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Abstract. We investigated the iron (Fe) dissolution kinet-
ics of African (Tibesti) and Asian (Beijing) dust samples at
acidic pH with the aim of reproducing the low pH conditions
in atmospheric aerosols. The Beijing dust and three size frac-
tions of the Tibesti dust (<20 µm: PM20; <10 µm: PM10;
and <2.5 µm: PM2.5) were dissolved at pH 1, 2 and/or 3
for up to 1000 h. In the first 10 min, all dust samples under-
went an extremely fast Fe solubilisation. Subsequently, the
Fe dissolution proceeded at a much slower rate before reach-
ing a stable dissolution plateau. The time-dependant Fe dis-
solution datasets were best described by a model comprising
three acid-extractable Fe pools each dissolving according to
first-order kinetics. The dissolution rate constantk (h−1) of
each pool was independent of the source (Saharan or Asian)
and the size (PM20, PM10 or PM2.5) of the dust but highly de-
pendent on pH. The “fast” Fe pool had ak (25 h−1 at pH= 1)
of a similar magnitude to “dry” ferrihydrite nanoparticles
and/or poorly crystalline Fe(III) oxyhydroxide, while the “in-
termediate” and “slow” Fe pools hadk values respectively
50–60 times and 3000–4000 times smaller than the “fast”
pool. The “slow” Fe pool was likely to consist of both crys-
talline Fe oxide phases (i.e., goethite and/or hematite) and Fe
contained in the clay minerals. The initial mass of the “fast”,
“intermediate” and “slow” Fe pools represented respectively
about 0.5–2%, 1–3% and 15–40% of the total Fe in the dust
samples. Furthermore, we showed that in systems with low
dust/liquid ratios, Fe can be dissolved from all three pools,
whereas at high dust/liquid ratios (e.g., in aerosols), sufficient
Fe may be solubilised from the “fast” phase to dominate the
Fe dissolved and to suppress the dissolution of Fe from the
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other Fe pools. These data demonstrated that dust/liquid ra-
tio and pH are fundamental parameters controlling Fe disso-
lution kinetics in the dust. In order to reduce errors in atmo-
spheric and climate models, these fundamental controlling
factors need to be included.

1 Introduction

Iron (Fe) is an important limiting micronutrient for phyto-
plankton growth in the ocean (Martin et al., 1994; Boyd et
al., 2007; Boyd and Ellwood, 2010). Even though the Fe
in dust represents only a small fraction of total Fe inputs to
oceans, it is disproportionately important in open ocean wa-
ters (Jickells et al., 2005). In remote parts of the oceans, dust
and their associated bio-available Fe pools can regulate key
biogeochemical interactions and thus the feedbacks between
the ocean and atmosphere, which in turn influences the cli-
mate (Martin et al., 1994; Jickells et al., 2005; Boyd et al.,
2007; Mackie et al., 2008; Moore et al., 2009). While the im-
portance of atmospheric dust in the Fe supply to the oceans
is now recognized, the actual quantification of the flux of
dissolved Fe from mineral dusts remains one of the major
uncertainties of the global Fe connections in the Earth Sys-
tem (Jickells et al., 2005; Mahowald et al., 2005; Boyd and
Ellwood, 2010).

Measurements of the partial solubility of Fe (defined as
the dissolved to total Fe fraction in %) in aerosols col-
lected over oceans showed that this varies dramatically from
∼0.1 to 80% (Hand et al., 2004; Baker and Jickells, 2006).
These variations suggest that atmospheric processes (includ-
ing dust atmospheric processing and mixing with anthro-
pogenic and biomass burning aerosols) during long-range
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transport strongly affect and increase the measured Fe sol-
ubility in aerosols (Mahowald et al., 2005; Sedwick et al.,
2007). One of the potential processes leading to this increase
is the acidification of the aqueous matter associated with
aerosols (e.g., Zhu et al., 1992; Meskhidze et al., 2003). In
the atmosphere, mineral aerosols can take up sulfate and/or
nitrate (Sullivan et al., 2007; Shi et al., 2008). These par-
ticles then become effective cloud condensation nuclei and
thus may be processed in clouds, where in turn more acid can
be taken up (Manktelow et al., 2010). Furthermore, when the
cloud droplets evaporate, most of the water is lost, leading
to an increase in the relative concentration of the dissolved
acids and therefore a drop in pH, with values as low as pH
1 or lower having been suggested in fine dust aerosols (e.g.,
Zhu et al., 1992). Furthermore, it has been shown that some
stratocumulus clouds can be acidic, i.e., having a pH of∼3
(e.g., Hegg et al., 2002; Straub et al., 2007).

Fe-rich dust particles are often smaller in size than the me-
dian size particles in dust (Cwiertny et al., 2008; Ogata et al.,
2011), which means that they can be transported for longer
distance and have more time and surface area to take up
acids. In addition, since Fe-rich dust particles are often exter-
nally mixed (physically separated) with calcite and dolomite
(Sullivan et al., 2007), acids that are taken up by bulk dust
aerosols would not be automatically neutralized by carbon-
ate. Therefore, Fe-rich dust particles are more likely to expe-
rience low pH conditions during their long-range transport
(Ito and Feng, 2010). Several recent atmospheric aerosol
measurements of Fe and Al solubilities supported the im-
portance of acid-promoted dissolution of mineral dust (Mea-
sures et al., 2010; Hsu et al., 2010).

Models of the role of acid processing on the enhancement
of Fe solubility in dust after long range transport have sug-
gested that the acidic nature of the material associated with
the dust aerosols can, to some extent, explain the observed
higher partial Fe solubility in dust collected above the open
ocean compared to that observed close to the dust source area
(Solmon et al., 2009; Ito and Feng, 2010). However, most
modelling studies (e.g., Meskhdize et al., 2005; Luo et al.,
2005; Fan et al., 2006; Solmon et al., 2009) have assumed
a simplistic Fe mineralogy for dust (e.g., all Fe in dust is
assumed to be present as pure hematite). Also, model pa-
rameterizations in this studies were based on the measured
dissolution kinetics on laboratory-made or commercial fer-
ric oxides (e.g., Azuma and Kametani, 1964; Zinder et al.,
1986) although some models (e.g., Meskhidze et al., 2005;
Solmon et al., 2009) considered the effect of solution satura-
tion on Fe dissolution in actual simulations. We have clearly
shown that laboratory-made or commercial ferric oxides are
fundamentally different to those in natural dusts and that as-
suming that all Fe in dust samples is present as a single min-
eral phase is incorrect and that such assumptions can lead to
large errors (∼500%) in predicting the Fe solubility in real
samples (Shi et al., 2011). In addition, data in Cwiertny et
al. (2008), Journet et al. (2008), Schroth et al. (2009) and Fu

et al. (2010) suggested that speciation and mineralogy of Fe
in the dust/soil affects the rate and amount of Fe dissolution.
A recent modelling study also suggested that the predicted
Fe solubility is sensitive to the type of Fe-containing min-
erals (i.e., hematite or illite) in the dust that was chosen for
modelling (Ito and Feng, 2010).

