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Abstract. We evaluate the isotopic composition of water va-
por and precipitation simulated by the LMDZ (Laboratoire
de Météorologie Dynamique-Zoom) GCM (General Circu-
lation Model) over Siberia using several data sets: TES (Tro-
pospheric Emission Spectrometer) and GOSAT (Greenhouse
gases Observing SATellite) satellite observations of tropo-
spheric water vapor, GNIP (Global Network for Isotopes in
Precipitation) and SNIP (Siberian Network for Isotopes in
Precipitation) precipitation networks, and daily, in situ mea-
surements of water vapor and precipitation at the Kourovka
site in Western Siberia. LMDZ captures the spatial, sea-
sonal and daily variations reasonably well, but it underes-
timates humidity (q) in summer and overestimatesδD in the
vapor and precipitation in all seasons. The performance of
LMDZ is put in the context of other isotopic models from
the SWING2 (Stable Water Intercomparison Group phase
2) models. There is significant spread among models in the
simulation ofδD, and of theδD-q relationship. This con-
firms thatδD brings additional information compared toq
only. We specifically investigate the added value of water iso-
topic measurements to interpret the warm and dry bias fea-
tured by most GCMs over mid and high latitude continents
in summer. The analysis of the slopes inδD-q diagrams and
of processes controllingδD and q variations suggests that
the cause of the dry bias could be either a problem in the

large-scale advection transporting too much dry and warm air
from the south, or too strong boundary-layer mixing. How-
ever,δD-q diagrams using the available data do not tell the
full story. Additional measurements would be needed, or a
more sophisticated theoretical framework would need to be
developed.

1 Introduction

General circulation models (GCMs) have persistent and sys-
tematic biases in the representation of modern climate and its
associated water cycle (Meehl et al., 2007). One example of
these biases is the systematic warm and dry bias over mid lat-
itude continental regions in summer, which is evident espe-
cially in the Great Plains of the United States and in Central
and Eastern Europe (Kittel et al., 1997; Cattiaux et al., 2013).
This bias may reflect a misrepresentation of the water cycle,
land-surface feedbacks (Moberg and Jones, 2004; Bellprat
et al., 2013), or cloud feedbacks (Boé, 2013; Cattiaux et al.,
2013). This misrepresentation casts some doubts on the cli-
mate projections simulated for these regions. In particular,
there is evidence for a link between the dry and warm bias in
mid-latitude continents in summer for present-day and future
projections of evapotranspiration (Boé and Terray, 2008) and
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temperature extremes (Boberg and Christensen, 2012; Chris-
tensen and Boberg, 2012). Credible climate projections thus
require a correct simulation of the present-day climate, water
cycle, and associated processes.

Several approaches have been proposed to investigate the
persistent warm and dry bias over mid-latitude continents in
summer. Sensitivity tests on the model physics have shown
that biases can be reduced by improving parameterizations
or tuning parameters related to the representation of soil pro-
cesses (Polcher et al., 1996; Cheruy et al., 2013). Exper-
iments performed running GCMs in forecast mode with a
realistic initialization of meteorological variables have also
suggested that the bias is associated with land-surface inter-
actions (Klein et al., 2006). Here, we investigate to what ex-
tent comparing the simulated water stable isotopic composi-
tion of water vapor to measurements can help us diagnose the
source of model biases over continental regions in summer.

The water molecule has several isotopologues. The most
common isotopologue is H16

2 O (hereafter called H2O), but
heavier isotopologues are also found: HD16O (hereafter
called HDO, with D standing for deuterium) and H18

2 O. The
water vapor isotopic composition (e.g., the concentration in
HDO and H18

2 O with respect to H2O) is affected during phase
changes and conserved during transport. Therefore, the water
vapor composition records the various evaporation and con-
densation processes undergone within an air parcel through-
out its history. For example, oceanic evaporation and conti-
nental evapotranspiration leave different imprints on the wa-
ter vapor composition (Salati et al., 1979; Gat and Matsui,
1991; Risi et al., 2013; Simonin et al., 2013). Water vapor
and subsequent precipitation is further affected by large-scale
circulation (Frankenberg et al., 2009; Galewsky and Hurley,
2010) and convective and cloud processes (Bony et al., 2008;
Risi et al., 2008; Yoshimura et al., 2010). In turn, water vapor
isotopic measurements can help diagnose biases in the way
models simulate the water cycle. For example, isotopic mea-
surements have been used to understand systematic biases in
the precipitation frequency in the tropics (Lee et al., 2009)
and in subtropical tropospheric humidity (Risi et al., 2012a;
Risi et al., 2012b). If biases in evapotranspiration, in large-
scale moisture transport or in cloud processes contribute to
the dry and warm model biases over continental regions in
summer, then water isotopic measurements may help diag-
nose them.

Before we can operationally use water isotopic measure-
ments to diagnose causes of model biases, the first step is
to understand what controls the water isotopic composition.
In this paper, we focus on this first step, and give insight on
how water isotopic measurements could be used for model
evaluation. With this aim, we exploit a new set of continuous
isotopic measurements in low-level atmospheric water vapor
and precipitation at Kourovka (70 km northwest from Ekater-
inburg) near the western boundary of Western Siberia. This
data set is complemented by satellite measurements (Worden

et al., 2007; Frankenberg et al., 2013) and compared with ex-
isting isotopic GCMs. In particular, using the LMDZ (Labo-
ratoire de Météorologie Dynamique-Zoom) GCM (Risi et al.,
2010c), processes controlling water isotopic composition are
investigated and sources of model–data mismatches are dis-
cussed.

In Sect. 2, data sets and models are described. In Sect. 3,
the LMDZ GCM is evaluated against satellite and precipi-
tation network data and its performance is put in a broader
context through comparison with other GCMs. The ability of
LMDZ to represent the water cycle is evaluated in Sect. 4 us-
ing continuous measurements of water isotopic composition
in Kourovka. In Sect. 5, physical processes controlling wa-
ter vapor and precipitation composition are investigated. We
discuss the results and conclude in Sect. 6.

2 Data and methods

2.1 Isotopic definitions

Isotope ratios are commonly reported relative to a standard
in δ-notation:

δ = (Rsample/Rstandard− 1) · 1000,

where the standard used is Vienna Standard Mean Ocean Wa-
ter (VSMOW),δ represents eitherδD or δ18O expressed in
‰, andR is the ratio of HDO or of H18

2 O to H2O.
Deuterium excess is defined with respect to the global

meteoric water line (GMWL,δD = 8 · δ18O +10‰) (Dans-
gaard, 1964): d excess= δD − 8 · δ18O. Values that fall on
the GMWL have ad excess of 10 ‰ by definition. Since
equilibrium Rayleigh condensation processes roughly follow
the GMWL slope of 8, deviations ind excess can provide
information about the environmental conditions during non-
equilibrium processes.

2.2 Model simulations

2.2.1 LMDZ model and simulations

The dynamical equations of the GCM LMDZ are discretized
in a latitude–longitude grid, with a resolution of 2.5◦

×3.75◦

and 39 vertical levels. The time step for the resolution of the
dynamical equations is 1 min. We use the fourth version of
LMDZ (called LMDZ4) which was used for CMIP3 (Cou-
pled Model Intercomparison Project Phase 3,Meehl et al.
(2007) feeding the fourth IPCC (International Panel on Cli-
mate Change) report. The physical package is described in
detail byHourdin et al.(2006) and called every 30 min. Each
grid cell is divided into four sub-surfaces: ocean, land, ice
sheet and sea ice.

To ensure a realistic large-scale circulation and daily vari-
ability, horizontal winds at each vertical level are nudged by
ECMWF reanalyses (Uppala et al., 2005).
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Table 1.List of sensitivity tests using the LMDZ-ORCHIDEE model.

Simulation name Parameter change Isotopic fractionation during
bare soil evaporation

OR none yes
ORnofrac none no
ORrveg The stomatal resistant is divided by 5 yes
ORhumcste The characteristic depth of the root profile is

multiplied by 4
yes

ORdpu The soil reservoir capacity is divided by 2. yes
ORbaresoil The bare soil fraction as a function of leaf area

index is calculated usingd’Orgeval(2006) rather
thanDucoudré et al.(1993), which leads to an in-
crease in the bare soil fraction.

yes

Table 2. List of the SWING2 models used in this study, their respective expended names and references for isotopic implementation and
simulations. Whether the winds are nudged by reanalyses or not (“free”) is also indicated.

GCM Expended name Reference Nudged or free

GISS Model Goddard Institute for Space Studies Schmidt et al.(2007) both
ECHAM4 European Centre Hamburg Model Hoffmann et al.(1998) nudged
LMDZ4 Laboratoire de Météorologie Dynamique-Zoom version 4Risi et al.(2010c) both
GSM Global Spectral Model Yoshimura et al.(2008) nudged
CAM2 Community Atmospheric Model version 2 Lee et al.(2007) free
HadAM Hadley Centre Atmospheric Model Tindall et al.(2009) free
MIROC Model for Interdisciplinary Research On Climate Kurita et al.(2011) free

Isotopologues of water (H16
2 O, H18

2 O and HDO) are trans-
ported and passively mixed by the large-scale advection and
various air mass fluxes. Fractionation is considered during
condensation into droplets and ice crystals, ocean evapora-
tion and evaporation of rain drops (Bony et al., 2008). The
isotope-enabled version of the GCM LMDZ is described in
detail byRisi et al.(2010c).

