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Abstract. The cloud overlap parameterα relates the com-
bined cloud fraction between two altitude levels in a grid box
to the cloud fraction as derived under the maximum and ran-
dom overlap assumptions. In a number of published studies
in this and other journals, it is found thatα tends to increase
with an increasing scale. In this Technical Note, we investi-
gate this analytically by considering what happens toα when
two grid boxes are merged to give a grid box with twice the
area. Assuming thatα depends only on scale, then between
any two fixed altitudes, there will be a linear relationship be-
tween the values ofα on the two scales. We illustrate this by
finding the relationship when cloud cover fractions are as-
sumed to be uniformly distributed, but with varying degrees
of horizontal and vertical correlation. Based on this, we con-
clude thatα increases with scale if its value is less than the
vertical correlation coefficient in cloud fraction between the
two altitude levels. This occurs when the clouds are deeper
than would be expected at random (i.e. for exponentially dis-
tributed cloud depths).

1 Introduction

Clouds tend to be represented in General Circulation Mod-
els (GCMs) as plane parallel and horizontally homogeneous,
with the combined horizontal cloud fraction between clouds
at different altitudes specified according to various overlap
schemes (e.g. Smith, 1990; Tiedtke, 1993). These schemes
are generally based on a combination of maximum and ran-
dom overlap. In maximum overlap, the clouds are maximally
overlapped in height, resulting in a minimum of interaction
between clouds and downward radiation. Where clouds are

randomly overlapped in height, the interaction with radiation
is greater.

Taking advantage of the fact that clouds close together in
altitude are likely maximally overlapped, and those signifi-
cantly different in altitude are likely randomly overlapped,
Hogan and Illingworth (2000) introduced a cloud overlap
scheme that has since been widely taken up within GCMs.
In this scheme, the mean combined cloud fraction between
two altitude levels is taken to be a weighted average (with
weight α) of the mean values given by the maximum and
random overlap assumptions respectively.

The value ofα is generally taken to be a function of the
height separation (1z) between the two altitudes, and is often
found to have an inverse exponential dependence on1z (e.g.
Hogan and Illingworth, 2000). The rate of fall is then deter-

mined by a cloud “decorrelation length”L (i.e. α = e−
1z
L ).

Since this initial study of Hogan and Illingworth (2000),
many others have investigated howα (andL) depend on hor-
izontal scale (e.g. Mace and Benson-Troth, 2002; Oreopou-
los and Khairoutdinov, 2003; Pincus et al., 2005; Willén et
al., 2005; Barker, 2008a, b; Shonk and Hogan, 2010; Ore-
opoulos and Norris, 2011; Oreopoulos et al., 2012). Though
a number of different definitions forα and methods for de-
riving L have been used in such studies, they generally find
thatα (and, hence,L) increases with horizontal scale.

2 The overlap parameterα

From the observed horizontal cloud fractionsca and cb at
altitudesa andb (on a fixed scale), the horizontal cloud frac-
tionscmax andcrand can be formed, under the maximum and
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random overlap schemes, as

cmax = max(ca,cb) (1)

crand= ca + cb − cacb. (2)

From the definition as given by Hogan and
Illingworth (2000) for α, these are related to the com-
bined horizontal cloud fractionct (jointly covered by the
clouds at both altitudes) by

ct = αcmax+ (1− α)crand, (3)

wherect , cmax andcrand are the averages (over time) ofct ,
cmax andcrand respectively. For the idealised case given here,
the averaging period is not important. However, most pub-
lished work on cloud overlap is based on seasonal averages
(e.g. Hogan and Illingworth, 2000; Oreopoulos and Norris,
2011).

Providedcmax andcrand are not equal to each other, which
is unlikely (as this could only happen if the cloud cover frac-
tion was always zero or one), Eq. (3) can be rearranged to
give

α =
ct − crand

cmax − crand
. (4)

As pointed out in Pincus et al. (2005), this is only one way
to defineα. Another method is to determine a set of values
for α using Eq. (3), based on the individual (unaveraged) val-
ues ofct , cmax andcrand, and, from these, to find an average
value forα. However, this approach leads to data being dis-
carded, as the values forα are not uniquely defined when
eitherca = 0 or cb = 0, potentially giving rise to truncated
statistics. As the probability thatca = 0 or cb = 0 decreases
with increasing grid size (e.g. Astin and Di Girolamo, 1999),
it seems prudent, when considering the scale dependence, to
use Eq. (4) to defineα (in which no data are discarded).

