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Abstract. We investigate different methods for estimating

anthropogenic CO2 using modeled continuous atmospheric

concentrations of CO2 alone, as well as CO2 in combination

with the surrogate tracers CO, δ13C(CO2) and 114C(CO2).

These methods are applied at three hypothetical stations rep-

resenting rural, urban and polluted conditions. We find that,

independent of the tracer used, an observation-based estimate

of continuous anthropogenic CO2 is not yet feasible at ru-

ral measurement sites due to the low signal-to-noise ratio

of anthropogenic CO2 estimates at such settings. The trac-

ers δ13C(CO2) and CO provide an accurate possibility to

determine anthropogenic CO2 continuously, only if all CO2

sources in the catchment area are well characterized or cali-

brated with respect to their isotopic signature and CO to an-

thropogenic CO2 ratio. We test different calibration strategies

for the mean isotopic signature and CO to CO2 ratio using

precise 114C(CO2) measurements on monthly integrated as

well as on grab samples. For δ13C(CO2), a calibration with

annually averaged 14C(CO2) grab samples is most promis-

ing, since integrated sampling introduces large biases into an-

thropogenic CO2 estimates. For CO, these biases are smaller.

The precision of continuous anthropogenic CO2 determina-

tion using δ13C(CO2) depends on measurement precision of

δ13C(CO2) and CO2, while the CO method is mainly limited

by the variation in natural CO sources and sinks. At present,

continuous anthropogenic CO2 could be determined using

the tracers δ13C(CO2) and/or CO with a precision of about

30 %, a mean bias of about 10 % and without significant

diurnal discrepancies. Hypothetical future measurements of

continuous 114C(CO2) with a precision of 5 ‰ are promis-

ing for anthropogenic CO2 determination (precision ca. 10–

20 %) but are not yet available. The investigated tracer-based

approaches open the door to improving, validating and re-

ducing biases of highly resolved emission inventories using

atmospheric observation and regional modeling.

1 Introduction

Earth’s carbon budget is strongly influenced by anthro-

pogenic CO2 emissions into the atmosphere (Keeling et al.,

1996; Le Quéré et al., 2015). In order to support studies

of the carbon cycle and to determine net and gross carbon

fluxes quantitatively, various measurement sites monitor the

atmospheric CO2 mole fraction worldwide. In top-down ap-

proaches and in conjunction with atmospheric transport mod-

els, these CO2 measurements are used to infer total CO2

emissions (Bousquet et al., 2000; Gurney et al., 2002; Peylin

et al., 2013), but a differentiation into biogenic, oceanic and

anthropogenic CO2 sources and sinks is not feasible with

CO2 concentration measurements alone. Inverse model stud-

ies commonly utilize anthropogenic CO2 emission invento-

ries to estimate anthropogenic CO2 and are then able to sepa-

rate anthropogenic from biogenic or oceanic carbon sink and

source influences. However, currently available emission in-

ventories exhibit large discrepancies between each other of

about 10–40 % at the country level (Peylin et al., 2011), and

increase further with decreasing spatial scale (Gurney et al.,

2005). These discrepancies suggest that biases may be on the

order of about 70–100 % for highly resolved (0.1◦× 0.1◦)

data sets and uncertainties (1σ) of emission inventories may

be between 30 and 150 % (Wang et al., 2013). In order to
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better study and quantify the biospheric carbon fluxes, their

underlying processes and potential feedbacks, it is desirable

to reduce the current uncertainties as well as biases of emis-

sion inventories. Validation and improvement of emission in-

ventories requires accurate and precise anthropogenic CO2

estimates (as well as accurate and precise transport models)

on all relevant timescales ranging from hours to years. We

hereafter refer to anthropogenic CO2 as fuel CO2 and in-

clude non-combustion emissions such as emissions from ce-

ment industry or non-energy use of fuels as well as agricul-

tural waste burning. Fossil fuel CO2 excludes all contribu-

tions from biofuel emissions or from agricultural waste burn-

ing. We define biofuel CO2 as non-fossil fuel CO2 released

during combustion, including solid (e.g., wood, waste, char-

coal, municipal renewable waste, bagasse, vegetal waste and

dung), liquid (e.g., biodiesel, bio gasoline and black liquor)