The dissolution kinetics and equilibrium solubilities of a
large range of pure Fe(III) oxides and oxyhydroxide min-
eral phases have been measured experimentally (Cornell and
Schwertmann, 2003; Bonneville et al., 2009). However,
these datasets cannot be directly applied to global dust mod-
els because dust samples are usually composed of a variable
mixture of Fe minerals that have a variety of sizes as well as
mineralogical and chemical compositions (Shi et al., 2011).
Furthermore, the experimental conditions used for the above-
mentioned Fe dissolution studies are most often not relevant
to the processes in the atmosphere (Cornell and Schwert-
mann, 2003).

Fe dissolution rates have been measured in dust or soils at
a variety of pHs and dust/liquid ratios (grams or milligrams
of dust per litre of solution) previous to this study. Spokes
et al. (1994) and Spokes and Jickells (1996) showed that Fe
solubility in a Saharan dust increases with time at pH 2 but
decreases when pH was increased to 5–6. This decrease in Fe
solubility was confirmed to be caused by Fe nanoparticle pre-
cipitation by Shi et al. (2009). Desboeufs et al. (1999) mea-
sured Fe dissolution in Saharan dusts at relatively high pH
(pH 3.8 to 5.3) at diluted conditions (5 mg L−1) for 2 h. They
found that a rather small fraction of the total Fe (<0.1%) is
dissolved under these conditions. Mackie et al. (2005) mea-
sured the Fe dissolution rates of an Australian dust over a
larger pH range (pH 2.15 to∼7) for up to 240 h. They con-
cluded that Fe is significantly mobilized below a threshold
of pH ∼3 which is a typical pH of aerosols in the atmo-
sphere outside of clouds. Spokes and Jickells (1996) and
Mackie et al. (2005) also showed that Fe dissolution rate is
not dependent on dust/liquid ratio at diluted conditions (i.e.,
<20 mg L−1) at low pH (e.g.,∼2). Cwiertny et al. (2008)
and Fu et al. (2010) investigated the Fe dissolution behaviour
of a series of soil or loess samples from pH 1 to 3 at a
dust/liquid ratio>2 g L−1 for up to 30 h. They demonstrated
that temperature, type of acids, photo-radiation and the na-
ture of the dust all affect Fe dissolution rates. In all of these
studies Fe dissolves very fast initially and then slower and
Fe dissolution rates are strongly pH dependent. However, for
those experiments carried out at the low pH conditions (e.g.,
<3) found in atmospheric aerosols, the Fe dissolution curves
are far from reaching equilibrium plateaus. These studies
did not model the kinetics of Fe dissolution over the entire
relevant pH/time range for dust aerosols. Deguillaume et
al. (2010) have modelled the dissolution behaviour of aerosol
particles at pH 4.7 to simulate the cloud conditions but the
material they used was an urban particulate matter sample
which is fundamentally different to dust (Desboeufs et al.,
2005).
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The purpose of this study was to determine the Fe dissolu-
tion kinetics in mineral dusts under acidic conditions, which
simulate as closely as possible the atmospheric aerosol pro-
cesses. We measured the Fe dissolution kinetics in different
dust samples from the Sahara and Asia at different pH and
dust/liquid ratios. Various kinetic models were tested to fit
the pH- and time-dependant Fe dissolution data and based
on this we proposed a new way to describe the Fe dissolution
in mineral dusts. Finally, we discussed the Fe dissolution be-
haviour of Fe containing mineral phases in our dust samples
in view of their applicability to describing and modelling at-
mospheric processes.

2 Materials and methodology

2.1 Dust samples

A soil sample (hereafter termed Tibesti) was collected from a
dry river bed (N 25◦35′ E 16◦31′) draining the Tibesti Moun-
tains (South Libya) and periodically subjected to flash flood.
The area where the sample was collected has been shown
to be a major source of dust by both TOMS and Meteosat
IDDI (Prospero et al., 2002; Schepanski et al., 2007). Using
a custom-made particle re-suspension system, we separated
the original soil samples into Tibesti-PM10 (< 10 µm) and
Tibesti-PM2.5 (<2.5 µm), respectively. The details of the par-
ticle re-suspension system were given in Jones et al. (2010).
The sample also was dry-sieved to<63 µm and then wet-
sieved to<20 µm (Tibesti-PM20). Less than 50 ml of MilliQ
water were used for sieving more than 50 g dust and that wa-
ter was included in the freeze drying process. The results
by Desboeufs et al. (1999) showed that less than 0.06% of
Fe is released into solution in a 5 mg L−1 Saharan dust at
pH>∼4 in 40 min. Therefore, the dissolution of Fe from
large particles should be minimal because the contact time of
water with 20–63 µm soils was less than 5 min and pH was
high (∼8) due to acid buffer capacity of the dust. The wet
sample suspension was frozen to< −40◦C and then freeze
dried and later gently disaggregated before use. This pro-
cess is widely used in geochemistry to minimize the poten-
tial change to properties of the original material during de-
hydration. We used the Tibesti-PM20 as a surrogate for min-
eral dust as had been done previously (Lafon et al., 2006).
An Asian dry-deposited dust sample (hereafter termed Bei-
jing dust) was collected after a super-dust storm episode on
17 April 2006 from a pre-cleaned surface on the campus of
China University of Mining and Technology (Beijing), Bei-
jing, China (N 39◦60′, E 116◦21′).

2.2 X-ray Fluorescence (XRF) analysis

Major elements were determined by XRF. Results are quoted
as component oxide weight percent (Table 1). Samples were
analysed at the University of Leicester, Department of Ge-
ology on a PANalytical Axios Advanced XRF spectrometer

calibrated using international and internal standards. A lake
sediment standard (LKSD-1) yielded a total elemental recov-
ery of 98% with accuracy for all elements of better than 10%,
except for P2O5 which was 16% compared to quoted refer-
ence values (Shi et al., 2011). We used the total Fe content
termed hereafter FeT (after re-calculating the XRF provided
wt% Fe2O3 to mol% Fe) for all relevant calculations in this
study.