3 The horizontal scale dependence ofα

To investigate the scale dependence ofα, we will consider
what happens when two horizontally adjacent grid boxes,
which we labelj andj +1 respectively, are combined to give
a single larger grid box with double the area. In the follow-
ing, there is no significance toj or j + 1, except as labels to
distinguish the original two grid boxes. However, zonal and
meridional anisotropies in real cloud regimes could makeα

directionally dependent. This would not affect the mathemat-
ics in this note, but should be kept in mind when applied to
real data, if arbitrary pairs of adjacent grid boxes are com-
bined. This could be handled by giving a direction toj with,
say, grid boxj + 1 being zonally (or meridionally) adjacent
to grid boxj . In either case, the cloud fractionsCa andCb at
the two altitudes (a andb) in the larger grid box are given by

Ca =

(
ca(j)+ca(j+1)

2

)
Cb =

(
cb(j)+cb(j+1)

2

)  , (5)

where cx (y) is the cloud fraction in grid boxy at altitude
x. Again, the cloud overlapCMAX andCRAND (on the larger
scale) are formed, under the maximum and random overlap
assumptions, by

CMAX = max(Ca,Cb) (6)

CRAND = Ca + Cb − CaCb. (7)

The combined cloud fraction,CT , at a large scale is given by

CT =
ct (j) + ct (j + 1)

2
, (8)

where ct (y) is the combined cloud fraction in grid boxy.
To continue, letα1 be the value ofα at the original scale

andα2 be the value ofα when the two grid boxes are merged.
As in Eq. (4), the value ofα2 is given by

α2 =
CT − CRAND

CMAX − CRAND
, (9)

whereCT , CMAX andCRAND are the time averages ofCT ,
CMAX andCRAND respectively.

Assuming thatα depends only on scale (and the altitude
betweena andb), then (using Eq. 3) Eq. (8) becomes

CT =

α1cmax(j) + (1− α1)crand(j) + α1cmax(j + 1) + (1− α1)crand(j + 1)

2
.

(10)

The averages in Eq. (10) are those for grid boxesj and
j +1 respectively. Ifa andb are fixed altitudes, then Eqs. (9)
and (10) together imply thatα2 = mα1 + g, wherem andg

are constants. This does not necessarily imply that a linear
relationship betweenα1 andα2 will be observed, since data
from different altitudes (likely having differing values ofm

andg) may be combined in published studies.
For Eq. (10), we have implicitly assumed thatα1 is the

same for both grid boxesj andj + 1. To simplify the math-
ematics, in the following we will also assume that any aver-
age is the same, whether it is for grid boxj or for grid box
j + 1 (e.g.cmax(j) = cmax(j + 1) = cmax). In Eq. (10), this
is equivalent to dropping thej andj +1 dependences, which
together with Eq. (9) give

α2 =
cmax− crand

CMAX − CRAND
α1 +

crand − CRAND

CMAX − CRAND
. (11)

We can use Eq. (11) (or Eq. 10) to investigate the condi-
tions under whichα2 > α1 (i.e. whereα would increase with
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scale). As an example, consider the contrived case where
the cloud cover varies between grid boxes, but is always
the same at both heightsa and b (i.e. ca (j) = cb (j) and
ca (j + 1) = cb(j + 1), but ca (j) may not equalca (j + 1)).
This says nothing about the horizontal distribution of clouds
at each height. However, this would seem most likely to be
associated with particular cloud regimes, such as vertically
deep convective clouds. For this case,

cmax = max(ca (j) ,cb (j))

= max(ca (j) ,ca (j)) = ca (j), (12)

leading to

cmax = ca(j) = ca. (13)

Similarly, from Eq. (5), Ca = Cb and CMAX =

max(Ca,Cb) = Ca , giving

CMAX = Ca =

(
ca (j) + ca (j + 1)

2

)
. (14)

As we are assuming that the averages are the same for both
j and j + 1, Eq. (14) implies thatCMAX = ca = cmax and
α2 = mα1 + (1− m). Hence, in this case, the value ofm is
uniquely defined by the value ofα2 whenα1 equals zero (e.g.
if α2 = 0.2 whenα1 = 0, thenm = 0.8 andα2 = 0.8α1+0.2).

