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Abstract. We analyze an ensemble of seven XCO2 retrieval
algorithms for SCIAMACHY (scanning imaging absorp-
tion spectrometer of atmospheric chartography) and GOSAT
(greenhouse gases observing satellite). The ensemble spread
can be interpreted as regional uncertainty and can help to
identify locations for new TCCON (total carbon column ob-
serving network) validation sites. Additionally, we introduce
the ensemble median algorithm EMMA combining individ-
ual soundings of the seven algorithms into one new data
set. The ensemble takes advantage of the algorithms’ inde-
pendent developments. We find ensemble spreads being of-
ten < 1 ppm but rising up to 2 ppm especially in the trop-
ics and East Asia. On the basis of gridded monthly av-
erages, we compare EMMA and all individual algorithms
with TCCON and CarbonTracker model results (potential
outliers, north/south gradient, seasonal (peak-to-peak) am-
plitude, standard deviation of the difference). Our findings
show that EMMA is a promising candidate for inverse mod-
eling studies. Compared to CarbonTracker, the satellite re-
trievals find consistently larger north/south gradients (by 0.3–
0.9 ppm) and seasonal amplitudes (by 1.5–2.0 ppm).

1 Introduction

Our current knowledge about sources and sinks of atmo-
spheric CO2 is limited by the sparseness of highly accu-
rate and precise CO2 measurements (Stephens et al., 2007).
Due to their global coverage and sensitivity down to the sur-
face, satellite based XCO2 (the column-average dry-air mole
fraction of atmospheric CO2) retrievals in the near infrared
are a promising candidate to reduce existing uncertainties
if accurate and precise enough (Rayner and O’Brien, 2001;
Houweling et al., 2004; Miller et al., 2007; Chevallier et al.,
2007).

At present, seven different retrieval algorithms exist
worldwide, which are under active development in order to
meet the demanding user requirements, making them use-
ful for surface flux inversions. These are ACOS v2.9 (O’Dell
et al., 2012; Crisp et al., 2012), BESD v01.00.01 (Reuter
et al., 2010, 2011), NIES v02.xx (Yoshida et al., 2011),
NIES PPDF-D (Oshchepkov et al., 2008, 2011, 2012), Re-
moteC v1.0 (Butz et al., 2009, 2011), UOL-FP v3.0 (Bösch
et al., 2006, 2011), and WFMD v2.2bcv7b (Schneising et al.,
2011, 2012; Heymann et al., 2012).

The basic principle of all these algorithms is the same:
(i) A satellite instrument measures backscattered solar
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1772 M. Reuter et al.: The ensemble median algorithm EMMA

Table 1. Main retrieval characteristics: algorithm name and version, satellite instrument, spectral bands, inversion technique (OE= optimal
estimation, TP= Tikhonov–Phillips regularization, LS= least squares), consideration of scattering (FP= full physics, PR= light path
proxy, PPDF= photon path length probability density function, 4EP20= 4 extinction profiles with 20 layers (two aerosol types, water
and ice cloud), CWP= cloud water path, CTH= cloud top height, APSx = aerosol profile scaling ofx different aerosol types, AOD=
aerosol optical depth, RSL= reflectivity of scattering layer, PLMP= path length modification parameter, APNC= aerosol particle number
concentration, ASP= aerosol size parameter, AH= aerosol height, CEPS= cloud extinction profile scaling), main cloud filter (MERIS
= medium resolution imaging spectrometer, CAI= cloud and aerosol imager of GOSAT, PMD= polarization measurement device of
SCIAMACHY).

Algorithm Sensor
Bands [µm]

Inversion
CO2 Scattering

Main Cloud Empirical Bias

0.76 1.58 1.60 2.05 a Priori Filter Correction

ACOS v2.9 GOSAT • • • OE model FP (4EP20) O2-A •

BESD v01.00.01 SCIAMACHY • • OE static FP (CWP, CTH, APS1) MERIS •

NIES v02.xx GOSAT • • • OE model FP (AOD) CAI
PPDF-DOAS GOSAT • • • OE static PPDF (RSL, PLMP) CAI
RemoteC v1.0 GOSAT • • • TP static FP (APNC, ASP, AH) CAI •

UOL-FP v3.0 GOSAT • • • OE model FP (APS2, CEPS) O2-A •

WFMD v2.2bcv7b SCIAMACHY • • LS static PR (CO2/O2) PMD •

radiation in near-infrared O2 and CO2 absorption bands.
(ii) A radiative transfer plus instrument model (forward
model) is utilized to simulate the satellite measurement for
a set of known parameters (parameter vector) and unknown
parameters (state vector). (iii) An inversion method tries to
find that state vector which results in best agreement of sim-
ulated and measured radiances. (iv) The retrieved state vector
is assumed to represent the true (or most likely) atmospheric
state.