2.2.2 Representation of the land surface

The land surface in LMDZ is represented as a simple bucket
model. Land surface evaporation is calculated as a single
flux, represents all components of evapotranspiration. No
distinction is made between transpiration, bare soil evapora-
tion, or evaporation of water intercepted by the canopy. For
water isotopes, we assume that transpiration is the dominant
component of evapotranspiration (e.g.,Williams et al., 2004;
Jasechko et al., 2013). This approximation is especially rea-
sonable in Siberia (Iijima et al., 2014). No fractionation is
associated with transpiration (Washburn and Smith, 1934;
Barnes and Allison, 1988). Thus we neglect fractionation
during evapotranspiration, as in most GCMs (e.g.,Hoffmann
et al., 1998).

To quantify the impact of neglecting fractionating evapo-
ration, we use a few additional simulations in which LMDZ
is coupled with a more sophisticated, state-of-the-art land-
surface scheme called ORCHIDEE (Organising Carbon and

Hydrology in Dynamic Ecosystems,Ducoudré et al., 1993;
Krinner et al., 2005) enabled with water isotopes (Risi, 2009;
Risi et al., 2013). We do not use these LMDZ-ORCHIDEE
simulations in the core of the paper because these simulations
are available for the year 2006 only (after sufficient spin-up
in perpetual 2006 conditions). Using LMDZ-ORCHIDEE,
we compare simulations in which fractionation during bare
soil evaporation is activated or disabled.

The representation of land surface is much simpler than
in current coupled models used for CMIP3 (Meehl et al.,
2007) or CMIP5 (Taylor et al., 2012). Therefore, some of
the conclusions reached in this paper regarding the role of
land surface processes might be model-dependent and spe-
cific to GCMs with very simple land surface schemes. To
check to what extent our results are sensitive to the repre-
sentation of the land surface, we perform different sensitivity
tests on land surface parameters, as listed in Table1. These
sensitivity tests were described inRisi et al.(2013) and were
shown to result in large differences in evapotranspiration and
in δD variability (Risi et al., 2013).

2.2.3 SWING2 models and simulations

To put LMDZ results into a broader context, we com-
pare with other isotopic GCM simulations archived in the
SWING2 (Stable Water INtercomparison Group phase 2)
database (http://people.su.se/~cstur/SWING2/). We use nine
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simulations from seven models (listed in Table2). Some sim-
ulations are nudged by reanalyses and some others are not.
More details about these SWING2 simulations can be found
in Risi et al. (2012b). We use all available years (between
10 and 30) to calculate climatological averages. The choice
of the time period used for the climatological average has
a very small impact since all models have at least 20 years
available over the past few decades.

2.3 Observational data sets

2.3.1 Water vapor measurements at Kourovka

The measurements of atmospheric surface water vapor
isotopic composition are performed by the Picarro iso-
topic analyzer L2130-i based on wavelength-scanned cav-
ity ring down spectroscopy (WS-CRDS). This instrument
was installed in the Kourovka astronomical observatory
(57.037◦ N, 59.547◦ E, 300 m above sea level). The obser-
vatory is located 70 km northwest of Ekaterinburg in a forest
region. Air is sampled at 8 m height. The instrument has pro-
vided continuous measurements of specific humidity (q), δD
andδ18O since 1 April 2012, and we use data up to the end
of 2012.

The instrumental uncertainty is conservatively estimated
to be 1.4 ‰ for δD and 0.23 ‰ for δ18O, respectively
(Steen-Larsen et al., 2013). However, at low humidity lev-
els (<1500 ppmv) the instrument reveals a strong increase
in uncertainty estimated to be 5.6 ‰ forδD and 0.92 ‰ for
δ18O at 1000–1500 ppmv and 11.2 ‰ forδD and 1.84 ‰ for
δ18O at 500–1000 ppmv (Bastrikov et al., 2014). The mea-
surements below 500 ppmv are considered to be beyond the
instrument measuring capabilities and are not used in the
analysis.

From June 2012 until September 2012, the Picarro cali-
bration system was not working properly due to a leakage.
For this reason, the data obtained during this period are as-
sociated with a reduced accuracy. We thus the use theδD

measurements only, for which this higher uncertainty is ac-
ceptable. After the replacement of the faulty elements on 18
September 2012, the instrument has revealed good stability
and reliability. A detailed overview of the WS-CRDS mea-
surement system setup, calibration, and maintenance can be
found inBastrikov et al.(2014). In summary, every 6 hours
of ambient air measurements are followed by a two-standards
calibration lasting 30 min for each reference water standard
using Picarro Standards Delivery Module. The liquid stan-
dards are vaporized at 140◦C using Picarro Vaporizer Mod-
ule A0211, then mixed with dried room-air dessicated with
Drierite (W.A. Hammond Drierite Company, Ltd., USA) and
measured by the analyzer. The water standards are cali-
brated on the VSMOW-SLAP (Vienna Standard Mean Ocean
Water-Standard Light Antarctic Precipitation) scale by ac-
curate laboratory mass spectrometer measurements at LSCE
(Laboratoire des Sciences du Climat et de l’Environnement).

2.3.2 Other measurements at Kourovka

In addition to the water vapor measurements, precipita-
tion samples have been collected at Kourovka at the daily
time scale since the end of October 2012. Measurements
are performed on the Picarro isotopic analyzer L2130-i in-
stalled at the Ural Federal University (Ekaterinburg), which
is equipped with a liquid water analysis system. Instrumen-
tal precision is 1.0 ‰ forδD and 0.1 ‰ forδ18O. We use the
data from the end of October 2012 up to the end of December
2012.

Basic meteorological measurements are performed on an
automatic meteorological station. The model is MetPak-II
from Gill Instruments. It is installed 1 m below the Picarro
input. We use the temperature measurements to better inter-
pret ourq measurements.

2.3.3 Precipitation networks

To put the Kourovka measurements into a broader regional
context and to evaluate the capacity of LMDZ to capture the
spatial and seasonal patterns of precipitation isotopic com-
position, we combine two networks: GNIP (Global Network
for Isotopes in Precipitation,Rozanski et al., 1993) and SNIP
(Siberian Network for Isotopes in Precipitation,Kurita et al.,
2004). Both networks sample monthly precipitation. Both
δ18O andδD are measured in the rain samples, allowing us
to calculated excess. However, in the case of SNIP, thed ex-
cess needs to be considered with caution due to possible rain
evaporation effects after sampling (Kurita et al., 2004).

2.3.4 Satellite data sets

To evaluate the spatial and seasonal patterns of vapor iso-
topic composition, we use two satellite data sets measuring
troposphericδD. At present, satellite measurements cannot
provideδ18O with sufficient precision ford excess calcula-
tions to be useful for scientific applications. GOSAT (Green-
house gases Observing SATellite) measurements enable the
retrieval of the total-column water vapor content in both H2O
and HDO (Frankenberg et al., 2013). Since most of the total-
column vapor is in the lower troposphere, column-integrated
δD is mainly sensitive to theδD of the boundary layer (BL).

TES (Tropospheric Emission Spectrometer) measure-
ments enable the retrieval of some information on the ver-
tical distribution ofq and δD in the troposphere (Worden
et al., 2006, 2007). Recent processing of the data leads to en-
hanced sensitivity in northern latitudes and to a higher degree
of freedom of the signal (Worden et al., 2012). For clear sky
scenes these data can distinguish air-parcels at 900 hPa from
those at 400 hPa. A correction is applied on observedδD fol-
lowing the calibration study ofWorden et al.(2011). More
details on the GOSAT and TES data used and the quality se-
lection criteria can be found inRisi et al.(2013).
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In order to rigorously compare LMDZ with GOSAT or
TES, we take into account spatiotemporal sampling and we
apply averaging kernels to the model outputs to account for
the vertical resolution and use of a priori constraints of the
satellite retrievals. More details on the model–data compari-
son methodology are inRisi et al.(2012a, 2013). We focus
only on comparing spatial and temporal variations in order to
minimize uncertainties related to biases in the satellite data
(Worden et al., 2011; Frankenberg et al., 2013).

2.4 δD-q diagrams

2.4.1 Theoretical curves inδD-q diagrams

To a first order, in mid and high latitudes, the water vapor
isotopic ratio of HDO to H2O follows Rayleigh distillation
(Dansgaard, 1964):

ln(Rv) = ln(Rv0) + (α − 1) · ln

(
q

q0

)
, (1)

whereRv andq are the final isotopic ratio and specific hu-
midity, Rv0 andq0 are the initial isotopic ratio and specific
humidity, andα is the fractionation coefficient.

SinceRv remains close to unity,δD can be approximated
by:

δD ' ln(Rv) · 1000 (2)

Therefore, to first order,δD is tightly related toq. When
investigating what we can learn from water isotopic mea-
surements, we need to investigate the added value compared
to q, for example by analyzing the relationship ofδD as a
function of q (Worden et al., 2007; Schneider et al., 2010;
Galewsky and Hurley, 2010; Noone et al., 2011; Noone,
2012). For even better consistency with a Rayleigh distilla-
tion, here we analyze the relationship ofδD as a function
of ln(q), in which the Rayleigh distillation is approximately
a straight line. Figure1 shows how different processes may
affect the relationship ofδD as a function of ln(q). An air
mass that cools and loses water vapor by condensation fol-
lows the Rayleigh distillation line (red). Mixing between air
masses that have undergone different degrees of distillation
follows a hyperbolic shape with more enriched values for a
givenq (green) (Galewsky and Hurley, 2010). Recycling of
precipitation, either through local transpiration of soil water
or through re-evaporation of falling raindrops follows mix-
ing lines with more depleted values for a givenq (blue and
magenta).