2.3 Sequential Fe extraction

In order to fully characterise the speciation of Fe in the dust
samples, a standard geochemical leaching procedure was
used (Hyacinthe et al., 2006; Raiswell et al., 2008, 2010).
The first step in this procedure is to extract the chemically
highly labile Fe phases, which are usually amorphous and/or
poorly crystalline. This was done by reacting 15 mg of a
sample for 24 h with 10 mL of ascorbate solution buffered to
pH 7.5. The extractant solution was a deoxygenated solu-
tion of 50 g L−1 sodium citrate and 50 g L−1 sodium bicar-
bonate to which 10 g L−1 of ascorbic acid was added. This
labile Fe fraction is hereafter referred to as FeA. After reac-
tion with this ascorbate solution, the samples were filtered
through 0.2 µm polycarbonate filters. The particles collected
on the filters were subsequently extracted for 2 h with a solu-
tion of 50 g L−1 sodium dithionite in 0.35 M acetic acid and
0.2 M sodium citrate (CBD), buffered at pH 4.8. This extrac-
tion dissolves the crystalline Fe(III) oxides, mainly goethite
and hematite. The Fe phases in this second fraction are less
labile than the FeA fraction, but they are more reactive than
the Fe containing silicate phases (Raiswell et al., 1994; Hy-
acinthe et al., 2006). The Fe pool obtained by this second ex-
traction is hereafter referred to as FeD. The sum of these two
pools (FeA + FeD) is defined as the dithionite Fe here and has
been defined as highly reactive Fe by Raiswell et al. (1994).
The precision of both extraction methods was tested using
nine Arizona Test Dust replicates (Power Tech. Ltd., USA)
which gave 0.067± 0.005% (7.5% r.s.d 1 sn = 9) for FeA
and 0.41± 0.04% (9.7% r.s.d., 1 s,n = 9) for FeD (Shi et al.,
2009, 2011).

After each reaction step, the dissolved Fe concentrations
(FeA and FeD) in the filtered solutions were determined
via the ferrozine method (Viollier et al., 2000). Dissolved
Fe measurements of replicate samples gave a precision of
±1.2% (1 sn = 6).

2.4 Fe dissolution experiments

In order to determine the Fe dissolution kinetics in our sam-
ples, three sets of time dependent dissolution experiments
were performed. These were (i) the dissolution of Tibesti-
PM20 and Beijing dust samples at pH 1, 2 and/or 3 for up
to 1000 h, (ii) the dissolution of Tibesti samples of different
size fractions at pH 1 for up to 800 h, and (iii) the dissolution
of a Beijing dust sample at various dust/liquid ratios at pH
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Table 1. Chemical composition of major elements, FeA, FeD, dithionite Fe, and Parker weathering index of Beijing and Tibesti-PM20
sample.

SiO2 TiO2 Al2O3 Fe2O3 MnO MgO CaO Na2O K2O P2O5 SO3 LOI Total FeA FeD Dithionite Parker
Fe index

Beijing dust 57.8 0.7 12.3 5.0 0.1 2.5 6.0 1.9 2.3 0.2 0.1 11.2 100.0 1.71 22.3 24.0 211
Tibesti-PM20 48.7 0.9 17.7 6.9 0.1 3.7 5.9 0.7 2.2 0.2 0.3 11.7 99.0 0.63 37.7 38.3 155

Notes: units of oxides are in weight percentage. The FeA, FeD and dithionite Fe (FeA+FeD) are given in percent of the total Fe content as determined by XRF. LOI means loss on

ignition. Details about the calculation of the Parker index of chemical weathering are given in Shi et al. (2011).

1 for up to 24 h. For the first set of experiment (i), 60 mg of
dust (Beijing or Tibesti-PM20) were added to 1 L of 0.1, 0.01,
and 0.001 N H2SO4 solutions made from Titrosol solutions
(hereafter designated as pH 1, 2, and 3; Note: the pH of a
0.1 N H2SO4 solution is slightly higher than 1 due to the ef-
fect of ionic strength on the activity of H+). In the grain size
effect experiments (ii), we reacted each of the three different
sizes of the Tibesti dust (PM20, PM10 and PM2.5) with a pH 1
solution at a dust/liquid ratio of 60 mg L−1. In our last exper-
imental set (iii), we explored the effect of varying dust/liquid
ratios on the Fe dissolution kinetics in our experimental sys-
tem, by reacting 10 and 1000 mg L−1 of Beijing dust with a
pH 1 solution (in addition to the experiment at 60 mg L−1 –
in set i). In all experiments the pH remained stable within
the measurement capability of the used pH meter (i.e., 0.1
pH unit).

For comparison, we also quantified the dissolution kinetics
of (a) a synthesized fresh ferrihydrite at pH 1 and 2, and (b)
a standard illite sample which was pre-cleaned by reacting
with the CBD method described in Sect. 2.3 to remove any
Fe oxides potentially present in the sample (Shi et al., 2011)
at pH 2. The fresh ferrihydrite was used as a reference Fe(III)
oxyhydroxide and was synthesized following the method in
Cornel and Schwertmann (2003), while the standard illite
sample was obtained from clay mineral depository (http:
//www.clays.org/SOURCE%20CLAYS/SCavailable.html).

All experiments were performed at room temperature
(∼298 K) under constant stirring (∼50 rpm) in dark con-
ditions. In order to follow the Fe dissolution kinetics,
aliquots of the suspensions were regularly collected and fil-
tered through a 0.2 µm pore size membrane filter directly
into 2 N HCl (final concentration of∼0.2 N HCl) in order
to preserve the dissolved Fe for subsequent ferrozine anal-
yses (Viollier et al., 2000). To confirm that the filtration
procedure efficiently removed all suspended nanoparticles
from solution, during an experiment at pH 1, three aliquots
from a 60 mg L−1 Tibesti-PM20 suspension were filtered af-
ter 3 min, 10 min, and 1 h, and half of each filtrate solution
was acidified to∼0.2 N HCl. The Fe concentrations were
measured immediately after filtration (within 10 min, non-
acidified) but also after 2 weeks storage in 0.2 N HCl. No
systematic increase in Fe concentrations was observed indi-
cating that the filtration was effective.

Fig. 1. Fe dissolution kinetics in Tibesti-PM20, -PM10 and -PM2.5
at pH 1 and at a dust/liquid ratio of 60 mg L−1. The inset shows the
results from the first 6 h of the experiments in more detail.

3 Results and discussion

3.1 Sample characteristics

Table 1 lists the chemical composition and Fe speciation of
the Beijing and Tibesti-PM20 samples. Compared to Tibesti-
PM20, the Beijing dust contained more SiO2 (∼58 vs. 49 %)
and less Al2O3 (12 vs. 18 %). In the Tibesti-PM20 sample
the FeA fraction (labile Fe) accounted for only 0.6%, while
in the Beijing dust sample FeA reached 1.7%. The crystalline
Fe oxides (FeD) were 22.3 and 37.7% of the total Fe in the
Beijing dust and the Tibesti-PM20 sample, respectively.