However, when going into more detail, the algorithms
have distinct conceptual differences: the algorithms are opti-
mized for different instruments namely SCIAMACHY (scan-
ning imaging absorption spectroMeter of atmospheric char-
tography;Burrows et al., 1995; Bovensmann et al., 1999) and
GOSAT (greenhouse gases observing satellite;Yokota et al.,
2004). They are based on different absorption bands, use
different inversion methods (optimal estimation, Tikhonov–
Phillips, least squares), and are based on different physi-
cal assumptions on the radiative transfer in scattering atmo-
spheres. So-called full physics algorithms explicitly account
for (multiple) scattering at molecules, aerosols, and/or clouds
by having state vector elements such as cloud water path,
cloud top height, and aerosol optical thickness. The pho-
ton path length probability density function (PPDF) can be
used as shortcut for computational expensive radiative trans-
fer calculations in a scattering atmosphere. The light path
proxy method assumes that photon path lengths are modified
similarly in the O2 and CO2 absorption bands, and that scat-
tering related effects cancel out when dividing the retrieved
CO2 and O2 columns when building XCO2. Additionally, the
algorithms use different pre- and post-processing filters (e.g.,
cloud detection from O2-A band or from a cloud and aerosol
imager).

The main differences of the seven retrieval algorithms are
summarized in Table1. This list does not claim to be exhaus-
tive and there are other aspects which can also easily result in

differences of some ppm (e.g., spectroscopy). Discussions of
the specific strengths and weaknesses and many more points,
where the individual algorithms differ, can be found in the
cited literature.

All retrieval teams find encouraging validation results
when comparing with TCCON (total carbon column observ-
ing network) (Washenfelder et al., 2006; Wunch et al., 2011)
ground based FTS (Fourier transform spectrometer) mea-
surements (see references above). This goes along with a
good inter-algorithm agreement at TCCON sites and with
the results of our unified validation study having station-to-
station biases (i.e., the standard deviation of the biases at dif-
ferent sites) typically below 1ppm and single measurement
precisions typically between 2ppm and 4ppm (Fig.1, Ta-
ble2).

However, the inter-algorithm agreement as well as the
agreement with NOAA’s (National Oceanic and Atmospheric
Administration) CarbonTracker (Peters et al., 2007, 2010)
model (CT2011), i.e., our current knowledge about atmo-
spheric CO2 based on NOAA’s air sampling network, often
reduces remote from validation sites due to differing large
scale bias patterns (Fig.2). Such biases are currently the most
critical issue for surface flux inversions and the user require-
ments are demanding; as an example,Miller et al. (2007) and
Chevallier et al.(2007) found that regional biases of a few
tenths of a ppm can already hamper surface flux inversions.

This indicates that assessing an algorithm’s quality should
not be based on comparisons against current TCCON stations
only. Obviously, large regions of the world possess more
“complicated” retrieval conditions without the availability of
ground truth measurements which could be used to judge the
algorithms’ performance.

Diverging model results are common to many scientific
disciplines (e.g.,Araujo and New, 2007; Rötter et al., 2011),
much attention and effort is devoted to this topic on the sub-
ject of weather and climate modeling. Here, the divergence of
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M. Reuter et al.: The ensemble median algorithm EMMA 1773

Fig. 1. Co-locations with validation measurements at the TC-
CON site Lamont, USA (distance< 500km, time difference< 2h).
Soundings included in EMMA are highlighted with a white dot.

the model results arises not only from structural differences
of the different models, but also from the nonlinearity of the
model equations, leading to differing results of one single
model when performing multiple realizations with slightly
differing initial conditions (Hagedorn et al., 2005; Tebaldi
and Knutti, 2007). Especially in the case of weather forecast-
ing or climate projections, where no ground truth is available
for the verification of the forecasts and projections, it is im-
possible to identify the “best” model and the “perfect” ini-
tial conditions. For long-term climate projections, this prob-
lem is impaired by the unknown future greenhouse forc-
ing. This conceptual problem is dealt with by using multi-
model, multi-realization, multi-emission-scenario ensembles
of simulations, which ideally span the entire range of possi-
ble model outcomes and, thus, can be used to estimate the
uncertainties of the forecast or projection.