Such plots can be instructive qualitatively. They may, how-
ever, be difficult to apply quantitatively to the data due to var-
ious factors affecting these curves. For example, the Rayleigh
distillation line is sensitive toδD in the initial vapor, which
may depend on the existence of convective activity (Jouzel
and Koster, 1996; Lawrence et al., 2004). The mixing lines
are very sensitive to theq-δD properties of the components
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figure

Figure 1. Theoretical lines in theδD-q plot. The initial vapor (red
circle) is assumed to be formed over ocean, with a surface tem-
perature of 25◦C and surface relative humidity of 70 % according
to theMerlivat and Jouzel(1979) closure assumption. This vapor
follows a Rayleigh distillation following equation 1 (red line). The
green lines show mixing lines between the initial vapor and a vapors
distilled down to different temperatures: 0◦C (thick line), −5◦C
(dashed line) and 5◦C (dotted line). These lines are similar to those
in Worden et al.(2007). The blue and magenta lines show mixing
lines between vapor distilled down to 10◦C and the re-evaporation
of rain. We assume that the rain is in equilibrium with the overly-
ing vapor. The blue line represents the evaporation of rain without
any fractionation, as is the case for transpiration of soil water. The
magenta lines represents the evaporation of rain with fractionation,
following Stewart(1975) andBony et al.(2008): re-evaporation of
rain in an equal amount of water vapor with air humidity of 70 %
(solid), in an equal amount of water vapor with 90 % humidity (dot-
ted) or in a twice larger amount of water vapor with 70 % humid-
ity (dashed). Note that these re-evaporation lines are different from
those in Worden et al. (2007), because they neglected the evolution
of the raindrop composition during re-evaporation, whereas we do
a more precise calculation, and because they plotted a combination
of distillation and re-evaporation, whereas we plotted the effect of
re-evaporation only.

that are being mixed (compare the different green lines in
Fig.1). Re-evaporation lines are sensitive to evaporation con-
ditions (compare the different magenta lines in Fig.1).

Note that in the following, we discuss the relationship be-
tweenq and water vaporδD in the near-surface air, or in the
total column, i.e., between the precipitable water (Q) and the
column-integrated water vaporδD.

2.4.2 Consequences for the interpretation of
model–data differences inδD

Model–data differences inδD (1δD) can be interpreted in
the light ofδD-q diagrams: ifδD is misrepresented, it could
be either becauseq is misrepresented, or because theδD-q
relationship is misrepresented. For example, ifδD is con-
trolled by Rayleigh distillation and LMDZ misrepresents the
intensity of this distillation, then LMDZ will overestimate
both q andδD. On days when LMDZ overestimatesq the
most, LMDZ will overestimateδD the most. In addition,
the slope of1δD vs. 1 ln(q) would be the same as that
of δD vs. ln(q): indeed, based on Eq. (1) and applying the
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Figure 2. Annual mean maps of observed (left) and simulated (right) precipitable water(a–d) andδD in the total column water vapor (e–g)
as observed by GOSAT (a–b, e–f), and by TES (c–d, g–h). The black dot indicates the location of Kourovka. Here we plotδD values
without any subtraction because LMDZ happens to show values similar to those of GOSAT and TES. The black dot indicates the location of
Kourovka.

approximation of Eq. (2), 1δD relates to1q following:

1δD ' 1000· (α − 1) · 1 ln(q)

Similarly, if δD is controlled by mixing and if LMDZ mis-
represents the proportion of this mixing, it can be shown that
LMDZ will overestimateδD the most on days when it over-
estimatesq the most and that the1δD-ln(q) slope would
also be similar to theδD-ln(q) slope.

In contrast, if LMDZ misrepresents the initialδD of wa-
ter vapor, there will be a systematic offset between the data
and the modelδD, and no particular relationship is expected
between1δD and1 ln(q).

3 Model evaluation of spatial and seasonal variations

To evaluate the spatial and seasonal variations over Siberia
simulated by LMDZ, we use satellite and precipitation net-
work data.

3.1 Spatial variations

Figure 2 shows the maps ofQ, and of annual-mean ver-
tically integrated water vaporδD. Both GOSAT and TES
data exhibit the temperature effect, withδD decreasing
with latitude, and the continental effect, withδD decreas-
ing along trajectories from west to east (Fig.2a, c). To
first order, LMDZ captures these patterns qualitatively well
(Fig. 2b, d, f).
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Fig. 3. Annual mean maps of observed (left) and simulated (right) δD in the surface precipitation (a-b)

and d-excess in the surface precipitation (c-d). The black dot indicates the location of Kourovka.
Figure 3. Annual mean maps of observed (left) and simulated (right)δD in the surface precipitation(a–b) andd excess in the surface
precipitation(c–d). The black dot indicates the location of Kourovka.
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Figure 4. Annual mean north–south transects of observed (black) and simulated (green) precipitable water observed by GOSAT(a) and by
TES (b), δD in the total column water vapor as observed by GOSAT(c) and by TES(d), δD in the surface precipitation(e) andd excess
in the surface precipitation(f). Transects are taken around the longitude of Kourovka: 50–70◦ E. For satellite data sets, the annual-meanδD

averaged over 50–70◦ E–30–80◦ N is subtracted to focus on the latitudinal variations. LMDZ outputs are collocated with each data set and
averaging kernels are applied to compare with satellite data sets. The dashed line indicates the latitude of Kourovka.

The maps for precipitationδD are consistent with those
for vaporδD (Fig. 3a–b). The scarcity of precipitationd ex-
cess data makes it difficult to extract any clear spatial signal,
although some poleward decreasingd excess trend can be no-
ticed (Fig.3c). LMDZ captures this pattern qualitatively well
(Fig. 3d). For a more quantitative evaluation, Figs.4 and5
show north–south and west–east transects around Kourovka
and are described below.

3.1.1 Latitudinal gradients in Q and in δD

ObservedQ decreases with latitude, as expected from the de-
crease in temperature. This is very well simulated by LMDZ
(Fig. 4a–b).

For satelliteδD data, we subtract domain average values
to focus on spatiotemporal variations independently of pos-
sible systematic biases in the data. The poleward depletion
associated with the temperature effect can clearly be seen in

www.atmos-chem-phys.net/14/9807/2014/ Atmos. Chem. Phys., 14, 9807–9830, 2014
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Figure 5. Annual mean east–west transects of observed (black) and simulated (green) precipitable water observed by GOSAT(a) and by
TES (b), δD in the total column water vapor as observed by GOSAT(c) and by TES(d), δD in the surface precipitation(e) andd excess
in the surface precipitation(f). Transects are taken around the latitude of Kourovka: 50–64◦ N. For satellite data sets, the annual-meanδD

averaged over 20–120◦ E–50–64◦ N is subtracted to focus on the longitudinal variations. LMDZ outputs are collocated with each data set
and averaging kernels are applied to compare with satellite data sets. The dashed line indicates the longitude of Kourovka.

GOSAT, TES, and precipitation network data sets (Fig.4c–
e). Compared to both satellite data sets, LMDZ underesti-
mates the latitudinal gradient ofδD by about 30 % (Fig.4c–
d). This bias was already noticed byRisi et al.(2012a).

We investigate the latitudinal gradients at different alti-
tudes using the TES data, which has some vertical informa-
tion (not shown). LMDZ underestimates the latitudinal gradi-
ent from the surface to 800 hPa, and slightly overestimates it
from 800 to 550 hPa. 800 hPa corresponds approximately to
the top of the BL. Above 550 hPa, the TES sensitivity toδD

becomes too low to draw conclusions. Therefore, the under-
estimation of the latitudinal gradient originates from the BL.
For example, it could be due to a wrong representation of the
latitudinal variations in evapotranspiration, with too much
evapotranspiration in the northern part of Siberia, or too little
evapotranspiration in the southern part. A seasonal analysis
of the latitudinal gradients shows that the latitudinal gradi-
ent is underestimated only in summer. This could be con-
sistent with the hypothesis that evapotranspiration is misrep-
resented, since evapotranspiration occurs mainly in summer.
However, sensitivity tests using LMDZ-ORCHIDEE suggest
that purely atmospheric processes are responsible for this
bias (Sect.3.3.4).

For the precipitation, the data is noisier due to the scarcity
of observations. We cannot detect any obvious bias in the
simulation of the latitudinal gradient ofδD compared to the
data (Fig.4e).

3.1.2 East–west gradients inQ and δD

Q decreases westward over Siberia, reflecting the progres-
sive rainout along air masses trajectories towards the east.
LMDZ overestimates slightly this decrease compared to both
GOSAT and TES (Fig.5a–b).

GOSAT, TES and the precipitation networks all feature
an eastward decrease ofδD (Fig. 5c–e). This decrease has
been attributed to the so-called “continental effect” (Rozan-
ski et al., 1993). This effect is due to the fact that as air
masses move eastward, they lose heavy isotopes through pre-
cipitation. A fraction of these heavy isotopes are returned to
the atmosphere through evapotranspiration (Gat, 2000), but
the remaining is lost through river runoff. This is why the
amount of continental recycling (i.e., the fraction of the pre-
cipitation water which is returned to the atmosphere through
evapotranspiration) is known to modulate the continental ef-
fect (i.e., the inland depletion of water vapor and precipita-
tion) (Salati et al., 1979; Kurita et al., 2004).

The eastward depletion associated with the continental ef-
fect is very well captured by LMDZ compared to GOSAT,
TES, and precipitation network data sets (Fig.5a–c). If the
continental effect is modulated by continental recycling, then
this suggest that LMDZ represents the east–west gradient in
evapotranspiration satisfactorily.