The dithionite Fe to total Fe ((FeA + FeD)/FeT) in the
Tibesti-PM20 sample (0.38, Table 1) was close to the average
ratio measured for atmospheric dust samples originated from
the Sahara (0.35± 0.07; Lazaro et al., 2008). Therefore, al-
though originally the Tibesti sample was sourced from a soil,
the Tibersti-PM20 fraction can be considered representative
of dust from the Sahara (Shi et al., 2011). The Beijing dust
sample is a typical Asian dust sample since its mineralogi-
cal composition is similar to samples collected during other
major dust storms in Beijing (Shi et al., 2005; Shao et al.,
2008).
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3.2 Fe dissolution kinetics

Fig. 1 shows the Fe dissolution kinetics of Tibesti-PM2.5,
Tibesti-PM10, and Tibesti-PM20 at pH 1. In the three ex-
periments, the initial period of dissolution was extremely
fast (see inset in Fig. 1) with the dissolved Fe concentra-
tions reaching∼17 and∼32 µmol g−1 of dust after 0.5 h
for Tibesti-PM20 and PM2.5, respectively. Subsequently, the
dissolved Fe concentrations increased at a slower rate be-
fore reaching a plateau after∼400 h at∼275 µmol g−1 for
Tibesti-PM10 and PM20 and∼350 µmol g−1 for PM2.5.

For Beijing dust and Tibesti-PM20 the Fe dissolution rate
was strongly pH-dependant. At pH 1 and pH 2, after a sharp
increase during the first 3 h, the dissolved Fe concentrations
increased gradually towards a plateau (Fig. 2), while at pH
3 the Fe dissolution proceeded at a slower rate from the be-
ginning of the experiment. At pH 1 after 450 h, the dissolved
Fe levelled off at∼275 µmol g−1 while at pH 2 and 3 both
Beijing dust and Tibesti-PM20 were still dissolving after 800
and 1000 h, respectively. At pH 2, the Beijing dust sample
exhibited a slightly higher solubility than Tibesti-PM20 (i.e.
at 800 h∼175 vs. 125 µmol g−1). The results reported here
are based on long-term Fe dissolution experiments in dusts at
low pHs. These are consistent with previous Fe dissolution
experiments at similar pH conditions on dust and/or soils at
shorter time scale (12 h to 120 h) which showed that Fe dis-
solution rates in dust or soils are strongly pH dependent and
that Fe dissolves faster initially (Spokes et al., 1994; Spokes
and Jickells, 1996; Mackie et al., 2005; Cwiertny et al., 2008;
Fu et al., 2010).

The effect of the dust/solution ratio (10, 60 and
1000 mg L−1) on Fe dissolution in the Beijing dust sample
at pH 1 is illustrated in Fig. 3. For the three dust/liquid
ratios, the dissolution proceeded as described above with a
fast initial phase followed by a slower continuous increase
in the dissolved Fe concentrations. In addition, although
the dissolved Fe concentration was in all cases normalized
per mass of dust, we observed that, as the dust/liquid ra-
tio increased, the Fe concentration in solution was lower
suggesting that the dissolution had slowed down. For ex-
ample, after 20 h the dissolved Fe concentration reached
around 80 µmol g−1 for 10 mg L−1 compared to half that
(40 µmol g−1) for 1000 mg L−1. These results agree with the
findings by Spokes and Jickells (1996). Our data are also
consistent with Mackie et al. (2005) in general although a
more direct comparison is difficult because of the low sam-
pling frequencies by the latter authors.

3.3 Kinetic models of dust Fe dissolution

Many models have been developed to describe the dissolu-
tion kinetics of Fe minerals under different conditions (Cor-
nel and Schwertmann, 2003). Among them, the reactive
continuum model, developed initially to describe the degra-
dation of organic matter in sediments (Boudreau and Rud-

Fig. 2. Fe dissolution kinetics of Tibesti-PM20 and Beijing dust
samples at pH 1, 2 and 3 and at a dust/liquid ratio of 60 mg L−1.

Fig. 3. Fe dissolution of Beijing dust at pH 1 at dust/solution ratios
of 10, 60, and 1000 mg L−1.

dick, 1991), has been used extensively to describe the time-
dependant release of Fe from sediment and oxides during
chemical extractions (Boudreau and Ruddick, 1991; Postma,
1993; Larsen and Postma, 2001; Hyacinthe and Van Cap-
pellen, 2004; Hyacinthe et al., 2006). Initially we applied
this kinetic model to the Fe dissolution curves of the different
samples (e.g., Fig. 4 for Tibesti-PM2.5) and fitted the time-
dependent release of Fe according to:

J

M(0)
=

v

a
(
M(0)−M(t)

M(0)
)1+

1
v (1)

where J , v/a, and 1+ 1/v are the dissolution rate
(µmol g−1 s−1), apparent rate constant (s−1), and apparent
reaction order, respectively.M(0) (in µmol g−1) stands for
the initial concentration of extractable Fe present in the dust
sample, andM(t) (in µmol g−1) is the corresponding concen-
tration in solution at timet . This rate law is derived under the
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assumption that the initial reactivity distribution of the min-
eral assemblage follows a gamma function (see Hyacinthe
and Van Cappellen (2004) for details of the derivation of
Eq. (1) from the gamma distribution proposed in Boudreau
and Ruddick, 1991). The resulting time evolution ofM(t) is
then given by:

M(t) = M(0)−M(0)(
a

a+ t
)v (2)

Optimized values of the parametersv, a andM(0) were de-
termined by fitting the time-dependent dissolution data to
Eq. (2), following the method in Hyacinthe and Van Cap-
pellen (2004) but withM(t) representing the Fe in solution.

Although at first, such a reactive continuum model seemed
to describe reasonably well the measured data (r2 > 0.95), a
closer examination of the Fe concentration profile at the be-
ginning of the reactions (first 12 h, insert figure in Fig. 4)
showed that the continuum model drastically underestimated
the dissolved Fe concentrations in this part of the reaction.
Conversely, between 50 and 400 h, the reactive continuum
model overestimated the actual Fe concentrations. As the ini-
tial part of the Fe dissolution (<∼50 h) is important in term
of atmospheric aerosol processes, the use of the reactive con-
tinuum model in this context is problematic.