However, interpreting the ensemble’s spread as uncer-
tainty is not the only possible application: some studies indi-
cate that the ensemble mean, weighted mean, or median can
outperform each individual model under appropriate condi-
tions (e.g.,Kharin and Zwiers, 2002; Vautard et al., 2009).
Within Sect.3, we seize this idea and introduce the ensem-
ble median algorithm EMMA with which a global one year
data set (June 2009–May 2010) of individual soundings has
been generated. It comprises data from the seven retrieval al-
gorithms mentioned above.

2 Ensemble spread

Due to entirely different samplings (different satellites, dif-
ferent filtering strategies, etc.), any algorithm intercompari-
son considering the majority of individual soundings (level 2)
can only be based on aggregated data (level 3), in our case
monthly averages on a 10◦

× 10◦ grid. Before gridding, we
apply the individual averaging kernels to adjust all retrieval

Table 2. Validation statistics (June 2009–May 2010) for all TC-
CON sites with more than ten co-locations (Białystok, Poland; Dar-
win, Australia; Garmisch-Partenkirchen, Germany; Lamont, USA;
Orléans, France; Park Falls, USA; Wollongong, Australia) with
number of co-locations (#), average single measurement precision
(σ ), and standard deviation of station-to-station biases (1).

Algorithm # σ [ppm] 1 [ppm]

ACOS v2.9 1530 2.1 0.9
BESD v01.00.01 2789 2.3 0.9
NIES PPDF-D 460 3.1 0.8
NIES v02.xx 1062 1.9 0.7
RemoteC v1.0 1084 2.5 0.9
UOL-FP v3.0 1086 2.3 0.8
WFMD v2.2bcv7b 8884 4.4 1.3

EMMA v1.3a 1595 3.1 0.8

results to a common a priori, namely the simple empirical
CO2 model (SECM) ofReuter et al.(2012). We do this as
proposed in the textbook ofRodgers(2000) and applied to
XCO2 by, for example,Reuter et al.(2011). SECM repro-
duces large-scale features such as the year-to-year increase,
the north/south gradient, and the seasonal cycle. However,
SECM is only empirically extrapolating from past modeled
CO2 fields. New or changing phenomena cannot be within
SECM, and it should also be mentioned that the adjustments
are mostly minor, typically a few tenths of a ppm. For consis-
tency, we also remove the overall global bias of each retrieval
with SECM as reference.

In order to get statistically robust results, we only use those
grid boxes for which the standard error of the mean is esti-
mated to be less than 1ppm. This takes the individual re-
trieval precisions into account so that the minimum number
of soundings needed to build the average of a grid box can
vary from retrieval to retrieval and grid box to grid box. Be-
forehand, the reported retrieval precision is scaled to match
(on average) the precision given in Table2. TCCON and
CT2011 are gridded in the same way.

Figure 2 shows for a typical month (September 2009)
the calculated monthly averages. First of all, one can see
many large scale similarities such as the north/south gradi-
ent. However, one can also find more or less obvious out-
liers of a few ppm in each of the seven algorithms (e.g.,
ACOS: Angola, BESD: Amazon, NIES PPDF-D: Saudi Ara-
bia, NIES v02.xx: Senegal, RemoteC: north/east Siberia,
UOL-FP: Brazil, WFMD: Somalia).

Often the observed systematic deviations (of level 3 data)
are larger than the single sounding retrieval precisions ex-
pected from instrumental noise, i.e., they are dominated by
specific algorithm effects. As level 3 grid boxes are always
calculated from several individual level 2 soundings (ide-
ally) sampled all over the grid box, we expect that sampling
and representation errors are much lower than the observed
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1774 M. Reuter et al.: The ensemble median algorithm EMMA

Fig. 2. Typical monthly gridded averages (September 2009) of the seven algorithms, EMMA, and CT2011 as well as corresponding inter-
algorithm spread, i.e., the inter-algorithm standard deviation.

deviations. Therefore, these errors are not discussed further
in this context.

Due to independent algorithm developments, different
physical approaches and assumptions, different pre- and
post-processing filters, and due to the different instruments,
we expect relatively independent bias patterns. This is sup-
ported in Fig.2, which shows (uncorrelated) obvious outliers
in various regions, i.e., it seems unlikely that all algorithms
produce the same bias within one grid box.