3.1.3 Spatial variations ind excess

For d excess, the data looks much noisier than LMDZ.
This could be due to the large uncertainty in thed excess

Atmos. Chem. Phys., 14, 9807–9830, 2014 www.atmos-chem-phys.net/14/9807/2014/
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are collocated with each dataset and averaging kernels are applied to compare with satellite datasets.

Figure 6. Seasonal cycles of observed (black) and simulated (green) precipitable water observed by GOSAT(a) and by TES(b), δD in the
total column water vapor as observed by GOSAT(c) and by TES(d), δD (e) andd excess(f) in the surface precipitation. We average over
the region of Kourovka (50–64◦ N–50–70◦ E). For satellite data sets, the annual-meanδD is subtracted to focus on the seasonal variations.
For GNIP/SNIP data sets, the spatial standard deviation is also plotted as an envelope. LMDZ outputs are collocated with each data set and
averaging kernels are applied to compare with satellite data sets.

measurement. The extent of post-sampling evaporation ef-
fects are difficult to quantify, but they could reach several ‰
(Kurita et al., 2004), which is of the same order of magnitude
as the north–southd-excess gradient simulated by LMDZ.
The apparent data noise could also be due to the poten-
tially large spatial heterogeneity ofd excess at the scale of
a few kilometers: for example, the local surface type could
affect d excess (Welp et al., 2012). LMDZ cannot capture
this heterogeneity. This could also explain why LMDZ looks
smoother than the data.

In spite of the noisiness in the data, a decreasing trend
with latitude can be observed. This could be associated with
the Rayleigh distillation, which first decreasesd excess un-
til about −20◦C and increases it below (Masson-Delmotte
et al., 2008). In Siberia, only the decreasing trend can be seen
because temperature are infrequently below−20◦C. LMDZ
captures thed excess decrease with latitude, with a decrease
from 14 ‰ at 35◦ N to 5 ‰ at 70◦ N (Fig. 4d).

No clear eastward trend can be noticed in observed pre-
cipitationd excess. The large noise and lack of clear signal
in the data makes it difficult to assess whether the model is
consistent or not with the data.

3.2 Seasonal variations

The observed seasonal cycle ofQ follows that of tempera-
ture, with moister air in summer (Fig.6a–b). LMDZ captures
this seasonal cycle qualitatively, but is too dry in summer
(consistent with the common dry bias previously mentioned,

Kittel et al., 1997; Cattiaux et al., 2013) and is too moist in
autumn and winter. The LMDZ seasonal cycle is delayed by
a few weeks. The correct simulation ofQ noticed in the pre-
vious section in annual mean hides seasonal discrepancies.

As is common in most of the Northern Hemisphere, ob-
servedδD is more enriched in summer and more depleted
in winter (Fig.6c–e), consistent with the temperature effect.
LMDZ captures this seasonality qualitatively well, though
δD variations are underestimated compared to both satel-
lite data sets (Fig.6c–d). The LMDZ seasonal cycle is de-
layed by a few weeks, consistent with the delay noticed for
Q. These problems do not appear in the precipitation net-
works (Fig.6e). Both TES and GOSAT have fewer usable
data points in the winter. It is possible that there are too few
samples to make a robust comparison.

The precipitation networks show large spatial variability
for d excess (Fig.6f). However the comparison suggests
that LMDZ misrepresents the observedd excess minimum
in summer.

3.3 Possible causes of model–data differences

In the previous section, we identified three main model–
data differences: (1) LMDZ underestimatesQ in summer,
(2) LMDZ underestimates the seasonal variation inδD and
(3) LMDZ underestimates the latitudinal gradient inδD.
For δD, a common bias of GOSAT and TES towards over-
estimatingδD variations is unlikely given that they used

www.atmos-chem-phys.net/14/9807/2014/ Atmos. Chem. Phys., 14, 9807–9830, 2014
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Table 3. Relationships between precipitable water (Q) and total column water vaporδD as observed by GOSAT or TES and as simulated
by LMDZ. We show the relationships for the latitudinal transects as plotted in Fig.4 and for seasonal cycles as plotted in Fig.6. For each
relationship, we give successively theQ range (minimum and maximum values, in kg m−2), the δD range (maximum minus minimum
values, in ‰, we do not give absolute values since they might be subject to calibration issues) and the slope of theδD-ln(Q) relationship (in
‰). The correlation coefficients for theδD-ln(Q) relationship are all between 0.82 and 0.84. When we compare LMDZ to GOSAT or TES,
we collocate model outputs with each data set and apply the adequate averaging kernels.

Type of relationship Data set δD − Q properties in the data δD − Q properties in LMDZ

Latitudinal gradient GOSAT 6.4–13.7 kg m−2 182 ‰ 14.3 ‰ 6.0–12.8 kg m−2 140 ‰ 12.7 ‰
TES 7.0–17.4 kg m−2 79 ‰ 9.2 ‰ 7.0–16.6 kg m−2 43 ‰ 6.6 ‰

Seasonal cycle GOSAT 2.8–18.8 kg m−2 237 ‰ 9.6 ‰ 2.8–18.4 kg m−2 158 ‰ 8.8 ‰
TES 4.6–26.5 kg m−2 60.5 ‰ 5.0 ‰ 2.9–22.3 kg m−2 50.2 ‰ 2.6 ‰

Table 4. Characteristics of the spatial distribution inq, δD and ind excess of near-surface vapor, for the LMDZ simulation and for the
different LMDZ-ORCHIDEE sensitivity tests listed in Table1. At Kourovka, we calculate an average in the 52–62◦, 55–65◦ E domain. The
latitudinal gradient is quantified as the difference between the average in the 30–40◦ N, 55–65◦ E domain and in the 70–80◦ N, 55–65◦ E
domain. The longitudinal gradient is quantified as the difference between the average in the 52–62◦ N, 20–30◦ E domain and in the 52–62◦ N,
110–120◦ E domain.

Model
version

Annual-
mean
q at
Kourovka
(g kg−1)

Annual-
mean
δD at
Kourovka
(‰)

Annual-
mean
d excess at
Kourovka
(‰)

Latitudinal
q gradient
(g kg−1)/10◦

North–
south δD

gradient
(‰) / 10◦

North–
south
d-excess
gradient
(‰ / 10◦)

East–west
q gradient
(g kg−1/10◦)

East–west
δD

gradient
( ‰ / 10◦)

East–west
d-excess
gradient
( ‰ / 10◦)

OR 5.1 −134 12.2 −0.82 −14.8 −1.7 −0.22 −5.4 0.7
ORnofrac 5.1 −132 10.6 −0.82 −14.8 −1.9 −0.22 −5.1 0.4
ORrveg 4.9 −146 9.0 −0.86 −14.0 −1.3 −0.26 −7.4 0.4
ORhumcste 4.9 −141 12.1 −0.78 −14.0 −1.6 −0.19 −5.7 0.7
ORdpu 5.0 −137 11.7 −0.80 −13.9 −1.7 −0.19 −5.5 0.6
ORbaresoil 5.0 −140 14.7 −0.81 −14.8 −1.5 −0.25 −6.4 1.4
LMDZ 3.7 −139 11.7 −0.63 −12.7 −2.4 −0.29 −6.2 0.3

independent wavelengths and retrieval algorithms. This sec-
tion explores possible causes for these model biases.

3.3.1 Spatial pattern of the summer bias

The latitudinal gradient inδD is underestimated the most in
summer. Therefore, the underestimation of both theδD sea-
sonal variations and the annual-meanδD latitudinal gradient
could be due to the underestimation of theδD latitudinal gra-
dient in summer. Figure7 shows the model–data difference
for Q andδD compared to GOSAT and TES. The underesti-
mation of theδD latitudinal gradient is apparent (Fig.7c–d).
This is associated with an underestimation of theQ latitudi-
nal gradient (Fig.7a–b). The lack of calibration forδD data
prevents us to decide whether it is the northern part that is
too enriched or it is the southern part that is too depleted, but
both GOSAT and TES data forQ shows that the northern part
is too moist and the southern part is too dry in LMDZ. As air
masses move towards the southeast, their humidity decrease
too much in LMDZ compared to the data along air mass tra-
jectories. This suggests that in LMDZ, there is an excess of
dehydrating processes, or a deficit of moistening processes,
in Western Siberia. The location of Kourovka is ideal to in-

vestigate these processes since it is where the air masses start
to become too dry along their trajectories.

3.3.2 δD-Q diagrams

As explained in Sect.2.4, the underestimation ofδD varia-
tions may be associated either with an underestimation ofq

variations or with an underestimation of the slope ofδD-Q
slope. Table3 attempts to separate these two effects.

For the latitudinal gradient, the simulatedQ range is com-
parable with observations, but theδD-Q slope is weaker in
LMDZ (Fig. 4a–b, Table3). Therefore, theδD discrepan-
cies are not due to temperature orQ variations, but rather to
the type of hydrological processes (condensation, mixing or
re-evaporation). For example, there could be too much dif-
fusion in the advection scheme (Risi et al., 2012a; Risi et
al., 2012b) or an over-estimated continental recycling (Risi
et al., 2013). Sensitivity tests with ORCHIDEE will however
suggest purely atmospheric processes are responsible for the
latitudinal gradient mismatch (Sect.3.3.4).

For the seasonal cycle, LMDZ underestimatesQ varia-
tions, consistent with the dry bias in summer (Figs.6a–d,3).
In addition, theδD-Q slope is weaker in LMDZ. Therefore,

Atmos. Chem. Phys., 14, 9807–9830, 2014 www.atmos-chem-phys.net/14/9807/2014/
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Figure 7.June-July-August (JJA) mean model–data difference for precipitable water(a–b)and total-column water vaporδD (c–d)compared
to GOSAT (left) and TES (right). LMDZ outputs are collocated with each data set and averaging kernels are applied to compare with satellite
data sets. The black dot indicates the location of Kourovka. Superimposed are the simulated surface winds. They are the same for all figures.

the underestimation of theδD seasonal cycle is due to both
an underestimation of theQ seasonal cycle and of theδD-Q
slope.