Hyacinthe et al. (2006) suggested that this type of fitting
problem using the reactive continuum model is due to the
presence of two or more Fe pools of different dissolution re-
activities (more than one order of magnitude difference). The
reactive continuum model is unable to describe adequately
such a multiphase system (Hyacinthe et al., 2006). In dust,
the existence of several different Fe pools is very likely as
Fe may be dissolved from poorly crystalline and more crys-
talline Fe oxides as well as clay minerals which are known
to exhibit distinct reactivities in term of Fe dissolution (e.g.
Journet et al., 2008). To solve this fitting problem and to
accurately describe the Fe dissolution curves in our experi-
ments, we applied the formalism proposed by Hyacinthe et
al. (2006) and used a combination of Fe pools each dissolv-
ing according to different first-order kinetic rates. We fitted
our Fe dissolution curves with a cumulative dissolution ap-
proach with initially two and then three pools of Fe according
to:

Mt =

∑
(M0−M0×e−kt ) (3)

where Mt is the cumulative dissolved Fe concentration
(unit: µmol g−1) at timet , M0 is the initial amount of a partic-
ular Fe pool in µmol g−1 of dust, andk is the dissolution rate
constant in h−1, andt is the time. At each particular time,
the total concentration of Fe solubilized represents the sum
of the Fe dissolved from all the Fe pools. The use of two Fe
pools improved the quality of the fit to the experimental Fe
dissolution curves, but still significantly under-predicted the
initial Fe dissolution profiles. The best results were obtained
with a model assuming the simultaneous first-order dissolu-
tion of 3 Fe pools – “fast”, “intermediate” and “slow” – with

Fig. 4. Fitting of the Fe dissolution curve of Tibesti-PM2.5 at pH 1
and a dust/liquid ratio of 60 mg L−1 using the reactive continuum
model. The inset shows the measured Fe compared with the pre-
dicted values over the first 12 h of the experiments in more detail.

k values of 25, 0.5, and 0.005 h−1 andM0 of 25, 30, and
290 µmol g−1 for the Tibesti-PM2.5 sample (Fig. 5). This ap-
proach showed a good fit even during the initial time period
(inset, Fig. 5). The Root Mean Square of the error (RMS) –
an indicator of the fit quality – decreased from 30.7 for the
reactive continuum model to 11.2 using the 2-Fe pool model
and finally 5.0 with the 3-Fe pool model. Using the 3-Fe pool
model, we then fitted the Fe dissolution curves of all the other
samples and for the different pH conditions (Table 2 lists the
k andM0 values used). As an element of comparison, the Fe
dissolution curves of the two standard materials (i.e., fresh
ferrihydrite and illite) were fitted with a first-order dissolu-
tion model but as they were pure end member minerals only
a single Fe pool approach was required. The dissolution be-
haviour of our fresh ferrihydrite at low pHs differ from those
of Raiswell et al. (2010) and Raiswell (2011) who observed
parabolic dissolution kinetics for aged and aggregated ferri-
hydrite and iceberg-hosted sediments at high pH in ascorbic
acid.

Our results demonstrated that, under acidic conditions, the
Fe dissolution kinetics of samples from two of the major
sources of dust in the world (Asia and Sahara) can be accu-
rately described using a simple cumulative model assuming
first-order dissolution kinetics of 3 acid-extractable pools of
Fe. To further explore the consequences of this we will ad-
dress (1) how and why the modelling parameters,k and/or
M0, change as a function of pH, dust/liquid ratio and size,
(2) what the potential mineralogical compositions of the pro-
posed 3 Fe pools may be, and (3) how well the current Fe dis-
solution parameterizations used in atmospheric models per-
form against the kinetic data presented above.
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Fig. 5. Measured Fe dissolution curve with predicted curve of
the Tibesti-PM2.5 sample at pH 1 and at a dust/liquid ratio of
60 mg L−1 assuming a 3-Fe pool model. The inset shows the mea-
sured Fe compared with the calculated Fe from the 3-Fe pool over
the first 6 h of the experiments in more detail.

3.4 Kinetic parameters for modelling dust dissolution
kinetics at low pH

Our 3-Fe pools model provided a range of rate constant val-
ues (k) and the amount of each acid-extractable pool (M0)

which accurately characterize the Fe dissolution kinetics of
the two dust samples, for a range of pH values (1, 2 and/or 3)
and sizes (PM20, PM10, and PM2.5) (Table 2).

The k provides a quantification of the reactivity of the
three kinetically defined Fe pools. Our results show thatk

values for each Fe pool are independent of the source of the
sample (i.e. Asian or African dust) or of grain size. For in-
stance, thek is 25 h−1 for the “fast” pool at pH 1 for both
the Beijing and Tibesti-PM20 but also in Tibesti-PM10 and
Tibesti-PM2.5. The observation is also valid for the “interme-
diate” and the “slow” pools of acid-extractable Fe. It seems
therefore that our kinetic description based on three Fe pools
is able to capture the Fe dissolution behaviour in natural dusts
accurately.

Not surprisingly, the derivedk values are strongly pH-
dependant (Fig. 6) and the different pools can be expressed
as pH dependent equations:

log k′fast′Fe pool= −0.50 pH+1.87 (4)

log k′intermediate′Fe pool= −0.66 pH+0.36 (5)

log k′slow′Fe pool= −0.44 pH−1.76. (6)

The M0 values in Table 2 represent the quantity of Fe of a
specific pool that can be dissolved at a particular dissolution
condition (e.g., pH) andM0 was also pH-dependent and gen-
erally decreased with increasing pH in a same sample (Ta-
ble 2). For the “fast”, “intermediate” and “slow” Fe pools,

Fig. 6. Rate constantk (h−1) for the three acid extractable pools as
a function of pH. Solid lines represent linear regression for each of
the three acid-extractable Fe pools.

M0 at pH 1 and 2 represent respectively about 0.9–2.9%, 2.1–
3.5% and 18.5–43.2% of the total Fe in the Beijing dust and
the Tibesti-PM20 samples.

To better understand how the amount of Fe solubilised
(M0) varies with pH, we plotted the sum ofM∗

0 (note that
M∗

0 (in µmol L−1) is re-calculated fromM0), representing
here the Fe concentration at equilibrium for the Beijing dust
suspension at 60 mg L−1, with the equilibrium Fe solubilities
of a series of Fe oxides over a range of pH values (Fig. 7).
We were surprised to find that the sum ofM∗

0 , representing
the equilibrium Fe concentration of the real dust sample at
a given pH (i) only decreased by a factor 2–3 between pH 1
to 3 (compared to nearly 3 orders of magnitude change per
pH unit for major Fe oxides) and (ii) was much lower (sev-
eral orders of magnitude) compared to equilibrium Fe solu-
bilities of major Fe oxides (Fig. 7). These results indicate
that the plateau observed in Fig. 2 (equivalent to the sum of
M∗

0 values) does not represent the equilibrium Fe solubil-
ity in a thermodynamic sense. The reason is that there were
not enough reactive Fe minerals in the dust samples when
dissolved at low dust/liquid ratios (i.e., 60 mg L−1) to reach
thermodynamic equilibrium. For example, if all the “fast”
Fe pool, which was 1.2% of FeT in the Tibesti-PM20 sample
(Table 2), was dissolved, this pool only represented a concen-
tration of 0.6 µmol L−1 Fe in solution at a dust/liquid ratio of
60 mg L−1. This is 6 orders of magnitude smaller than the
equilibrium Fe solubility of ferrihydrite at pH 1 (see Fig. 7).
In fact, at pH 1, even if all the Fe in the dust (i.e., FeT) at
a dust/solution ratio of 60 mg L−1 would be solubilised –
which equates to 51 µmol L−1, the Fe concentration would
still not have reached equilibrium Fe solubilities of most Fe
oxides (see right horizontal lines in Fig. 7).