This implies that similar averages within one grid box can
give us more confidence in the individual retrievals within
this grid box. On the other way around, large inter-algorithm
spreads indicate regions with more difficult and uncertain
retrieval conditions. Therefore, we interpret the ensemble
spread, i.e., the standard deviation of (at least five) algo-
rithms, as uncertainty due to regional retrieval biases.

An example is given in Fig.2 (right, bottom) showing
larger inter-algorithm spreads in the tropics and in East Asia

Atmos. Chem. Phys., 13, 1771–1780, 2013 www.atmos-chem-phys.net/13/1771/2013/
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(always remote from TCCON sites). This pattern is tempo-
rally more or less stable, i.e., similar also in other months.

3 Ensemble median

As described in the previous section, up to seven XCO2 av-
erages (one for each algorithm) are calculated within each
grid box. However, now, we are aiming to use the ensem-
ble not only to assess regional and temporal uncertainties but
also to create a data set which is less influenced by regional
or temporal biases. This could be achieved, for example, by
building the average, a weighted average, or the median in
each grid box.

In this context, the median has some clear advantages: out-
liers are assumed to be seldom and there is a high chance
that a grid box includes no or only one outlying algorithm.
Therefore, cancellation of errors cannot be expected by cal-
culating the average. The median is much less sensitive to
such individual outliers. Additionally, the median calculates
no new quantity from the individuals of an ensemble, it is
rather a procedure to select one specific ensemble member.
This allows us to easily trace back from level 3 averages to
individual level 2 soundings.

Essentially, there are five possible scenarios for median
calculation within one grid box: (i) All algorithms perform
well and scatter slightly around the true XCO2 value. In this
case the median will help to reduce scatter. (ii) The minority
of algorithms produce outliers so that the median is influ-
enced only marginally. (iii) The majority of algorithms pro-
duce outliers in different directions. Here, it is still likely that
the median falls on a well performing algorithm in the “mid-
dle”. (iv) The majority of algorithms produce outliers in the
same direction. This is the only case where the median is a
bad choice, because it would select an outlier and ignore a
well performing algorithm. As discussed in the previous sec-
tion, we assume that the algorithms within one grid box are
often realistic with uncorrelated occasional outliers, which
makes this case very unlikely to happen often. (v) If all al-
gorithms are outlying, the median is not better or worse than
selecting any other ensemble member.

We calculate the median only for grid boxes with at least
five successfully determined average XCO2 values. In case of
an even number of values, we define the median as that value
being closer to the mean. We then trace back to the individual
level 2 data, which were used to calculate that average being
the median. Together, with all information needed for inverse
modeling (geo-location, time, averaging kernels, etc.), these
soundings are stored in the EMMA database.

Some algorithms may provide considerably larger
amounts of level 2 data (e.g., WFMD, weighting function
modified DOAS) than other algorithms. In order to pre-
vent over-weighting these algorithms, we limit the maximum
number of data points (per grid box). Therefore, we calculate
the standard error of the mean of each successfully deter-

Fig. 3. Integrated data weight of each algorithm within the EMMA
database defined as

∑
1/σ2

i , whereσi is the (scaled) individual
sounding error.

mined average. The idea behind this is that the lower the stan-
dard error of the mean, the larger the potential constraint on
an inverse model becomes. If the standard error of the mean
of the selected algorithm is lower than the 25 % percentile
of all algorithms, a centered truncated mean is calculated in-
stead. The (symmetrical) truncation of elements adjusts the
standard error of the mean to be slightly larger than the 25 %
percentile. In this way, the number of data points can still
be rather different but the potential constraint on an inverse
model becomes similar.

Summarizing, the EMMA database consists of individual
level 2 soundings retrieved by algorithms which can change
from grid box to grid box and month to month. Figure3
shows the integrated data content of each algorithm (de-
fined as

∑
1/σ 2

i ) within the EMMA database. ACOS has the
largest integrated data content because it is often selected as
median, has many data points per grid box, and a low scatter.