and gaseous (from compost or cattle farm) biomaterial. It

does not include large-scale biomass burning. For some pur-

poses, e.g., when validating fossil fuel emission reductions,

it may actually be advantageous to estimate only the fossil

fuel CO2 contribution, which is the fuel CO2 contribution

without biofuel CO2. However, when solving for biospheric

fluxes, the biofuel CO2 is important as well, since it equally

contributes to the instantaneously measured CO2 concentra-

tion and needs to be separated from the biospheric flux. In

the following, we seek to constrain the fuel CO2 (fossil fuel

CO2 plus biofuel CO2).
14C measurements are commonly used as surrogate to dif-

ferentiate between biogenic and fossil fuel CO2 contribu-

tions in the atmosphere, since fossil fuels do not contain any
14C, in contrast to biogenic sources (Levin et al., 2003). The
14C /C isotope ratio in CO2 is expressed on the 114C(CO2)

scale, which denotes the deviation of the 14C /C ratio in

CO2 from a standard material in per mill (Stuiver and Po-

lach, 1977). We use the depletion of 114C(CO2) at a pol-

luted measurement site relative to114C(CO2) in clean back-

ground air to derive quantitative information on the contri-

bution of fossil fuel CO2 to total measured CO2 mole frac-

tion at the polluted site. Radiocarbon (14C) is thus used as

quantitative tracer for fossil fuel contributions (e.g., Levin et

al., 2003; Levin and Karstens, 2007; Turnbull et al., 2006,

2015; Newman et al., 2015). However, there are a num-

ber of problems when using 14C(CO2) as a tracer for an-

thropogenic emissions. First, precise 114C(CO2) measure-

ments from conventional counting or accelerator mass spec-

trometry (AMS; see list of all abbreviations in Appendix

D) (better than 2 ‰) are time and cost intensive, thus cur-

rently prohibiting the coverage of large periods and large area

of such measurements. Attempts have been made to sam-

ple 14C(CO2) with a higher measurement frequency using

gas chromatography (GC) coupled to continuous-flow AMS

(McIntyre et al., 2013), but the technique is not applica-

ble to atmospheric 14C samples so far and the precision in

114C(CO2) is lower than for AMS or conventional count-

ing. This results in less precise fossil fuel CO2 estimates.

These studies indicate, however, that the measurement pre-

cision using GC and continuous-flow AMS may reach 5 ‰

in future. The benefit of such hypothetical quasi-continuous

but reduced precision fossil fuel CO2 estimates is assessed

for the first time in this work in order to check whether these

measurements would provide beneficial constraints for deter-

mining CO2 continuously.

Second, a complication of applying 114C(CO2) mea-

surements for fossil fuel CO2 estimation is that nuclear

power plants as well as nuclear fuel reprocessing plants emit
14C(CO2) and can bias regional114C(CO2)-based estimates

of fossil fuel contributions if not taken into account (Levin

et al., 2003; Graven and Gruber, 2011; Vogel et al., 2013b).

Moreover, biofuel CO2 contributions cannot be monitored

with 114C(CO2) measurements, since they have a similar

114C(CO2) signature as the biosphere or may even be ele-

vated in 14C due to the bomb radiocarbon 14C(CO2) stored

in wood material. This could become especially problematic,

since the use of biofuels is expected to play an increasingly

important role for the energy supply in the near future (Coyle,

2007). With these shortcomings of114C(CO2) as a tracer for

anthropogenic CO2 recognized, it is worth considering other

tracers for the estimation of fuel CO2 contributions.

Turnbull et al. (2015) showed that for an urban study area

in the middle of the North American continent, the local CO2

offset relative to clean air, 1CO2, can be used as a tracer for

fuel CO2 contributions if all other CO2 sources and sinks,

such as from the living biosphere, are negligible. This may

be the case for wintertime periods in urban areas when us-

ing a background station upwind and close to the urban area.

However, we do not expect 1CO2 to be a quantitative tracer

when biospheric fluxes occur within the study area. This is

normally the case in spring, summer and autumn.