The above discussion points to the critical role of the
dust/solution ratio in influencing the extent and the kinetics
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Table 2. Rate constantk (h−1) and initial amount of each Fe poolM0 (in µmol g−1) used to model the Fe dissolution curves of Beijing and
Tibesti dust samples (60 mg L−1) and reference materials.

Sample and pH Parameter Fast Intermediate Slow total

Tibesti-PM2.5 (pH 1) k 25 0.500 0.0062
M0 25 30 290 345
%FeT 2.9 3.5 33.9 40.4

Tibesti-PM10 (pH 1) k 25 0.500 0.0062
M0 18 25 235 278
%FeT 2.1 2.9 27.5 32.5

Tibesti-PM20 (pH 1) k 25 0.5 0.0062
M0 10.5 18 245 273.5
%FeT 1.2 2.1 28.7 32.0

Tibesti-PM20 (pH 2) k 6.7 0.110 0.0022
M0 10.5 18.0 130 158.5
%FeT 1.2 2.1 15.2 18.5

Beijing dust (pH 1) k 25.0 0.500 0.0062
M0 5.8 19.0 270 294.8
%FeT 0.9 3.0 43.2 47.2

Beijing dust (pH 2) k 6.7 0.110 0.0022
M0 5.8 19.0 175.0 199.8
%FeT 0.9 3.0 28.0 32.0

Beijing dust (pH 3) k 2.5 0.024 0.0008
M0 3.2 6.2 80.0 89.4
%FeT 0.5 1.0 12.8 14.3

Fresh ferrihydrite (pH 1) k 120.0

Fresh ferrihydrite (pH 2) k 27.0

Illite (pH 2) k 0.0036

Note: %FeT was calculated as the percentage of the mass of a particular Fe pool (in g) to total Fe (in g). The FeT of Tibesti-PM2.5 and Tibesti-PM10 were not measured and

Tibesti-PM20 FeT was used instead for calculating the percentage of Fe pool.

of Fe dissolution from dust at low pHs. It is important
to distinguish the dissolved Fe concentration in µmol L−1

from the proportion of Fe solubilised in µmol g−1 of dust. In
terms of dissolved Fe concentration (in µmol L−1), it is much
higher in a 1000 mg L−1 dust suspension than 60 mg L−1

and a fortiori 10 mg L−1 suspensions at a particular time.
However, when considering the fraction of Fe solubilised
(i.e. µmol Fe g−1 of dust) as illustrated in Fig. 3, increasing
dust/solution ratios from 10 to 1000 mg L−1 lead to a de-
crease in the amount of Fe dissolved per mass of dust es-
pecially at exposure times over 1 h. Under dilute conditions
and low pH (e.g.,<20 mg L−1), the proportion of Fe dis-
solved per mass of dust is independent of the dust/liquid ratio
(Spokes and Jickells, 1996; Mackie et al., 2005), and there-
fore the dissolved Fe concentration (in µmol L−1) is linearly
dependent on the mass of dust in the solution. This is because
the dissolved Fe concentration (in µmol L−1) in the solution
is strongly under-saturated with respect to the equilibrium
solubilities of most Fe oxides so that the Fe dissolution is

not thermodynamically restricted (Fig. 7). By contrast, at
very high dust/liquid ratios (e.g., 3000 g L−1), which may
occur in wet dust aerosols, dissolved Fe concentrations (in
µmol L−1) derived solely from the “fast pool” would already
be extremely high even at pH 2. In the case of the Beijing
dust, this would reach 17 400 µmol L−1 (assuming aM0 of
5.8 µmol g−1, Table 2) surpassing largely the equilibrium Fe
solubilities of nanogoethite and hematite at pH 2 (Fig. 7).
Thus, under those conditions (also valid for higher pHs as
simulated in Desboeufs et al., 1999 and Deguillaume et al.,
2010), the two latter phases would stop to dissolve. Thus we
conclude that the effect of dust/liquid ratio on the dissolu-
tion behaviour of Fe in dusts follows a complex pathway in
that: (i) in dilute systems, the dissolved Fe is the sum of the
Fe solubilised from the three phases present, (ii) however at
high dust/liquid ratios, sufficient Fe may be dissolved from
the “fast” phase to suppress the dissolution of Fe from the
“intermediate” and “slow” Fe pools.
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Fig. 7. Equilibrium Fe solubilities of a range of Fe(III)
oxides between pH 0.5 and 4 versus the sum ofM∗

0 (i.e.

“fast”+“intermediate”+“slow” Fe pools) at 60 mg L−1. Solubilities
for the hematite were from Bonneville et al. (2009). Fresh ferrihy-
drite and nanogoethite equilibrium Fe solubilities were experimen-
tally measured at pH 3 and pH 2, respectively and further extrapo-
lated to other pH values according to Bonneville et al. (2009). Hor-
izontal solid lines represent the total Fe concentrations (µmol L−1),
if all of FeT in Beijing dust was solubilised for various dust/liquid
ratios (10 and 60 mg L−1, and 3000 g L−1). Note thatM∗

0 has been
recalculated fromM0 (Table 2) assuming an experimental concen-
tration of 60 mg L−1.

The size of dust is another potentially important factor af-
fecting Fe dissolution kinetics. Baker and Jickells (2006)
suggested that gravitational settling of coarse dust particles
across the Atlantic away from the Saharan source lead to an
increase in operationally defined Fe solubility (Fe dissolved
after a 1.5–2 h ammonium acetate leach at pH 4.7). They
hypothesized that their observation was due to a larger sur-
face to volume ratio of the finer dust particles. In the cur-
rent study we observed that within dust particles, the propor-
tion of “fast” and “intermediate” Fe pools (highly reactive
Fe pools) increased: from 10.5 and 18 µmol g−1 for PM20,
to 18 and 25 µmol g−1 for PM10, to 25 and 30 µmol g−1

in PM2.5 from the Tibesti sample (Table 2). This depen-
dence is likely to be the result of mineralogical fractionation:
with “fast” and “intermediate” Fe pools which we interpret
as being nanoparticles (<100 nm; see below) (Cornell and
Schwertmann, 2003; Shi et al., 2011) which are slightly en-
riched in the Tibesti-PM2.5 compared to the Tibesti-PM20.
Therefore, our results suggest that the gravitational settling
of large, Fe-depleted, particles tends to produce a small in-
crease in dissolved Fe per mass of dust from PM20 to PM2.5.
However, a full investigation of partial Fe solubility in the
dust over a full range of grain sizes is needed to fully address
this “gravitational settling” hypothesis proposed by Baker
and Jickells (2006).