It is instructive to consider this case further by studying the
value ofm analytically. In this case, we can uniquely define
a mean,µ, and variance,σ 2, in cloud cover that is the same
at both heights, i.e.

µ = ca (j) = cb (j)

σ 2
= c2

a (j) − µ2
= c2

b (j) − µ2

 . (15)

In this case,crand is by definition (from Eq. 2)

crand= ca (j) + cb (j) − ca (j)cb (j) = µ + µ − c2
a (j). (16)

With Eq. (15), this gives

crand= 2µ − σ 2
− µ2. (17)

From Eqs. (7) and (14), the averageCRAND is given by

CRAND = Ca + Cb − CaCb

= Ca + Ca − CaCa = 2µ − C
2
a . (18)

This leads (from Eq. 5) to

CRAND = 2µ −

(
ca (j) + ca (j + 1)

2

)2

. (19)

Multiplying out gives

CRAND = 2µ −
1

4
(ca (j))2

−
1

4
(ca (j + 1))2

−
1

2
ca (j)ca (j + 1). (20)

Again, assuming that the averages are the same in both
grid boxes, the mean,µ, and variance,σ , in cloud cover are
the same for both grid boxesj andj+1, and retain their def-
initions as given in Eq. (15). In this case, the labelsj and
j +1 are redundant in the second and third terms on the RHS
of Eq. (20), and can be dropped to give

CRAND = 2µ −
1

4
c2
a −

1

4
c2
a −

1

2
ca (j)ca (j + 1). (21)

From Eq. (15), this reduces to

CRAND = 2µ −
1

2

(
σ 2

+ µ2
)

−
1

2
ca (j)ca (j + 1). (22)

By definition, the co-variance ofca (j) and ca (j + 1) is
given by

Cov(ca (j) ,ca (j + 1)) = ca (j)ca (j + 1) − µ2. (23)

Similarly, by definition, the (horizontal) cross-correlation
coefficient,R, in cloud cover between the adjacent (smaller)
grid boxes is given by

R =
Cov(ca (j) ,ca (j + 1))

√
Var(ca (j))

√
Var(ca (j + 1))

=
Cov(ca (j) ,ca (j + 1))

σ 2
. (24)

Equations (22), (23) and (24) together give

CRAND = 2µ −
1

2

(
σ 2

+ µ2
)

−
R

2
σ 2

−
1

2
µ2

= 2µ −
1

2
(1+ R)σ 2

− µ2. (25)

Putting these into Eq. (11) gives

m =
cmax− crand

CMAX − CRAND
=

µ − σ 2
− µ2

µ −
1
2 (1+ R)σ 2 − µ2

. (26)

As an example, if the cloud fraction can be modelled as
a Beta(p,q) distribution (e.g. Falls, 1974; Tompkins, 2002),
then

m =
2(p + q)

2(p + q) + (1− R)
(27)

α2 =
2(p + q)

2(p + q) + (1− R)
α1 +

(1− R)

2(p + q) + (1− R)
. (28)

In the simplest case, where the cloud fraction in each grid
box is uniformly or Beta(1,1) distributed (e.g. LeTreut and
Li, 1991), Eq. (28) gives

α2 =
4

5− R
α1 +

1− R

5− R
. (29)

(Thus, whereR = 0, thenα2 = 0.8α1+0.2). Hence, in this
contrived case (where the cloud cover is the same at both
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heights),α will always increase with scale (i.e.α2 > α1) pro-
vided that the horizontal correlation coefficient,R, in the
cloud fraction between adjacent grid boxes is positive and
less than 1.

Trivially, when R = 1, there is no scale dependence onα

(asm = 1). However, asR decreases to zero, the degree of
the scale dependence increases, and maximises whereR = 0.
This is displayed in Fig. 1, which shows the relationship be-
tweenα1 andα2 for a range of values forR in the case where
the cloud fraction in the adjacent grid boxes is assumed to
be uniformly distributed. The scale dependence is strongest
whenR = 0, in whichα2 = 0.8α1 + 0.2.

