux pulses were transported for
11 months, with no chemistry applied. The resulting mean
atmospheric surface CH4 mixing ratios induced by each
pulse are very different (Fig. 3a, b), because atmospheric
transport is horizontally efficient at high latitudes but ver-
tically efficient in the tropics to disperse CH4. (Fig. 3c, black
and red lines). Note that, for this analysis, the computed sur-
face CH4 mixing ratios were rescaled on a grid with cells of
equal surface. As a consequence, the maximum impact of a
1 Tg pulse at neighbouring surface stations is found to be 2
to 3 times larger at high latitudes as compared to the tropics
(Fig. 3c). Inversions account for these regional differences in
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Fig. 3. Impact at the surface of a 1 Tg CH4 pulse emitted from two
regions (see text): boreal Asia and tropical Asia.(a)Mean plume for
Boreal Asia, computed as the mean of the 12 monthly plumes gen-
erated by 1 month of emission followed by 11 months of transport
without emission (in ppb Tg−1 CH4); (b) same as(a) for tropical
Asia. (c) Maximum increase in mixing ratio detected for all trans-
port model pixels, at the surface, for emissions in boreal Asia (black
solid line) or in tropical Asia (red dashed line). Model pixels have
the same surface in order to normalize the comparison between a
boreal and a tropical region. Model pixels are sorted by increasing
values for each emitting region. Only pixels with the largest mix-
ing ratios are kept for the plot. Maximum values at model pixels
containing atmospheric measurement stations used in the inversion
are plotted above the lines, as the name of the stations. The month
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Locations of the stations are shown in(a) and(b).
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vertical mixing, and place accordingly the inferred wetland
anomaly more in the tropics than at high latitudes. Finally,
the inferred bottom-up and top-down flux anomalies inferred
in 2007 are consistent with the larger atmospheric surface
growth rate observed at high latitudes. This shows that flux
anomalies cannot be just deduced from inspection of surface
atmospheric data, but that atmospheric transport must be ex-
plicitly and properly modelled.

4 Conclusions

We have analyzed recent changes in the CH4 budget using
two atmospheric inversions (INV1 and INV2) and the wet-
land ecosystem emission model ORCHIDEE over the period
2006–2008:

– A consistent picture has been obtained for the two in-
versions at a global scale with a negative flux anomaly
in 2006 (−10 and−3 Tg), followed by positive flux
anomalies in 2007 (21 and 20 Tg) and 2008 (17 and
19 Tg).

– The inversion inferring the different sources and sinks
of methane separately (INV1) reveals that tropical nat-
ural wetlands are a dominant contributor to the global
flux anomalies (from 50% to 100%) over the period
2006–2008.

– This dominant tropical contribution for the flux anoma-
lies is shown to be consistent with the observation of a
more pronounced increase in near surface methane at-
mospheric growth rate at high latitudes, because the di-
lution of surface fluxes by convection is strong in the
tropics and weak at high latitudes.

– In 2006, both inversions find a negative tropical
anomaly but the ORCHIDEE model does not agree on a
strong contribution from tropical wetlands as in INV1,
and computes a positive anomaly due to abnormal trop-
ical precipitations mainly over South America

– In 2007, a dominant tropical contribution to the pos-
itive global flux anomaly is found by the two inver-
sions (60–80%), with a significant role of high latitudes
(∼25%). Tropical natural wetlands are found to explain
∼2/3 of the global anomaly, boreal wetlands explaining
about 30%. The ORCHIDEE model agrees on the sign
of the anomaly but neither on its magnitude (5 Tg) nor
on its latitudinal partition with a comparable contribu-
tion from high latitudes (3 Tg) and from tropical regions
(2 Tg). The response of the ORCHIDEE model to pre-
cipitations mainly controls the methane flux in the trop-
ics and both precipitations and temperature play a role
at high latitudes.

– In 2008, a dominant tropical contribution to the posi-
tive global flux anomaly is found by INV1, which is

consistent with the ORCHIDEE model. Tropical wet-
lands are found to explain about 50% of the global
anomaly (INV1), the rest being spread among anthro-
pogenic emissions and biomass burning. On the con-
trary, INV2 locates most of the 2008 flux anomaly at
mid latitudes.

– The atmospheric CH4 variations computed with the
optimized emissions of the two inversions for 2006–
2008 are shown to be consistent with independent
CH4 column-averaged mixing ratio retrieved by SCIA-
MACHY satellite instrument.

– Finally, OH changes remain small (<1%) in both inver-
sions and only slightly modulate methane fluxes.

Although there is not yet a complete agreement between
the different approaches presented in this work, their sim-
ilarities and differences allow to gain knowledge about the
driving forces of the methane cycle, and to get work direc-
tions for future improvements in the estimation of global to
regional methane emission variations.