3.3.3 Impact of the representation of fractionating
evapotranspiration

The fact that we neglect the fractionation during the bare
soil evaporation component of evapotranspiration may con-
tribute to underestimate the latitudinal gradient ofδD near
the surface. To quantify this, we compare two LMDZ simu-
lations coupled with ORCHIDEE in which the fractionation
during bare soil evaporation is activated (OR) or disabled
(ORnofrac).

When there is isotopic fractionation during bare soil evap-
oration, less heavy isotopes are recycled back into the at-
mosphere. Therefore, we expect a stronger continental effect
(Salati et al., 1979), i.e., a stronger east–west gradient inδD.
The OR simulation indeed shows a slightly larger east–west
gradient inδD than the ORnofrac simulation:−5.4‰/ 10◦

compared−5.1 ‰/ 10◦ (Table 4). This difference is too
small to consider fractionating evaporation as a key improve-
ment. The north–south gradient inδD is not affected (Ta-
ble 4). This suggests that the north–south gradient is con-

trolled by purely atmospheric processes, such as progressive
condensation along air mass trajectories.

Regardingd excess, when there is fractionation during
bare soil evaporation, the evaporation of HDO is favored rel-
atively to the evaporation of H18

2 O. This increasesd excess
in the recycled water vapor (Gat and Matsui, 1991; Risi et
al., 2013). The OR simulation indeed shows a significantly
larger east–west gradient inδD than the ORnofrac simula-
tion: 0.7‰/10◦ compared 0.4‰/10◦ (Table 4). However,
the noisiness in the GNIP/SNIP data does not allow one to
judge whether considering fractionating evaporation is an
improvement.

To summarize, neglecting isotopic fractionation during
bare soil evaporation does not appear to be a major caveat
of our study.

3.3.4 Impact of the representation of the land surface

To check to what extent our results are sensitive to the rep-
resentation of the land surface, we compare different sen-
sitivity tests using LMDZ-ORCHIDEE sensitivity tests. We
find that the longitudinalq gradient is relatively sensitive to
the representation of the land surface (Table4). In contrast,
the latitudinalq gradient is much more robust among tests.
This suggests that land surface processes are important for
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Figure 8. (a)Annual mean north–south transects of water vaporδD at 600 hPa simulated by different SWING2 models. Transects are taken
around the longitude of Kourovka: 50–70◦ E. The annual-meanδD averaged over 50–70◦ E-30–80◦ N is subtracted to focus on the latitudinal
variations. The spatial averaging are the same as in Fig. 3.(b) Water vaporδDD at 600 hPa as a function of humidity at 600 hPa.(c) Seasonal
amplitudes (June–July–August minus December–January–February) ofδD at 600 hPa in the region of Kourovka (50–64◦ N–50–70◦ E), as a
function of the seasonal amplitude in humidity at 600 hPa.

the Siberian climate, although the latitudinal gradient is con-
trolled mainly by purely atmospheric processes.

The latitudinal gradient inδD is a remarkably robust fea-
ture of LMDZ and LMDZ-ORCHIDEE simulations. This
supports once again that the latitudinal gradient is controlled
mainly by purely atmospheric processes, and cannot be used
to evaluate the simulation of continental recycling. In con-
trast, the east–west gradient of water vaporδD is signifi-
cantly sensitive to the representation of the land surface, with
values varying from−5.4 ‰/ 10◦ to −7.4 ‰/ 10◦.

The east–west gradient ind excess are very sensitive to the
representation of the land surface, with values varying from
0.4 to 1.4 ‰ / 10◦ depending on the LMDZ-ORCHIDEE
simulations. This suggests thatd excess measurements along
an east–west transect could be very useful to evaluate the rep-
resentation of land surface processes. However, the noise in
the GNIP/SNIPd excess data is too large compared to the
east–west variations.

We note that LMDZ and LMDZ-ORCHIDEE simulations
provide significantly different results. We thus reiterate our
warning that some of the conclusions reached in this paper
might be specific to GCMs with very simple land surface
schemes. However, the good match between our LMDZ sim-
ulation and TES and GOSAT data suggests that the conti-
nental recycling in this simulation is reasonably well repre-
sented.

3.4 Comparison with other models

As for LMDZ, the European Centre Hamburg Model
(ECHAM) model was already compared to the same satel-
lite data sets and showed a good capacity for simulating the
observed spatial variations (Butzin et al., 2014). To put the
LMDZ results into a broader context, we compare them with
those of other model simulations from the SWING2 archive
(Fig. 8). Since daily outputs are not available, we cannot col-
locate the model outputs with the satellite data sets and we
cannot convolve them with the appropriate averaging kernels.
Therefore, in this section, we just compare the climatologi-
cal averages of the different models with each other, without
any comparison with TES or with GOSAT. SWING2 simula-
tions exhibit a large spread in their representation of the lati-
tudinal gradient in the mid troposphere (Fig.8a), with gradi-
ents ranging from 11 ‰/ 10◦ to 25 ‰/ 10◦. Compared to the
other models, LMDZ does not simulate the weakest gradient,
suggesting that other models might share the same tendency
to underestimate this gradient compared to the data.

What might cause this spread? First, some of this spread
is related to the simulatedq, which reflects the basic clima-
tology. For example, the steepest latitudinal gradient inδD is
featured by the free (i.e., not nudged) simulation of LMDZ,
which is associated with the largest range ofq along the lati-
tudinal gradient (Fig.8b). The weakest latitudinal gradient in
δD is featured by the CAM2 model, which is associated with
the smallest range ofq along the latitudinal gradient, while
both models have a similarδD-q slope (Fig.8b). Second,
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Table 5.Daily correlation coefficient (r) and its significance (p value) between observations at Kourovka and LMDZ simulation results for
humidity (q), water vaporδD, δ18O,d excess and differences of these variables between precipitation and water vapor. During the December-
January-February (DJF) season, data is available only for December. If thep value is lower than 5 %, we assume that the correlation
coefficient is statistically significant. N/S means “not significant”.

Phase period Vapor Vapor Vapor Vapor Precip-vapor Precip-vapor Precip-vapor Precip-vapor
r or p value JJA JJA DJF DJF entire period entire period entire period entire period

r p value r p value r p value r p value

q 0.63 <1% 0.94 <1% 0.90 < 1% N/A N/A
δD 0.54 < 1% 0.8 < 1 % 0.95 < 1 % 0.47 < 5 %
δ18O 0.55 < 1% 0.8 < 1% 0.94 < 1 % 0.32 N/S
d excess N/A N/A 0.27 N/S 0.27 <1 % 0.26 N/S

some of the spread is related to theδD-q slope, which re-
flects more subtle physical processes. For example, one of the
steepest latitudinal gradients inδD is featured by the Hadley
Centre Atmospheric Model (HadAM), which is associated
with the steepestδD-q slope (Fig.8b). The reverse is true
for isoGSM (Isotopes-incorporated Global Spectral Model).

SWING2 simulations also exhibit a large spread in their
representation of the seasonal cycle ofδD at Kourovka, with
seasonal magnitudes ranging from 40 to 160 ‰ (Fig.8c).
Again, LMDZ does not simulate the weakest seasonality
among the models, suggesting that other models might share
the same seasonal bias. There is no relationship between the
amplitude in the seasonal cycle inδD and that inq among the
different SWING2 models (Fig.8c). This shows that the sea-
sonality inδD reflects some physical processes that are not
immediately detectable when looking at conventional vari-
ables, thus supporting the added value of water isotopic mea-
surements to better evaluate these processes.

4 Model evaluation of the daily variability at Kourovka

4.1 Specific humidity and isotopic composition of the
water vapor

Continuous measurements of water vapor isotopic composi-
tion from Kourovka with the Picarro instrument allow us to
analyze daily time series from April to December 2012. A
comparison of observations with the results of LMDZ simu-
lation of water vapor for 2012 at Kourovka is shown in Fig.9.
For LMDZ, we use outputs from the closest grid point from
Kourovka. Since LMDZ is nudged by reanalyses, it captures
the daily variations in circulation, so that it is possible to
make a day-to-day comparison. The LMDZ results correlate
very well with the observations of bothq and δD for the
whole period (Table5).

LMDZ underestimatesq from June to November and the
difference between observations and model reaches a maxi-
mum (8 g kg−1) in August. This is consistent with the sum-
mer dry bias of LMDZ discussed earlier. A dry bias was also
noticed in the free troposphere compared to the IASI (In-

frared Atmospheric Sounding Interferometer) data (Pommier
et al., 2014). The daily model–data correlation forq is better
in winter and rises to 0.94.

LMDZ almost overestimates observedδD andδ18O, with
the exception of December, where there is very lowq. The
fact that the LMDZ results are too enriched compared to ob-
servations is consistent with the fact that the LMDZ results
are too enriched compared to SNIP observations (Figs.4 and
5). Compared to both data sets, the LMDZ results are on av-
erage about 20 ‰ too enriched.

As previously mentioned in Sect.2.3.1, we decide not to
use the data ford excess from April to the end of September
due to a leakage in the Picarro calibration system. Confidence
in d excess for observations is in doubt for this period, and we
limit the analysis of these data to the last 3 months, October
to December. For this period modeledd excess show fewer
variations than observed values and remain in the range of 9
to 15 ‰. An underestimation of dailyd excess variability by
GCMs had already been noticed for other mid-latitude sites
(Risi et al., 2012a). Despite the large differences in values,
there is a good qualitative agreement of the results in Novem-
ber. For example, LMDZ captures thed excess increase in
the end of October, the decrease in early November and the
increase in late November.