3.5 Link between Fe mineralogy and the three Fe pools

One of the important questions in dust Fe dynamic is to iden-
tify the source(s) of the dissolved Fe. In a strict sense, the
three Fe pools identified in this study are defined only ac-
cording to their Fe dissolution kinetics. In order to iden-
tify the mineralogy of the different Fe pools, we examined
whether their dissolution kinetics were similar to known Fe
phases found in soil/dust.

Freshly prepared ferrihydrite, a highly reactive Fe(III) ox-
ides, was dissolved under equivalent experimental conditions
as our dust samples and the measured rate constantk de-
creased from 120 to 27 h−1 at pH 1 and 2, respectively. These
k values were about 4–5 times larger than those of the “fast”
Fe pool of our dust samples at the corresponding pH (Fig. 6).
Therefore, the “fast” Fe pool is unlikely to be solely made
up of “fresh” ferrihydrite. However, ferrihydrite upon drying
and storage has been shown to lose its reactivity (by a factor
of up to 3 orders of magnitude) and dry ferrihydrite is much
less reactive to dissolution than fresh ferrihydrite (Raiswell
et al., 2010). Since fresh ferrihydrite, if any, in our dust sam-
ples was unlikely to be present (samples were taken from the
Sahara desert during normal dry and hot conditions prior to
storage for months to a couple of years in the lab before our
dissolution experiments), we hypothesize that the “fast” Fe
pool in our dust samples was likely primarily composed of
somewhat less reactive dry ferrihydrite and/or poorly crys-
talline Fe(III) oxyhydroxides. This behaviour is supported
by the fact that theM0 of the “fast” Fe pool for Beijing and
Tibesti-PM20 (∼0.9 and 1.2% of FeT) were relatively close
to the amount of Fe solubilized with pH-buffered ascorbate
extraction (FeA) yielding∼1.7 and∼0.6% of the FeT. It is
known that ascorbate selectively extracts amorphous and/or
poorly crystalline Fe oxides (Hyacinthe et al., 2006; Raiswell
et al., 2008), and this has been confirmed from the analyses
of a series of soil/dust across the Sahara desert (Shi et al.,
2009, 2011).

The rate constantk of an illite standard was comparable
to that of the “slow” Fe pool: 0.0036 versus 0.0022 at pH 2
(Table 2 and Fig. 7). This suggests that illite and potentially
other clay minerals may be an important component of the
“slow” Fe pool. This agrees with the results that clay miner-
als like smectite, illite and kaolinite dissolve at low pH con-
ditions although at a slow rate, i.e.,<1× 10−12 mol m−2 s−1

(Ganor et al., 1995; K̈ohler et al., 2003; Amram and Ganor,
2005). On the other hand, at pH 1 and 60 mg L−1, Fe dis-
solved from the Beijing dust sample did not reach the value
predicted for hematite equilibrium Fe solubility (Fig. 7).
Thus, these results indicate that the “slow” Fe pool represents
both crystalline Fe oxide phases (goethite and/or hematite)
and Fe-containing clay minerals.

Based on our data it is difficult to assign a particular type
of mineral for the “intermediate” Fe pool. However, this
Fe pool exhibited a reactivity between that of the “fast” and
“slow” pools. We speculate here that the “intermediate” pool
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was mainly composed of nano-sized Fe oxides, which have
been found in natural soil dust samples (Shi et al., 2011) and
which are known to have a reactivity between highly crys-
talline/larger size Fe oxides and poorly crystalline Fe oxides
(Rubasinghege et al., 2010; Schwertmann, 1991).

Overall, our results confirm our previous work (Shi et al.,
2011) showing that partial Fe solubility based on short-term
acidic Fe dissolution cannot be predicted adequately from
a simple consideration of the bulk mineralogy of a particu-
lar sample as suggested by Journet et al. (2008). Here we
have shown that the initial Fe dissolution is actually driven
predominantly by “fast” and “intermediate” Fe pools. This
poses a real challenge to studies of Fe biogeochemistry in
dust since they represent only a small fraction of FeT and
are probably present as nanometer particles dispersed in the
dust.

3.6 Implications and outlook

Several modelling studies have simulated the acidic process-
ing of mineral dust in transforming insoluble Fe into labile
Fe (e.g., Meskhidze et al., 2005; Luo et al., 2005; Fan et al.,
2006; Solmon et al., 2009). These authors assumed that Fe
existed only as hematite and applied one or a series of dis-
solution rates. Our results demonstrated that the Fe dissolu-
tion in two representative dust samples (Saharan and Asian)
did not follow such dissolution behaviour (Figs. 1–3, Fig. 8).
In particular the selected slow dissolution rate for the first
0–0.8% compared to that for the 0.8–40% of hematite dis-
solved used in some atmospheric models (Meskhidze et al.,
2005; Luo et al., 2005; Solmon et al., 2009; Ito and Feng,
2010) was in contrast to our data (e.g., Fig. 1) as well as oth-
ers (Spokes et al., 1994, 1996; Desboeufs et al., 1999, 2005;
Mackie et al., 2005; Cwiertny et al., 2008; Fu et al., 2010;
Deguillaume et al., 2010). We attribute this as the dissolu-
tion of highly reactive first Fe pool. In addition to this, there
are at least two additional reasons that lead to the significant
under-estimation in the beginning of the Fe dissolution using
the parameterizations in the models (i.e.,<∼40 h, Fig. 8): (i)
the model parameterizations were based on experiments on
laboratory-made or commercial ferric oxides particles (e.g.,
Azuma and Kametani, 1964; Zinder et al., 1986), which are
fundamentally different from those in natural dust particles in
terms of size distribution, surface area, crystallnity, and pu-
rity (Shi et al., 2011 and reference therein); and (ii) hematite,
which was chosen as the only Fe mineral in the models, could
not represent the complex Fe mineralogy (amorphous and
poorly crystalline Fe, hematite, goethite, and clay minerals)
in natural dust (e.g., Lafon et al., 2006; Mackie et al., 2008;
Shi et al., 2011). Finally, the parameterization in some of the
models (e.g., Fan et al., 2006; Ito and Feng, 2010) may also
lead to an overestimation at later stages of dissolution (e.g.,
>40 h, Fig. 8). Therefore, it is important to consider the solu-
tion saturation effect in dust aerosol water, e.g., by applying
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Fig. 8. Comparison of Fe dissolution curves predicted from rate
constants used in Meskhidze et al. (2005) and Fan et al. (2006), and
the actual measured ones for Tibesti-PM2.5 at pH 1 at 60 mg L−1.
The curve to fit the measured data was from the 3-Fe pool model in
this study. In Fan et al. (2006), the production of dissolved Fe from
hematite,RFe (grams of Fe dissolved per gram of hematite Fe per
second) was calculated asRdAnM/w, in whichRd is the disolution
rate in a unite surface area (assumed to be 4× 10−11mol m−2 s−1),
A is the surface area of hematite (assumed to be 100 m2 g−1),
n equals to 2 (moles Fe/mol hematite),M is molar mass of Fe
(55.8 g mol−1), w is the mass fraction of Fe in hematite (0.7).
RFe was then re-calculated to µmol Fe per g of dust (assuming
the mass fraction of hematite to be 6.86% of dust mass as in the
Tibesti-PM20 sample) for comparison with the data in this study.
In Meskhidze et al. (2005), the rate of dissolution of mineral,R,
in mol hematite dissolved per g of dust per second was calcu-
lated asKr(T )a(H+)mf (1Gr)AW , in which a(H+) is the activ-
ity of H+ (0.1 at pH 1);m is an empirical parameter (0.5); andf