Here, we have illustrated that natural wetlands can largely
modulate the atmospheric growth rate of methane over a
few years. Nevertheless, as long as global methane anthro-
pogenic emissions increase, as estimated by bottom-up in-
ventories such as EDGAR4.1 (>+40 Tg globally since the
early 1980s), one should not forget that, even without count-
ing possible future releases from marine hydrates or per-
mafrost, methane should continue to increase in the atmo-
sphere on decadal time scales. In 2009, atmospheric methane
increased by∼5 ppb, slightly lower than the increases of
8.0 ppb in 2007 and 6.3 ppb in 2008 based on updated NOAA
global averages (1σ uncertainties are±0.6 ppb). It is too
soon to tell if the 2007 to 2009 period was a temporary pos-
itive anomaly such as 1997–1998 or 2002–2003, but, at this
stage, this recent anomaly is the largest and most persistent
one since systematic observations began.

Appendix A

ORCHIDEE ecosystem model for methane wetland
emissions

CH4 emissions are computed monthly (mass per month) for
each model grid cell as the product of a wetland extent (sur-
face per month) and of a process-based CH4 flux densitiy
(mass per month and per surface) for the period 1990–2008.

Wetland area dynamics are computed by the inclusion of
TOPMODEL (Beven and Kirkby, 1979) with bias correction
of Saulnier and Datin (2004) into ORCHIDEE. For each grid
cell, using both topographic heterogeneities and soil mois-
ture computed by ORCHIDEE, a sub-grid saturated fraction
(i.e. water table at the soil surface) is computed, as well as
fractions with water table at various depths. The simulated
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space-time distribution of saturated soils is evaluated glob-
ally (Ringeval et al., 2011a) against inundated area derived
from a suite of satellite observations from multiple sensors
of Prigent et al. (2001, 2007). As explained in Ringeval et
al. (2011b), we use Prigent et al. (2001) satellite data to rep-
resent wetland areas and compute anomalies from the sat-
urated area given by TOPMODEL, relatively to the 1993–
2000 climatology given by the satellite data. Moreover, in
the present work, for boreal ecosystems, resulting wetlands
are further filtered using soil organic carbon data as done by
Wania et al. (2010) to diagnose the presence of peatlands.
In boreal regions, wetlands are assimilated to peatlands with
a large soil carbon content. Soil carbon accumulation un-
der anaerobic conditions is necessary to provide substrate for
methanogenic microbes. Thus not only saturated conditions
but also enough soil carbon content is required to have CH4
emissions at high latitudes. Because ORCHIDEE is not able
to produce peat accumulation yet (see Koven et al., 2009),
resulting wetlands fractions are further multiplied, for boreal
ecosystems, by a map giving fractional peatland cover per
grid-cell. This map is obtained by using soil organic carbon
data from IGBP DIS at high resolution (5′

×5′), by dividing
each pixel of this database by 130 kg m−3 (which is the max-
imum soil carbon density of peat), and then by regridding the
result at 1◦ × 1◦ resolution (Lawrence and Slater, 2007). The
hypothesis underlying the multiplication of the two products
(map of peatland cover and map of inundated areas) is that
the inundated fraction is the same for an entire grid-cell as
for a sub-grid peatland into this grid-cell.

CH4 fluxes are computed using an update of the process-
based model of Walter et al. (2001) for each sub-grid water-
table class given by TOPMODEL. The model simulates CH4
production, three pathways of transport (diffusion, plant-
mediated transport and ebullition) and oxidation. Contrary
to initial version of Walter et al. (2001), the substrate for
methanogenesis is computed from active soil organic car-
bon computed by ORCHIDEE (see Ringeval et al. (2010) for
more details). Identification of each grid-cell to a wetland
type is based on preponderant vegetation type.

After a spin-up using pre-industrial conditions and tran-
sient simulations over 1860–1990 (Ringeval et al., 2011b),
ORCHIDEE is run over the 1990–2008 period to analyze
recent year-to-year variability. Over this last period, OR-
CHIDEE is forced by the CRUNCEP dataset developed by
Viovy and Ciais (2009). Briefly, this dataset is based, on the
one hand, on the monthly data from the Climatic Research
Unit of University of East Anglia (CRU) and, on the other
hand, on NCEP data to generate the diurnal and the daily
variabilities.

Global mean wetland CH4 emissions simulated by OR-
CHIDEE are∼206 Tg CH4 yr−1over the 1999–2006 period.
This is at the upper end of the IPCC range (Denman et
al., 2007). The distribution over latitude bands is 28, 43,
and 135 Tg CH4 yr−1 for boreal (>50◦ N), temperate (30◦ N–
50◦ N) and tropical wetlands (30◦ S–30◦ N), respectively.

For comparison, the global emissions of ORCHIDEE
(∼206 Tg CH4 yr−1) are scaled each year according to the
global emission from natural wetlands estimated by INV1
for the reference period 1999–2006 (∼165 Tg CH4 yr−1). A
scaling ratio of 0.8 is therefore applied for the years 2006 to
2008 to ORCHIDEE wetland emissions.
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