The vapor is collected at 8 m above ground level. In the
model, the first layer is 70 m thick and the model outputs
represent vapor integrated over this depth. The difference
in vertical footprint could explain some model–data discrep-
ancy, though we expect this effect to be small. For an average
δD gradient of−15 ‰ km−1, the expected different between
8 m and 33 m (mean altitude of the LMDZ first level) is only
0.3 ‰.

To summarize, LMDZ captures well the temporal varia-
tions observed in ground-based measurements, especially in
the winter. During the summer, the model underestimatesq.
All year long,δD is systematically too enriched.
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Fig. 9. Daily mean time series of humidity (a), water vapor δD (b) and d-excess (c) for observations in

Kourovka (red) and simulated by LMDZ (blue).

Figure 9. Daily mean time series of humidity(a), water vaporδD (b) andd excess(c) for observations in Kourovka (red) and simulated by
LMDZ (blue).

Fig. 10. Daily mean difference between precipitation and water vapor δD (a) and d-excess (b) for

observations in Kourovka (red) and LMDZ (blue). The green line represents a theoretical estimation of

this difference.

Figure 10. Daily mean difference between precipitation and water vaporδD (a) andd excess(b) for observations in Kourovka (red) and
LMDZ (blue). The green line represents a theoretical estimation of this difference.

4.2 Difference of isotopic composition between
precipitation and water vapor

Fig. 10 shows the daily precipitation amount and difference
in δD andd excess between precipitation and water vapor:
δDp−δDv anddp−dv. The theoretical estimation of this dif-

ference, assuming isotopic equilibrium between precipitation
and vapor, is shown in green. Equilibrium fractionation coef-
ficients between vapor and liquid water or ice are calculated
following Majoube(1971a, b); Merlivat and Nief(1967). We
take into account kinetic effects during snow formation, fol-
lowing Jouzel and Merlivat(1984).
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Precipitation is snow, except during the first 3 days. Its
amount is well captured by the model (Fig.10a).

We find significant correlation between the model and ob-
servations forδDp − δDv (Table5). This good agreement is
probably due to the fact that most of the precipitation is snow.
The isotopic composition of snow is easier to simulate than
that of rain because it is less affected by post-condensational
processes. Observed precipitation is on average about 80 ‰
more enriched inδD than the water vapor at the surface
(Fig. 9a, red dots). The LMDZ results are consistent with
these observations, though there are some model–data differ-
ences for individual events (Fig.10a, blue dots). If the snow
was in equilibrium with the surface water vapor, it would
be about 115 ‰ more enriched (Fig.10a, green curve). The
δDp − δDv of 80 ‰ can be explained by the fact that snow
forms from vapor at a higher altitude. To check this quantita-
tively, we calculate the daily condensation altitude as the av-
erage altitude weighted by the condensation rate. In LMDZ,
the condensation occurs at an altitude of 2 km on average.δD

decreases with altitude and the vertical gradient between the
surface and 2 km is about−15 ‰ km−1. Therefore, most of
the snow forms on average from water vapor which is about
30 ‰ more depleted than at the surface. The fact that the ob-
served snow is about 35 ‰ less enriched than predicted based
on equilibrium with the surface water vapor is thus consis-
tent with the fact that the snow is formed from water vapor at
2 km. In addition, daily variations inδDp − δDv reflect vari-
ations in condensation altitude: in LMDZ, the correlation be-
tweenδDp−δDv and the condensation altitude for the entire
period is−0.51.

In Sect. 3.1, we showed that LMDZ simulates a precipita-
tion that is systematically too enriched. The fact that LMDZ
correctly simulatesδDp − δDv confirms that the cause of the
overestimation of the precipitationδD (both at Kourovka and
on all GNIP and SNIP sites) is the overestimation of theδD

of the vapor from which the precipitation is formed.
Observeddp − dv is 3 ‰ on average (Fig.10b). LMDZ

simulatesdp − dv values of−2 ‰ on average. If the snow
was in equilibrium with the surface water vapor,dp − dv
would be about−5 ‰. Thed excess increases with altitude
and the vertical gradient between the surface and 2 km is
1 ‰ km−1. Taking this effect into account,dp −dv should be
about -3 ‰. This theoretical estimate is very consistent with
what is simulated by LMDZ. Why observeddp − dv is 3 ‰
rather than−3 ‰ could be due to microphysical processes or
post-condensational processes. However, the large spread of
dp−dv values prevent us from concluding for sure that obser-
vations are inconsistent with LMDZ and with the theoretical
estimate.

Fig. 11. Schematic representation of the hydrological cycle which includes physical process: advec-

tion, deep convection, large-scale condensation, re-evaporation, surface evaporation and boundary-layer

processes.

Figure 11. Schematic representation of the hydrological cy-
cle which includes physical process: advection, deep convection,
large-scale condensation, re-evaporation, surface evaporation and
boundary-layer processes.

5 Processes controlling water vapor andδD

5.1 Understanding the simulated evolution in humidity
and δD

We showed that LMDZ reproduces well, at least qualita-
tively, the seasonal (Sect.3.2, Fig. 6) and daily (Sect.4.1,
Fig. 9) variations inq and water vaporδD in the lower tro-
posphere. Therefore, we can make use of LMDZ simulations
to investigate in more detail the physical processes control-
ling these variations.

5.1.1 Method based on the tendency analysis

The different processes affectingq andδD at the surface in
the model in general are schematically illustrated in Fig.11.
Below we focus in more detail on each of them.

1. Vertical and horizontal advection by the large-scale
winds (red). Since we focus on surfaceq andδD, only
the horizontal component of the advection is nonzero.
Horizontal advection may moisten or dehydrate the air
depending on the horizontalq gradients and on the di-
rection of the wind. Similarly, it may enrich or deplete
the water vapor.

2. Deep convection (green). This represents the effect of
vertical motions and phase changes in convective sys-
tems. At the surface, convection dehydrates the air
through subsident motions such as unsaturated down-
drafts (Zipser, 1977). This subsidence also has a de-
pleting effect on water vapor (Risi et al., 2008, 2010b).
Convection may also moisten the lower levels through
rain re-evaporation (Folkins and Martin, 2005). In this
case, its effect onδD can be either enriching or deplet-
ing (Worden et al., 2007; Risi et al., 2010a; Field et al.,
2010).
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Table 6.Daily correlation coefficient (r) and its significance (p value) between temporal derivatives ofq or δD and tendencies from different
processes simulated by LMDZ: horizontal advection (adv), deep convection (conv), large-scale condensation and re-evaporation (cond),
surface evaporation and boundary-layer dynamics (evap). N/S means “not significant”.

Temporal Tendencies Annual Annual DJF DJF JJA JJA
derivatives

r p value r p value r p value

q adv 0.47 < 1 % 0.65 < 1 % 0.40 <1 %
q conv 0.06 N/S N/A N/A 0.03 N/S
q cond 0.07 N/S 0.16 N/S 0.15 N/S
q evap 0.26 < 1 % 0.67 <1 % 0.16 N/S
δD adv 0.40 <1 % 0.44 < 1 % 0.30 < 1 %
δD conv 0.06 N/S N/A N/A 0.20 < 5 %
δD cond 0.11 < 5 % 0.08 N/S 0.31 < 1 %
δD evap 0.31 < 1 % 0.59 < 1 % 0.17 N/S

3. Large-scale condensation and re-evaporation (blue).
This represents the effect of phase changes occurring
outside of the convective systems, such as in frontal
systems or stratiform clouds. Near the surface, it may
moisten the BL through the evaporation of the precip-
itation formed by such systems or clouds. As for the
evaporation of convective rain, this can either enrich or
deplete the water vapor. Occasionally, it may dehydrate
and deplete the vapor through in situ condensation in
fogs.

4. Surface evaporation and BL processes (cyan). Our
model diagnostics do not allow for the direct separa-
tion of these two effects despite their different effects
on q and onδD of near-surface vapor. Surface evapo-
ration moistens the BL. Since we assume no fraction-
ation during land surface evaporation, this always has
an enriching effect (Risi et al., 2013). In contrast, BL
mixing is associated with vertical redistribution of mois-
ture, which has a dehydrating and depleting effect on the
lower levels. To qualitatively separate the effect of sur-
face evaporation and BL processes, we use the fact that
surface evaporation (which is a model output) and BL
mixing (which is expected to be more active in sum-
mer, especially during the warmest days) have oppo-
site effects. For example, if the “surface evaporation and
BL processes” are more moistening when both surface
evaporation and BL mixing are stronger, then we sug-
gest that surface evaporation drives the moistening ef-
fect. In contrast, if the “surface evaporation and BL pro-
cesses” are more moistening when both surface evapo-
ration and BL mixing are weaker, then we suggest that
the weaker BL mixing drives the moistening effect.

In LMDZ, the temporal derivatives ofq and δD are com-
puted as the sum of different processes. Their contribution is
shown in Fig.12and in Table6.

5.1.2 Contribution to humidity variations

At the seasonal scale, the increase of 13 g kg−1 in q from
spring to summer (Fig. 8a) is associated with a positive and
increasing contribution in the “surface evaporation and BL
processes” component, with a maximum of 6 (g kg−1) day−1

in July (Fig.12a). Since we expect BL mixing to be stronger
in summer, surface evaporation likely drives the moistening
in spring. This increased moistening is partly compensated
by an increased dehydration caused by summertime deep
convection and large-scale advection (about 4 (g kg−1) day−1

for both). In autumn, the decrease inq is associated with
a negative contribution of the “surface evaporation and BL
processes” component. Since the BL is expected to be most
active in summer, the decrease in surface evaporation likely
drives the dehydration in autumn. Advection processes also
take part in this decrease with 1 (g kg−1) day−1.