Since CO is often co-emitted during (incomplete) combus-

tion and since CO can be measured continuously, the CO off-

set relative to clean air, 1CO, is frequently used as a tracer

for fuel CO2 (Meijer et al., 1996; Gamnitzer et al., 2006;

Rivier et al., 2006; Turnbull et al., 2006, 2011; Levin and

Karstens, 2007; Vogel et al., 2010; Newman et al., 2013).

If the mean ratio of the CO offset (1x) relative to the fuel

CO2 offset (1yF), i.e., 1x/1yF ≡ RF, is known and rela-

tively constant within 1 month, it is principally possible to

derive a continuous1yF estimate from1x measurements by

dividing1x by monthly meanRF. The overbar is used to em-

phasize that we use one averaged value forRF, even though it

actually varies with the relative fraction of the different emis-

sion groups in a varying catchment area of the measurement

site. CO is also produced during oxidation of methane and

hydrocarbons, particularly during summer (Granier et al.,

2000). The main sinks of CO are photooxidation and reaction

with OH (Parrish et al., 1993) as well as soil uptake (Inman

et al., 1971), leading to a rather short atmospheric lifetime

of CO of several weeks in summer (Prather et al., 2001).

Natural CO sinks and sources vary on timescales of hours

to seasons. Further, relative contributions of different fuel
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CO2 sectors (e.g., energy production, road traffic, residen-

tial heating, industrial emissions) with different emission ra-

tios (1CO /1CO2)may vary on short timescales of hours to

longer timescales of years if, for example, combustion tech-

nologies, processes and procedures change in the long term.

Therefore, the mean RF (=1x/1yF) is a function of space

and time and might need to be calibrated using, for exam-

ple, 114C(CO2) measurements (Levin and Karstens, 2007).

If RF does not vary significantly within the timescale of the

calibration, continuous 1yF can be estimated. However, if

RF varies strongly on timescales of smaller than the calibra-

tion interval, further corrections (e.g., diurnal or seasonal)

may be necessary (Vogel et al., 2010). These corrections are

only reliable if RF variations are systematic. Since this is not

always the case, additional or other continuous tracers may

need to be considered to improve fuel CO2 estimates.

One of these tracers may be δ13C(CO2), since fuel emis-

sions tend to be more depleted in 13CO2 than fluxes from the

biosphere. Zondervan and Meijer (1996), Pataki et al. (2006)

and Djuricin et al. (2010) attempted to estimate fuel CO2

emissions in specific case studies using mass spectromet-

ric measurements of δ13C(CO2), in addition to 114C(CO2)

measurements. Recently, new optical instrumentation allows

for δ13C(CO2) to be measured continuously (e.g., Esler et

al., 2000; Tuzson et al., 2011; Hammer et al., 2013; Vogel et

al., 2013a), thus opening the door for δ13C(CO2) as a con-

tinuous tracer for fuel CO2 contributions. In order to use

δ13C(CO2)measurements at an urban site, the mean isotopic

signature of the sources (and sinks) in the catchment area

of the site, δF, must be known (Newman et al., 2015) and

relatively constant and potentially require calibration (as dis-

cussed for CO). Further, the signature of fuel CO2 emissions

must be significantly different from biospheric CO2 emis-

sions in order to differentiate properly between them.

In many settings, we will exhibit neither a constant ra-

tio RF nor a constant fuel source signature δF. This will

especially be the case if multiple sources (i) with differ-

ent emission ratios RF,i and from different fuel δ13C(CO2)

source signatures δF,i are located in the catchment area of

the measurement site. In these cases, it may be advanta-

geous to divide the fuel emissions into (two) different groups.