So far, we have looked at the scale dependence where the
cloud fraction varies from grid box to grid box, but does not
vary with altitude. This implies that the vertical correlation
between the cloud fractions at the two altitudes isρ = 1. Let
us now consider what happens whenca = cb, butca (j) need
not equalcb (j) (i.e. ρ 6= 1). For illustration, and to simplify
the mathematics, we will take the extreme case whereR = 0
and assume that the cloud cover fractions at heightsa andb

are correlated uniform distributions, with a (vertical) correla-
tion coefficientρ. This implies that the mean cloud fraction
at each height isµ =

1
2.

From Clark (1961) or Nadarajah and Kotz (2008) for ex-
ample, the mean (cmax) of the maximum of two correlated
normally distributed random variables with meanµ =

1
2,

standard deviationσ and correlation coefficientρ is given
by

cmax =
1

2
+ k (1− ρ)1/2 , (30)

wherek = σ 2π−0.5.
We could not find a reference for the mean of the maxi-

mum of two correlated uniform random variables, so we will
use Eq. (30), withk chosen to give the correct answer for
cmax whenρ = 0. (Equation 30 will always give the correct
answer whenρ = 1.) We will comment later on the accuracy
of this assumption.

If ca andcb are independent uniformly distributed random
variables, thenρ = 0 andcmax follows a Beta(2,1) distribu-
tion, which has meancmax =

2
2+1 =

2
3. Hence, Eq. (30) gives

the correct value forcmax if k =
1
6. This leads to

cmax ∼=
1

2
+

1

6
(1− ρ)1/2 . (31)

Also, when ca and cb are independent uniformly dis-
tributed random variables, their averageCa has the standard
symmetric triangular distribution, as doesCb. Hence,CMAX
is the mean of the maximum of two independent triangularly
distributed random variables. In this case,CMAX =

37
60, and

Eq. (30) gives the correct value ifk =
7
60. This leads to

CMAX ∼=
1

2
+

7

60
(1− ρ)1/2 . (32)
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Figure 1. The dependence ofα2 on α1 for cloud fractions (in ad-
jacent grid boxes) that are uniformly distributed, where the vertical
correlation coefficient in cloud coverρ = 1 and the horizontal cor-
relation coefficient in cloud cover isR (solid line). The dashed line
is where there would be no scale dependence toα (i.e. α2 = α1).
The circles are values given by simulation.

In a similar way toR, the vertical correlation coefficientρ
is defined as

ρ =
Cov(ca (j) ,cb (j))

√
Var(ca (j))

√
Var(cb (j))

=
Cov(ca (j) ,cb (j))

σ 2
=

cacb − µ2

σ 2
. (33)

Based on Eq. (2), Eq. (33) gives

crand= ca + cb − cacb = 2µ − µ2
− σ 2ρ (34)

(This is identical to Eq. 17 whenρ = 1.) For a uniform
distributionσ 2

=
1
12, giving

crand=
3

4
−

1

12
ρ. (35)
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Similarly,

CRAND = Ca + Cb − CaCb

= 2µ −
(ca (j) + ca (j + 1))

2

(cb (j) + cb (j + 1))

2
. (36)

Multiplying out gives

CRAND = 2µ −

(
ca (j)cb (j)

4
+

ca (j)cb (j + 1)

4

+
ca (j + 1)cb (j)

4
+

ca (j + 1)cb (j + 1)

4

)
. (37)

As we are only considering the case whereR = 0 (i.e. no
horizontal correlation), this simplifies Eq. (23) to

CRAND = 2µ −
ca (j)cb (j)

4
−

µ2

4

−
µ2

4
−

ca (j + 1)cb (j + 1)

4
. (38)

As the averages are the same for bothj andj+1,

CRAND = 2µ −
1

2
µ2

−
1

2
cacb

= 2µ −
1

2
µ2

−
1

2

(
µ2

+ σ 2ρ
)

(39)

CRAND = 2µ −
1

2
µ2

−
1

2
cacb = 2µ − µ2

−
1

2
σ 2ρ. (40)

With σ 2
=

1
12, this gives

CRAND =
3

4
−

1

24
ρ (41)