At the daily scale, in summer,q variations correlate the
best with the “horizontal advection” component (r = 0.40,
Table6). In addition, increases inq are associated with large
values in the “surface evaporation and BL processes” com-
ponent. Therefore, surface evaporation also drives the daily
variability of q in the summer. This is consistent with the
important role of continental recycling onq variations diag-
nosed byRisi et al. (2013). This consistency could be ex-
plained by the fact that the model is the same.

In winter, variations inq are also mainly associated with
variations in the large-scale advection component and “sur-
face evaporation and BL processes”. This is confirmed by
the good correlation betweenq and “advection” and “sur-
face evaporation and BL” tendencies and (r = 0.65 and 0.67
respectively, Table6). The importance of advection is consis-
tent with the predominance of synoptic disturbances which
modify the direction of the winds. Since evaporation is low
during winter, “surface evaporation and BL processes” are
likely associated mostly with BL processes.

Atmos. Chem. Phys., 14, 9807–9830, 2014 www.atmos-chem-phys.net/14/9807/2014/



V. Gryazin et al.: Isotopes in Siberia 9823

Fig. 12. Temporal derivative (black line) of (a) humidity and (b) δD at the surface simulated by LMDZ.

This temporal derivative can be decomposed into the tendencies from different processes (illustrated

in Fig. 11): horizontal advection (red); deep convection (green); large-scale condensation and re-

evaporation (blue); surface evaporation and boundary-layer dynamics (cyan). We used a 5-day filter

to focus on seasonal and synoptic variations.

Figure 12. Temporal derivative (black line) of(a) humidity and(b) δD at the surface simulated by LMDZ. This temporal derivative can
be decomposed into the tendencies from different processes (illustrated in Fig.11): horizontal advection (red); deep convection (green);
large-scale condensation and re-evaporation (blue); surface evaporation and boundary-layer dynamics (cyan). We used a 5-day filter to focus
on seasonal and synoptic variations.

Table 7.Model–data difference in near-surface air specific humidity
in g kg−1 and its different contributions associated with temperature
(T ) or with relative humidity (RH). The1 sign refers to the model–
data difference.

Season DJF JJA

Mean1q 0.52 −2.0
Mean1q attributed to1T 0.33 2.3
Mean1q attributed to1RH 0.13 −3.3
Correlation between1q and1T 0.91 −0.52
Correlation between1q and1RH 0.68 0.80
Correlation between1q andq −0.71 −0.77

5.1.3 Contribution to δD variations

For δD, the contributions of the different processes to the
time derivative mirror those forq (Fig. 11b): most moisten-

ing processes act to enrich the water vapor, and vice versa.
However, the relative amplitudes of the different processes
are different. This supports the idea thatδD provides some
independent information compared toq. At the seasonal
scale, surface evaporation contributes to the increase inδD

in spring and to its decrease in summer, consistent with what
we explained forq.

In the winter, “surface evaporation and BL processes”
make the biggest contribution toδD variations: they are well
correlated, withr = 0.59 (Table6). However, in early spring,
large-scale advection also plays a significant role in the en-
richment of the water vapor (20–30 ‰ day−1). At the daily
level, surface evaporation drives the spikes ofδD in sum-
mer with maximum in July with 30 ‰ day−1, and large-scale
advection is mainly responsible for theδD fluctuations in
winter (r = 0.44), consistent with our explanation forq. In
summer, the large-scale condensation also plays a slightly
enriching role, due to the re-evaporation of rain in the BL.
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Table 8. Relationships betweenδD andq and between1δD and
1 ln(q). The1 sign refers to the model–data difference. N/S means
“not significant”.

Season annual DJF JJA

CorrelationδD vs. ln(q) observations 0.95 0.93 0.87
CorrelationδD vs. 1/q observations −0.84 −0.90 −0.85
CorrelationδD vs. ln(q) LMDZ 0.96 0.97 0.88
CorrelationδD vs. 1/q LMDZ −0.90 −0.95 −0.87
Correlation1δD vs.1 ln(q) 0.39 0.11 0.87
SlopeδD vs. ln(q) observations (‰) 49.9 37.3 47.5
SlopeδD vs. ln(q) LMDZ (‰) 64.4 61.2 49.3
Slope1δD vs.1 ln(q) (‰) 21.4 N/S 50.7
InterceptδD vs. ln(q) observations (‰) −260 −259 −248
InterceptδD vs. ln(q) LMDZ ( ‰) −244 −245 −211
Intercept1δD vs.1 ln(q) (‰) 26 N/S 41

In spring and autumn, large-scale condensation strongly de-
pletes the water vapor on some days. This is consistent with
the formation of fog (Noone et al., 2013). These fog events
occur on days with strong surface evaporation but relatively
stable and shallow BL. On these days, the depletion by large-
scale condensation compensates for the enrichment by sur-
face evaporation.

Thus we suggest that the BL dynamics and the large-scale
advection control the daily variability ofq and isotopic com-
position especially in winter. In summer, surface evaporation
also plays an important role.

5.2 Interpreting model–data differences

The goal of this section is to interpret model–data differences
in water isotopic composition, and to investigate what we can
learn from water isotopic measurements about the represen-
tation of processes in models. We investigate first the model–
data differences inq, and then the model–data differences in
theδD-ln(q) relationship and how they contribute to model–
data differences inδD.

5.2.1 Model–data differences in specific humidity

LMDZ tends to estimateq correctly during winter, and un-
derestimate it during summer (Fig.9a). The specific humid-
ity (q) can be expressed as a function of temperature (T )
and relative humidity (RH):q = RH · qs(T ), with qs being
the specific humidity at saturation. At the large scale,T re-
flects mainly dynamical and radiative processes, whereas RH
reflects mainly dynamical, surface and cloud processes.T

and RH may also reflect small scale processes that are not
represented on the coarse grid of LMDZ.

Table7 shows that on average in winter, LMDZ overes-
timatesq because it overestimates both the temperature (ac-
counting for 72 % of the overestimation ofq) and the relative
humidity, compared to meteorological data. LMDZ overesti-
matesq the most on days when it overestimatesT the most.
This occurs mainly during the driest days in the observations.

One hypothesis is that LMDZ overestimates the advection of
warm and moist air from the southwest during these days.

In summer, Table7 shows that on average, LMDZ under-
estimatesq because it strongly underestimates the relative
humidity, although it overestimates the temperature. LMDZ
underestimatesq the most on days when it is too warm. Also,
LMDZ underestimatesq the most during the moistest days
in observations. One hypothesis is that LMDZ overestimates
the advection of warm and dry air from the south. Another
hypothesis is that LMDZ underestimates the surface evapo-
transpiration. More evapotranspiration would both moisten
the atmosphere and cool the surface.

In the next subsection, we investigate whether water iso-
topic measurements can help us test these hypotheses.

5.2.2 Model–data differences in theδD-ln(q)

relationship

Figure13a shows daily vaporδD as a function of ln(q). The
surface observations cluster along a line, consistent withδD

varying along a Rayleigh distillation line (Sect.2.4). The
correlations are high (Table8). We compare the observed
δD-ln(q) slope with that predicted by Rayleigh distillation
(Eq. 1). We assume that the initial temperature is 25◦C, the
initial RH is 70 % and that the initialδD is predicted by the
Merlivat and Jouzel(1979) closure using these temperature
and RH conditions. The following results are not strongly
sensitive to these assumptions. We calculate the fractionation
coefficient using the same temperature as the one used to cal-
culate the saturation specific humidity. We calculate that the
theoreticalδD-ln(q) slope should be 80 to 120 ‰. The ob-
served slopes are twice lower than expected from the theory:
40 to 60 ‰. This suggests thatδD does not follow a pure dis-
tillation line. It might also be affected by mixing processes
(Hurley et al., 2012).

If δD is affected by mixing processes, thenδD is expected
to vary linearly with 1/ q. To test this hypothesis, we calcu-
late the correlations ofδD as a function of 1/ q (Table8).
Correlations are slightly lower but still very high. Therefore,
the influence of mixing processes onδD cannot be com-
pletely excluded.

Figure13 and Table8 show that LMDZ captures theδD-
ln(q) slopes reasonably well in summer and in winter. This
suggests that the Rayleigh distillation processes, or mix-
ing processes (if they exist), are well represented. However,
δD values are systematically offset: LMDZ is systematically
more enriched by about 15 ‰ than observations, for a given
q. This suggests that the origin of water vapor that undergoes
the distillation is not properly represented.

We analyze the relationship between model–data differ-
ences inδD and in ln(q) (Fig.13b). In winter, there is no sys-
tematic relationship between model–data differences inδD

and those in ln(q). This suggests that the too-large LMDZ
enrichment is not related to a Rayleigh distillation that is too
weak. Rather, some processes in LMDZ, independent of the
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a function of ∆ln(q). ∆ refers to the model-data difference. Symbols refer to the season: December-
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surface vapor for the different days at Kourovka (green squares), for different latitudes at the longitude

of Kourovka (magenta crosses) and for different longitudes at the latitude of Kourovka (blue stars).