CO will only be an adequate tracer for a certain emission

group if this group has a significantly different ratio RF

(=1x/1yF) than any other emission group. By analogy,

δ13C(CO2) will only be a good tracer for a certain emis-

sion group if the group’s emissions are significantly more

depleted or enriched with respect to the other groups. If we

divide all fuel CO2 contributions into two emission groups,

of which one is well constrained by CO and the other by

δ13C(CO2), we may then join both tracers to determine the

total fuel CO2 contributions. In several published studies,

the CO mole fraction has been used as a tracer for traf-

fic emissions only (e.g., Schmidt et al., 2014), since these

often exhibit high 1CO /1CO2 ratios. However, in some

regions, emission inventories (e.g., Landesamt für Umwelt,

Messungen und Naturschutz Baden-Württemberg, available

at http://www.ekat.baden-wuerttemberg.de/) show that the

emission ratio Rtr (= (1x/1y)tr) has been decreasing dur-

ing the last decade, degrading CO as a tracer for traffic con-

tributions. At the same time, diesel/gasoline for vehicles is

blended with an increasing amount of biodiesel/biogasoline

(on the order of 5 % for OECD countries; IEA, 2014). More

in general, emission inventories show that (the sum of solid,

liquid and gaseous) biofuel CO2 emissions in OECD coun-

tries have increased (IEA, 2014) and that the mean emis-

sion ratio of biofuel emissions Rbf (= (1x/1y)bf) is very

high (EDGARv4.3 emission inventory; EC-JRC/PBL, 2015),

qualifying CO as a tracer for biofuel contributions. How-

ever, the emission ratio varies depending on the combustion

type. Later we examine separately whether these two emis-

sion groups, traffic and biofuel emissions, could possibly be

traced with CO.

In the present study, we investigate how continuous CO2,

CO, δ13C(CO2) and 114C(CO2) measurements as well as

the combination of these tracers could be used to estimate

continuous fuel CO2. In order to validate how precisely and

accurately we may be able to determine fuel CO2 using con-

tinuous (hourly) CO2, CO, δ13C(CO2) and 114C(CO2) as

tracers, we use a modeled data set, in which, contrary to

measured data sets, CO2 contributions from all source cat-

egories, i.e., the biosphere, from fossil fuel and from bio-

fuel burning are traced separately. Using the modeled mole

fractions and isotope records of CO2, CO, δ13C(CO2) and

114C(CO2), we estimate the total fuel CO2 offset using these

tracers. We then discuss advantages and disadvantages of

the different tracers. Using a modeled data set has the addi-

tional advantage that isotopic signatures, emission ratios of

different emission sectors etc. can be varied in order to also

investigate the sensitivity of these source characteristics on

the fuel CO2 estimate. This enables us to judge how accu-

rately the sources in the catchment of the measurement site

need to be characterized for a certain required accuracy of

fuel CO2, and if a calibration, using, for example, precise

114C(CO2)measurements, is advantageous. In the course of

this, we also compare different possible sampling strategies

for calibration. We further assess which measurement preci-

sion is needed to achieve continuous fuel CO2 estimates with

sufficient precision. Additionally, we investigate the diurnal

cycle of the tracer-based continuous fuel CO2 estimates and

compare them to the modeled reference fuel CO2 in order to

determine whether we can reproduce the diurnal cycle cor-

rectly and hence whether we would introduce significant bi-

ases when using, for example, only afternoon values of fuel

CO2 in inverse models.

We discuss the model results for three typical European

sites, which differ in their annual mean fuel CO2 offset. We

define three pollution regimes, which we call “rural”, “ur-

ban” and “polluted”. Rural sites have mean fuel CO2 off-

sets of 0–5 µmol mol−1. We here use the (hypothetical) sta-

tion Gartow (53◦0′ N, 11◦3′ E) as an example with an annual
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mean fuel CO2 offset of 3 µmol mol−1. Gartow is located in

northern Germany about 160 km northwest of Berlin. Urban

sites span a range from 5 to 20 µmol mol−1. We use Hei-

delberg (49◦3′ N, 8◦4′ E) as an example, which is a typical

urban measurement site with large fuel CO2 emissions but

also similarly high biogenic sources and sinks in the catch-

ment, which are also active during relatively mild winters.