is a function of Gibbs free energy,1Gr, which accounts for the
variation of the rate with deviation from equlibrium.f (1Gr) =

1−Q/Keq in whichQ is the hematite dissolution activity quotient

(i.e., aFe3+/a3
H+

) andKeq is 0.44. aFe3+ was assumed to be the

concentration of Fe3+ (mol L−1) and calculated at the condition of
60 mg L−1; A is the surface area of hematite (100 m2 g−1); W is the
weight fraction of the mineral in dust in units of g of mineral per g of
dust (0.0686 g hematite per g dust as in Tibesti-PM20); Kr(T ) is the
dissolution rate (1.8× 10−11exp[9.2× 103(1/298−1/T )] mol m−2

s−1; note that this is the second stage dissolution rate in Meskhidze
et al. (2005). This is chosen to address the fact that there is an
extractable Fe pool (assumed to be FeA in this calculation) in the
original dust as treated in Solmon et al., 2009), andT is temperature
(∼298 K in this work). The rate of dissolution of Fe (mol m−2 s−1)

was two times ofR (2 moles of Fe in 1 mole of hematite). Note that
in both Meskhidze et al. (2005) and Fan et al. (2006), all Fe in the
dust was assumed to be hematite only. Also note that Meskhidze et
al. (2005) assumed that the net daytime rate of hematite dissolution
is 5–10 times greater than that calculated using the standard kinetics
described above but no change is made to the nighttime rate.
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a function of Gibbs free energy,f (1Gr) in the models as did
by Meskhidze et al. (2005) and Solmon et al. (2009).

Mackie et al. (2005) derived a zero-order dissolution equa-
tion of Fe solubility with time based on dissolution of Aus-
tralian dust at similar dust/liquid ratio (55 mg L−1) and pH
(2.15) to that used in this study (60 mg L−1 and pH = 2). Us-
ing their calculated relationship, the predicted Fe concentra-
tion was considerably higher for the initial 10 min of dissolu-
tion but up to two times lower at 10 min to 200 h than those of
the Tibesti-PM20 and Beijing dust samples measured in this
study. Therefore, their equation is not applicable to Saharan
and Asian dust (see also Spokes et al., 1994; Cwiertny et al.,
2008; Fu et al., 2010). As mentioned below, this difference
may reflect the difference in weathering and Fe mineralogy
of Australian versus Asian and Saharan dusts (Mackie et al.,
2008; Shi et al., 2011).

If M0 andk for each Fe pool is known, then one can cal-
culate the amount of Fe solubilized from the mineral dust at
low pH conditions. As discussed above,k at low pHs can be
calculated using Eq. (2–4) at similar conditions simulated in
this study (e.g., temperature, type of acids, no irradiation, no
added organics). However, the values forM0 for each of the
pools are dependent on many factors: the pH, the dust/liquid
ratio, and the size of the dust. The pH and the particle size
of dust could potentially be predicted using a global model
(e.g., Solmon et al., 2009; Manktelow et al., 2010). How-
ever, the dust/liquid ratios are extremely variable as dust cy-
cles between clouds with a low ratio and aerosols with higher
ratios. For example, the dust/solution ratio in the rainwa-
ter was calculated to vary from 75 µg L−1 to 9.6 g L−1 (e.g.,
Baker et al., 2007; Ozsoy and Ornektekin, 2009), while in
wet aerosols, dust/solution ratio are expected to be higher,
e.g.,>3000 g L−1. To calculate the amount of dissolved Fe
deposited to the oceans, it is also necessary for a model to
estimate the exposure time at different pH conditions as well
as the dust/solution ratio during the dust lifetime. Being able
to predict these parameters remains a big challenge, although
some global aerosol microphysics models do already simu-
late at least the size-resolved mixing state of dust particles
(Manktelow et al., 2010) and could be extended to simulate
also the solution pH and dissolution kinetics.

In addition, the source and nature of the dust may also af-
fect Fe dissolution (Shi et al., 2011). In the present study we
have measured the dissolution kinetics of two representative
dust samples, which have rather similar rates of Fe dissolu-
tion (Fig. 2) in line with the moderate degree of weathering
(as measured through the Parker index, Table 1). However
dust samples from highly weathered areas, like the Sahel re-
gion, may have very different dissolution kinetics. Indeed,
Fe dissolution behaviour of Australian dusts appeared to be
different compared to ours (Mackie et al., 2005), which is
potentially due to discrepancies in Fe mineralogy. Finally,
although pH appears to be one of the most important factors
at the same dust/liquid ratio, photo-reduction and complexa-
tion of Fe by organic compounds, temperature and the type

of acids in the aerosol may also affect Fe dissolution in dust
(Siefert et al., 1994; Spokes et al., 1996; Mackie et al., 2005;
Rubasinghege et al., 2010; Fu et al., 2010).

In summary, we have established in this study that (1)
there is an extremely reactive Fe pool in both African and
Asian dust samples, which dissolves at low pH conditions
very quickly; (2) Fe dissolution kinetics in the dust at low
pH conditions is dependent on dust/liquid ratio, pH, and to
a less extent the size of the dust particles; (3) in order to re-
duce errors, models need to consider the complexity of Fe
dissolution in the dust.
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