Putting the above values into Eq. (11) gives

α2 ∼= α1

(
30− 10ρ − 20(1− ρ)1/2

30− 5ρ − 14(1− ρ)1/2

)

+

(
5ρ

30− 5ρ − 14(1− ρ)1/2

)
. (42)

Though this is an approximate result, the simulated values
given in Fig. 2 show that Eq. (42) can be taken as exact for
all values ofρ. Thus, if ρ = 0 (i.e. the cloud cover at both
altitudes is uncorrelated),α2 =

5
8α1, and soα will always

decrease with scale (i.e.α2 < α1), except whereα1 = 0.
It seems likely, given the linear relationship between the

values ofα on the two scales, that for every value ofρ, there
will be a unique value forα that does not change with scale,
being the point of intersection with theα1 = α2 line. This is
illustrated in Fig. 2, where the relationship betweenα1 and
α2 is displayed for a range of values forρ (all with R = 0).
From Fig. 2, this value seems to be whereα1 = α2 ≈ ρ. Also,
whereα1 > ρ, thenα will decrease with scale, and where
α1 < ρ, thenα will increase with scale.
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Figure 2. The dependence ofα2 on α1 for cloud fractions that are
uniformly distributed (solid line), where the horizontal correlation
coefficient in cloud cover isR = 0, and the vertical correlation co-
efficient in cloud cover isρ. The dashed line is where there would
be no scale dependence onα (i.e.α2 = α1). The circles are values
from simulation.

4 Conclusions

Based on the definition ofα and the scale invariance of the
combined cloud fraction, ifα depends only on scale, then
the value of alpha,α2, on one scale is linearly related to the
value of alpha,α1, on the other scale (i.e.α2 = mα1 + g),
provided that the two altitudes are fixed. The values ofm and
g depend on a number of parameters, including the mean,µ,
and variance,σ 2, in cloud fraction at each altitude. However,
the most important parameters are the horizontal correlation
coefficient,R, between the cloud fractions in adjacent grid
boxes (at a given altitude) and the vertical correlation coeffi-
cient,ρ, between the cloud fractions at the two altitudes.

If R, ρ, µ and σ 2 are found from real cloud data, then
this note allows the value ofα2 to be calculated fromα1
directly. Being horizontal cloud properties,R, µ and σ 2

can be found directly from the passive or active remote
sensing of clouds. However,ρ would require knowledge of
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cloud vertical structure, which could come from active re-
mote sensing (e.g. as in Kato et al., 2010, from CloudSat and
CALIPSO data).

Dependent on the relative values ofα andρ, it is possible
for α to increase, decrease or stay the same with increasing
scale. However, the strength of the dependence is controlled
by R. Published results tend to obscure the linear relation-
ship betweenα2 and α1 by plotting them together on the
same graph against height separation, rather than against one
another (e.g. Oreopoulos and Norris, 2011). This also com-
bines data from differing pairs of altitudes (a andb) together,
where each pair could have a different linear relationship.
However, our results indicate that an “on average” increase
in α with scale implies that, on average,α must generally be
smaller thanρ.

In Astin and Di Girolamo (2006), we showed that on aver-
age,α ≈ ρ when cloud depths follow an exponential distri-
bution. Hence, we conclude that the published increase inα

with scale is a consequence of clouds being generally deeper
than would be expected at random (i.e. in a random Markov
field).

Also, the scale dependence disappears whenR = 1, and
is strongest whenR = 0. Hence, an increase inα with scale
implies thatR must be positive and less than 1. Based on
published data onα, or directly from cloud data, it is pos-
sible to determineR if there is enough data to determineρ,
µ andσ 2. As an illustration, Fig. 1 of Oreopoulos and Nor-
ris (2011) givesα1 ≈ 0 (at 75 km scale) andα2 ≈ 0.04 (at
150 km scale) for an altitude separation of 10 km when av-
eraged over June, July and August. Based on this note, this
would indicate that ifρ = 0, thenR has a maximum value
of 0.8 (our Fig. 1). However,R could equal zero, provided
thatρ ≥ 0.2 (our Fig. 2). Asρ is likely to be close in value
to α1, this would seem to imply thatR is closer to 0 than 0.8.
This is a wide range forR, but could be made narrower ifρ
is known.
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