The mean modeled fuel CO2 offset in Heidelberg is about

16 µmol mol−1 (24 h). Polluted sites exhibit annual mean fuel

CO2 offsets larger than 20 µmol mol−1. A station in the out-

skirts of Berlin (52◦5′ N, 13◦6′ E) is used as an example site

with modeled mean fuel CO2 offset of 25 µmol mol−1. For

all sites, we looked at the same height above ground level

(30 m a.g.l). Note that this classification relates only to the

mean annual offset and not to single pollution events. We as-

sess whether an estimation of continuous fuel CO2 is pos-

sible at all sites and what may be the best tracer. Finally,

we give an outlook on how to apply this model study to a

real measured data set. Our investigation aims at providing

the basis for the decision of whether it is worthwhile con-

ducting continuous measurements of CO2, CO, δ13C(CO2)

and 114C(CO2) at a particular measurement station in order

to quantitatively and precisely estimate continuous fuel CO2

within a measurement network.

2 The modeling framework

For the study’s purpose of theoretically assessing precision

and accuracy of different tracer configurations for fuel CO2

estimation, it is only of secondary importance that mod-

eled time series be correct, but it is mainly important that

the model provides a reasonably realistic data set. In this

study, we simulate mole fractions and isotopic records for

the Heidelberg site (urban; see Levin et al., 2003) and for

two hypothetical stations Gartow (rural) and Berlin (pol-

luted) for the year 2012. All three stations may potentially

be part of the German ICOS atmospheric network (see http:

//www.icos-infrastructure.eu/).

We used the Stochastic Time-Inverted Lagrangian Trans-

port (STILT) model (Lin et al., 2003) as well as preset source

and sink distributions (see below). To simulate the atmo-

spheric transport we used meteorological fields from the Eu-

ropean Centre for Medium-Range Weather Forecast with 3-

hourly temporal resolution and 25 km× 25 km spatial reso-

lution (Trusilova et al., 2010). Details of the STILT model

are given in Lin et al. (2003) and in Gerbig et al. (2003);

here we only provide a few relevant details. By emitting 100

particles (representing the observed air parcel) at the mea-

surement location and inverting the meteorological fields in

time, it is possible to follow the particles’ trajectories back-

ward in time using mean wind and a parameterization for the

turbulent motion. For each of the trajectories, the sensitiv-

ity to emission fluxes is derived based on the residence time

within the lower half of the mixed layer during each advec-

tion time step (typically 0.25 to 1 h). The sensitivity of the

observed tracer mole fraction to upstream emissions was de-

rived by combining the sensitivities of each trajectory on a

common horizontal grid (here 1/12◦ latitude × 1/8◦ longi-

tude, corresponding to about 10 km× 10 km). To reduce im-

pact from undersampling of upstream areas at times when

particles are distributed over extensive areas with large gaps

between neighboring particles, the effective horizontal size

of the grid cells is increased dynamically with increasing

separation of the particles (Gerbig et al., 2003). This allows

efficient simulations with a relatively small ensemble size.

The sensitivity of the mole fraction at the measurement site

to emissions located upstream is typically called the foot-

print. The particles are traced back in time until they leave the

model domain, which extends from 16◦W to 36◦ E and from

32 to 74◦ N. Initial/lateral CO2 tracer boundary conditions

for CO2 tracer far-field mole fractions are taken from ana-

lyzed CO2 fields, generated by the global atmospheric tracer

transport model, TM3 (Heimann and Körner, 2003), based on

optimized fluxes (Rödenbeck, 2005) transported at a spatial

resolution of 4◦ × 5◦ with 19 vertical levels and a tempo-

ral resolution of 6 h (s96 v3.6, http://www.bgc-jena.mpg.de/

~christian.roedenbeck/download-CO2-3D/). The footprint is

multiplied by the biospheric and anthropogenic surface emis-

sions to estimate the mole fraction change at the measure-

ment site.

For the biospheric CO2 fluxes, we use the vegetation pho-

tosynthesis and respiration model (VPRM; Mahadevan et al.,

2008). The Net Ecosystem Exchange is calculated for dif-

ferent biome types based on SYNMAP (Jung et al., 2006)

using land surface water index and enhanced vegetation in-

dex from MODIS (http://modis.gsfc.nasa.gov/) satellite data,

as well as air temperature and shortwave radiation from

ECMWF. VPRM results are computed at 1/12◦×1/8◦ reso-

lution with hourly resolution. We neglect biospheric CO and

CH4 fluxes in the model. CO destruction by OH and CO pro-

duction via CH4 oxidation is taken into account (Gerbig et

al., 2003). However, CO production via non-methane hydro-

carbon (NMHC) oxidation and CO uptake by soils (Conrad,

1996) are not included in the model. When using CO as a

tracer for fuel CO2, neglecting natural CO sources and sinks

may be problematic since natural sources would lead to an

overestimation and natural sinks to an underestimation of

fuel CO2. We will discuss this in more detail in Sects. 3.3.2

and 3.4.