4 Performance of EMMA

The validation of EMMA’s level 2 database with TCCON
(Fig.1, Table2) has been performed in analogy with the work
of Reuter et al.(2011) and shows very good overall perfor-
mance: EMMA has more co-locations than any GOSAT re-
trieval, and a low station-to-station bias of 0.8ppm. Mainly
due to its WFMD component, EMMA has a single measure-
ment precision of 3.1ppm, which is somewhat larger than
most of the GOSAT algorithms. It shall be noted that TC-
CON’s accuracy (2σ ) is about 0.8ppm (Wunch et al., 2010,
2011). This is similar to the observed station-to-station bi-
ases of the satellite retrievals and much larger than their dif-
ferences. Additionally, it shall be noted that the number of
co-locations is not solely driven by the satellite retrievals.
Due to clouds and instrument maintenance, the seven TC-
CON sites used provided suitable validation data in less than
40 % of the days.

www.atmos-chem-phys.net/13/1771/2013/ Atmos. Chem. Phys., 13, 1771–1780, 2013



1776 M. Reuter et al.: The ensemble median algorithm EMMA

The following algorithm intercomparison addresses tem-
poral and spatial bias patterns and is based on gridded level 3
data sets (described in Sect.2). A glance at Fig.2 shows that
EMMA generates a relatively smooth global map with real-
istic patterns and no obvious outliers. As mentioned before,
we use at least five algorithms to calculate a median. This can
result in a loss of coverage relative to some of the individual
algorithms.

We calculated the fraction of potential outliers accord-
ing to unrealistically large spatial gradients (> 3ppm/10◦,
Fig. 4a, left) and unrealistically large deviations from
CT2011 (> 3ppm, Fig.4a, middle). EMMA’s fraction of po-
tential outliers is below 2 %, which is considerably lower
than for any other algorithm. Analyzing the difference be-
tween the individual algorithms and EMMA, Fig.4a shows
that large deviations from EMMA are often correlated with
large deviations from CT2011 and large gradients.

With respect to the standard deviation of the difference
(STDD, Fig.4b), EMMA is in better agreement with CT2011
and TCCON than any other algorithm.

We also compared the north/south (N/S) gradient of each
month with CT2011 and TCCON (Fig.4c) by averaging
all northern and southern hemispheric grid boxes (using the
same sampling). All algorithms agree that CT2011 has a N/S
gradient being about 0.3–0.9 ppm too low. This effect is es-
timated to be 0.2 ppm less pronounced in the previous Car-
bonTracker version CT2010. However, it shall be noted that
CT2010 ends in 2009, and CO2 fields after 2009 were esti-
mated by extrapolation from previous years. EMMA’s N/S
gradients have the third smallest systematic deviations from
CT2011 and the lowest scatter. It has the smallest systematic
deviation from TCCON with the third smallest scatter. How-
ever, the statistics in comparing to TCCON are less robust
because only seven grid boxes include TCCON stations and
there are only 12 months for which the N/S gradient has been
calculated.

Additionally, we compared the seasonal (peak-to-peak)
amplitude of each grid box with CT2011 and TCCON
(Fig. 4d) by calculating the difference between annual max-
imum and minimum. Beforehand, we subtracted a globally
constant linear increase of 1.8 ppmyr−1. We considered only
those grid boxes with at least six valid months and used
the same sampling. Most algorithms agree that CT2011 un-
derestimates the seasonal amplitude by about 1.5–2.0 ppm,
which is broadly consistent with the findings ofYang et al.
(2007); Schneising et al.(2011); Reuter et al.(2011); Keppel-
Aleks et al.(2012), and Messerschmidt et al.(2012). The
effect is estimated to be about 0.3ppm less pronounced
in CT2010 (extrapolated). However some algorithms (espe-
cially WFMD) see probably unrealistically large amplitudes.
EMMA is in best agreement with CT2011 and in second best
agreement with TCCON. It shall be noted that the CT2011
comparison is dominated by the Northern Hemisphere, due
to significantly more filled grid boxes. The TCCON statistics

Fig. 4. Performance statistics (based on level 3 data) of the seven
individual retrieval algorithms and EMMA. From top to bottom:
(a) frequency of potential outliers defined as unrealistically large
spatial gradient, large deviation from CT2011, and large deviation
from EMMA; (b) standard deviation of the difference (STDD) to
CT2011 and TCCON;(c) difference of the north/south gradient to
CT2011 and TCCON (average and standard deviation);(d) differ-
ence of the seasonal amplitude to CT2011 and TCCON (average
and standard deviation).

are probably not very robust because they rely on seven grid
boxes with seasonal cycles only.