Figure 13. (a)δD as a function of ln(q), in the observed data (red) and in the model (green).(b) 1δD as a function of1 ln(q). 1 refers
to the model–data difference. Symbols refer to the season: December–January–February (filled squares), June–July–August (empty squares)
and March–April–May–September–October–November (crosses).(c) Comparison of the simulatedδD-ln(q) relationships in JJA in the near-
surface vapor for the different days at Kourovka (green squares), for different latitudes at the longitude of Kourovka (magenta crosses) and
for different longitudes at the latitude of Kourovka (blue stars).

Table 9.Characteristic of the dailyδD-ln(q) distribution in JJA for the LMDZ simulation, for the different LMDZ-ORCHIDEE sensitivity
tests listed in Table1 and for in situ observations. The “δD values for ln(q) = 2.5” are calculated as 2.5 ·a +b wherea is the slope (given in
the first column) andb is the intercept of the linear regression. This gives an idea of the systematic offsets between the different simulations
when plotted in theδD-ln(q) diagram. The uncertainty on the slopes is about 6 ‰.

Model Slope ofδD vs. JJA-meanq Minimum δD value for
version ln(q) (‰) (g kg−1) q value ln(q) = 2.5 (‰)

OR 43 7.6 5.9 −114
ORnofrac 44 7.6 5.9 −115
ORrveg 50 6.7 4.2 −110
ORhumcste 44 7.1 4.9 −108
ORdpu 45 7.5 5.2 −108
ORbaresoil 35 7.7 6.0 −117
LMDZ 48 8.6 6.5 −98
data 49 10.7 7.4 −131

Rayleigh distillation, are misrepresented, and they lead to bi-
ases inδD that are not directly related to biases inq. We
could speculate on different hypotheses, such as the origin
of water vapor issues or cloud processes. However, these are
difficult to test.

In contrast, in summer, there is a systematic relationship
between model–data differences inδD and those in ln(q).
When LMDZ has the largest enrichment bias inδD, LMDZ
simulates the largestq (the closest to observations). When
LMDZ has the most depletedδD (the closest to observa-
tions), LMDZ has the largest dry bias inq. Furthermore, the

slope of the relationship between1δD and is similar to that
betweenδD andq (Table8). On days when LMDZ is the
driest, the slope is the same as other days. Therefore, the
model–data differences inq and inδD are probably due to
the same processes as those controlling the daily variability
of q andδD in nature, i.e., surface evaporation, BL processes
and large-scale advection (Sect.5.1).

We notice that the simulatedδD-ln(q) slope for the daily
data in summer is the same as for the north–south gradi-
ent inδD (Fig. 13c). This suggests two possibilities: (1) the
δD-ln(q) slopes are not a good way to discriminate between
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different processes, or (2) the processes controlling the daily
variability in δD are the same as those controlling the north–
south gradient inδD. The slope for the east–west gradient is
significantly different from the slope for the north–south gra-
dient (Fig.13c, blue), which may discard the first possibility.
Section3.3.4suggested that the north–south gradient inδD

was controlled by purely atmospheric processes. This would
discard issues in the surface evaporation as the cause of the
dry bias. This would leave BL processes and large-scale ad-
vection.

To summarize, analyzing observations and model–data
differences inδD-ln(q) plots reveals some information about
the sources of model biases, though it does not allow us to
pinpoint them with certainty. The model is systematically too
enriched all year long probably due to issues in the compo-
sition of the moisture at its source. In winter, theδD bias
is modulated on a daily basis by processes that are inde-
pendent from the Rayleigh distillation. In summer, theδD

bias is modulated by the same processes as those explaining
the daily variability and the north–south gradient in observa-
tions, i.e., BL processes and large-scale advection.

5.2.3 Impact of the representation of the land surface

To check whether the enriched bias in LMDZ could be due
to the fact that we neglect fractionation during bare soil
evaporation, we compare LMDZ simulations with fractiona-
tion during bare soil evaporation activated or disabled. When
fractionation during bare soil evaporation is activated,δD in-
creases mainly during the driest days of winter. This is be-
cause the driest days are associated with less transpiration
and more bare soil evaporation into air masses on their way
to Kourovka. Since the bare soil evaporation has a lowerδD

(Risi et al., 2013), more bare soil evaporation leads to a lower
δD. Compared to the data, this is not an improvement since
the simulatedδD-ln(q) slope in winter is already too large in
winter.

To qualitatively assess the impact of the representation
of the land surface, we compare the sensitivity tests with
LMDZ-ORCHIDEE. We find that the representation of the
land surface has an important impact on the simulation ofq at
Kourovka in summer (Table9). The minimum dailyq value
varying from 4.2 to 6.0 g kg−1 depending on land surface pa-
rameters. This suggests that the land surface representation
is important to properly simulate the Siberian climate.

In contrast, theδD-ln(q) slopes are very robust across all
sensitivity tests, within the uncertainty. Again, there are two
possible interpretations to this robustness in slopes: (1) the
δD-ln(q) diagram is not sufficient to distinguish between dif-
ferent processes; (2) the intensity of the moistening and de-
hydrating processes vary across the different simulations, but
keep the same proportions, so that the slopes are the same.
Identifying the correct interpretation would require a detailed
analysis of the model tendencies for the LMDZ-ORCHIDEE
sensitivity tests for which all daily outputs are not available.

The different representations of the land surface result in
δD shifts of less 10 ‰. This is much smaller than the model–
data difference of about 30 ‰. Therefore, we suggest that
purely atmospheric processes are to cause for the enriched
bias of LMDZ.

6 Conclusions

In this paper, we evaluate the humidity and isotopic composi-
tion of water vapor and precipitation simulated by the LMDZ
GCM over Siberia using several data sets: TES and GOSAT
satellite observations of tropospheric water vapor, GNIP and
SNIP networks of precipitation, and daily, in situ measure-
ments of water vapor and precipitation at the Kourovka site
in Western Siberia.

LMDZ captures the spatial, seasonal and daily variations
reasonably well, except for a few features. LMDZ overes-
timates theδD in precipitation compared to the precipita-
tion networks, by about 20 ‰. Consistently with this result,
LMDZ overestimates theδD observed in both the vapor and
precipitation at Kourovka. Based on the analysis ofδD-Q
diagrams, this bias is most likely associated with a problem
with the composition of the vapor at the moisture source.
LMDZ slightly underestimates the latitudinal gradient inδD

compared to satellite data sets. LMDZ also underestimates
the seasonality at Kourovka compared to satellite data sets,
but not at the surface compared to the in situ data. Finally,
LMDZ captures some aspects of the spatial and daily varia-
tions ind excess.

The performance of LMDZ in capturing the spatial and
seasonal variations inδD is consistent with other state-of-
the-art models participating in the SWING2 intercomparison
project. There is a large spread in the simulation of the lati-
tudinal and seasonal variations inδD, which is not explained
by the spread in the simulation ofq. This confirms the added
value of deuterium measurements compared toq measure-
ments only, though we still need to make progress to better
understand why there are systematic biases inδD in models
and why different models simulate differentδD variations.

Using LMDZ to investigate the processes controlling the
daily variability, we find that two processes dominate. First,
the large-scale advection determines the origin of the mois-
ture, enriched in the south and west and depleted in the north
and east. Second, surface evaporation and BL processes de-
termine the proportion of the vapor coming from enriched
surface evaporation or from the more depleted free tropo-
sphere.

Most GCMs suffer from a warm and dry bias over mid-
latitude continents in summer. LMDZ shares this same bias.
In addition to a systematic bias towards too enrichedδD val-
ues, LMDZ exhibits the strongest dry bias on days when it
simulates the most depletedδD. Moreover, the slope ofδD
biases vs. ln(q) biases is consistent with the observed and
simulatedδD-ln(q) slopes at the daily scale. The slope is also
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consistent with the observed and simulatedδD-ln(q) slopes
for latitudinal variations and inconsistent with those for lon-
gitudinal variations. This suggests that the same processes
that explain the jointδD-q variability at the daily scale and
for latitudinal variations explain the biases inq. We suggest
that the cause of the dry bias could be either a problem in
the large-scale advection bringing too much dry and warm
air from the south, or excessive BL mixing.

This paper shows the potential of combiningδD and q

measurements inδD-q or δD-ln(q) diagrams, to interpret
model–data and model–model differences in terms of the
representation of physical processes. However, even using
such diagrams, it is difficult to discriminate for sure between
Rayleigh lines and mixing lines. In addition, different kinds
of δD-ln(q) regressions may have the same slope: daily data
in summer, daily data in summer for the driest days, and lat-
itudinal gradient in summer. Observations, LMDZ simula-
tions and different sensitivity tests on the land surface may
feature large differences inq but still share the sameδD-
ln(q) slope. The similarity between different observational,
simulated and theoretical slopes leaves us with some ambigu-
ity that we cannot resolve here. Are theδD-ln(q) diagrams a
sufficient framework to interpret isotopic data, or do we need
to develop a more sophisticated theoretical framework? Or
does the similarity between the different slopes shows that
the same processes are at play in the observations, in all sim-
ulations and for both daily and latitudinal variations?

To resolve this issue, more work would be needed to de-
velop new theoretical frameworks, or to better constrain the
existing δD-ln(q) framework. A better spatial coverage of
water vapor isotopic measurements would be useful for doc-
umenting the composition of the water vapor from the dif-
ferent air masses that are being mixed. Measuring vertical
gradient in isotopic composition would be useful for docu-
menting the composition of the evapotranspiration. Further-
more, since the summer dry bias develops as air masses move
over the Korouvka region towards the southeast, daily data
over stations along a southeast–northwest transect would be
useful to document how the dry bias is being formed dur-
ing synoptic events. Finally, more precise measurement and
a better understanding ofd excess could add an additional
constraint to the system of isotopic equations that has so far
suffered from too many unknowns compared to the number
of equations.
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