Atmos. Chem. Phys., 13, 1771–1780, 2013 www.atmos-chem-phys.net/13/1771/2013/



M. Reuter et al.: The ensemble median algorithm EMMA 1777

5 Conclusions

In a joint effort of all XCO2 retrieval teams worldwide, which
are actively developing satellite based algorithms for the near
infrared, the ensemble median algorithm EMMA has been
set up. EMMA is a database of individual level 2 retrievals
and takes advantage of the variety of different retrieval algo-
rithms and their independent developments. For each month
and each 10◦ ×10◦ grid box, one algorithm is chosen to sup-
ply level 2 retrievals in the database. The algorithm is chosen
on the basis that its grid box mean is the median amongst the
available algorithms. This allows the reduction of occasional
outliers and sometimes unrealistic bias patterns, which can
be found in each individual retrieval algorithm and which can
hamper surface flux inversions. EMMA relies on the assump-
tion that it is unlikely that the majority of algorithms pro-
duce outliers in the same direction because only in this case
the median is a bad choice. Smoothing of real atmospheric
variability, as it could happen when dealing with climate
model ensembles, cannot be expected for EMMA because
all ensemble members (XCO2 retrieval algorithms) represent
the same (real) atmospheric XCO2 conditions and deviations
from the real values are always due to retrieval errors (sam-
pling issues are neglected in this context).

The EMMA database (June 2009–May 2010) includes all
information needed for inverse modeling (geo-location, time,
averaging kernels, etc.). As it consists of individual XCO2 re-
trievals, it can be used in the same manner as any other XCO2
satellite retrieval. EMMA also includes the inter-algorithm
spread which gives important information about regional un-
certainties.

Analyzing the inter-algorithm spread, we found that the
algorithms agree often within< 1ppm. However, especially
in the tropics and East Asia remote from TCCON validation
sites, we find larger spreads of about 1–2 ppm. This knowl-
edge can be used to account for regional uncertainties in ad-
dition to the reported retrieval error estimates. Furthermore,
it gives important indications where the most complicated re-
trieval conditions exist and where new validation sites would
be of great interest.

TCCON is continuously expanding and improving and
currently the de facto validation standard. However, many
important regions are not covered, its accuracy (∼ 0.8ppm)
is not significantly better than the user requirements for re-
gional biases, and TCCON cannot measure under cloudy
conditions. Therefore, complementary validation concepts,
for example, based on NOAA’s AirCore system (Karion
et al., 2010), which is currently in development, are of great
interest, especially for future satellite missions.

A unified validation exercise showed that EMMA per-
forms well at TCCON sites. This was somewhat expected
because most of the algorithms perform similarly well here.
In terms of station-to-station biases, TCCON’s accuracy does
not allow to identify significant differences between the ana-
lyzed algorithms.

The strength of EMMA lies in the reduction of the spa-
tial and temporal bias patterns, which can be analyzed with
the global gridded level 3 data: (i) EMMA’s fraction of ob-
vious outliers (in terms of unrealistically large gradients and
unrealistically large deviation from CT2011) is lower than
for any individual algorithm. (ii) It has the smallest STDD to
CT2011 (considered as our current knowledge about atmo-
spheric CO2 concentrations) and TCCON. (iii) Its N/S gra-
dients are in third best agreement with CT2011 and in best
agreement with TCCON, and have the lowest scatter in case
of CT2011 and the third lowest scatter in case of TCCON.
(iv) EMMA’s seasonal amplitude is in best agreement with
CT2011 and second best with TCCON, and has the lowest
scatter in both cases.

In summary, EMMA performs very well in terms of the
analyzed statistical quantities. As long as no individual re-
trieval algorithm meets the demanding user requirements, we
conclude that EMMA is a promising candidate for inverse
modeling studies.

Our study also showed that all algorithms consistently ob-
serve a N/S gradient being about 0.3–0.9 ppm larger and a
seasonal (peak-to-peak) amplitude being about 1.5–2.0 ppm
larger than modeled by CT2011. Both effects were estimated
to be slightly less pronounced in CT2010.

Future EMMA versions will profit from improvements of
the individual algorithms. Furthermore, it is planned to ex-
tend the EMMA period to more years as soon as all algo-
rithms have provided data.

Additional to EMMA v1.3a (described in this paper), we
generated a version without WFMD (EMMA v1.3b) and
a version without SCIAMACHY (EMMA v1.3c). EMMA
seems to be very stable because rejecting, for example,
WFMD from the ensemble has only minor influence on
the global maps and level 3 statistics. However, a relatively
large influence can be observed in the patterns of the en-
semble spread. Additionally, the single measurement preci-
sion (compare Table2) is reduced to about 2ppm for v1.3b
and v1.3c. All EMMA versions are available upon request to
download athttp://www.iup.uni-bremen.de/∼mreuter/emma.
php.
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