Anthropogenic emissions of CO2, CO and CH4 are

from a preliminary version of the EDGARv4.3 emission

inventory (EC-JRC/PBL, 2015) which was also used for

the UNEP Emissions Gap Report (Rogelj et al., 2014)

for the base year 2010 and has a spatial resolution of

0.1◦× 0.1◦. The emissions are further separated following

IPCC emission categories, which are again separated into

fuel types (i.e., hard coal, brown coal, oil, natural gas,

derived gas, biofuels etc.). To extrapolate the emissions to

the year 2012 specifically we follow the approach taken
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in the COFFEE data set (CO2 release and Oxygen uptake

from Fossil Fuel Emission Estimate) (Steinbach et al.,

2011) and use specific temporal factors (seasonal, weekly

and daily cycles) (Denier van der Gon et al., 2011) for

different emission categories, and apply country and fuel

type specific year-to-year changes at national level taken

from the BP statistical review of World Energy 2014 (avail-

able at http://www.bp.com/en/global/corporate/about-bp/

energy-economics/statistical-review-of-world-energy.html).

The STILT model calculates the total trace gas mole frac-

tion of CO2 (ytot) at the measurement site as the sum of a

background mole fraction ybg, contributions from the bio-

sphere ybio, from different fossil fuel types yff,i and different

biofuel types ybf,j :

ytot = ybg+ ybio+

∑
i

yff,i +

∑
j

ybf,j . (1)

The last two terms of Eq. (1) form the total fuel CO2 (yF).

We can associate a total isotopic δ13C(CO2) (δtot) record to

the total CO2 record following Mook (2001):

δtotytot ≈ δbgybg+ δbioybio+

∑
i

δff,iyff,i +

∑
j

δbf,jybf,j . (2)

The isotopic signatures attributed to the different emission

types, e.g., δff,i and δbio, are listed in Table 1. Note that we do

not implement a diurnal cycle into the biospheric signature.

The total CO mole fraction (xtot) can be balanced in anal-

ogy to CO2, but we neglect biospheric CO contributions as

they are expected to be small:

xtot = x
′

bg+

∑
i

xff,i +

∑
j

xbf,j = x
′

bg+

∑
i

yff,i

Rff,i

+

∑
j

ybf,j

Rbf,i

. (3)

The emission ratios Rff,i (= (1x/1y)ff,i) depend on the

emission category as well as fuel type and are determined by

the emission characteristics (implied emission factors) given

in EDGARv4.3. The footprint-weighted mean ratios, e.g.,

RF, are listed in Table A1 for Heidelberg. For the background

values 114Cbg, ybg, δbg and x′bg, we use those mole fractions

where CH4 mole fraction reaches a minimum value within 2

days. This is mainly the case in the afternoon, when vertical

mixing is strongest (for more details on the choice of back-

ground, see Appendix A2). Note that the CO background x′bg

is denoted with a prime, since it has been corrected for chem-

ical reactions with OH (sink) and for production from oxida-

tion of CH4 by applying a first-order chemical reaction on

hourly OH and CH4 fields. The contributions of fossil fuel

and biofuel CO are, however, not corrected for these chem-

ical reactions in the model, since the CO which is released

in the footprint area of the measurement site typically trav-

els only a fraction of its actual lifetime until arriving at the

measurement site.

Table 1. δ13C(CO2) source signature of fuel types and biosphere as

used in the model. The isotopic signature of the biosphere follows

the findings of Ballantyne et al. (2011) for Europe. The assigned

isotopic fuel values were chosen from mean measured isotopic sig-

natures in Heidelberg (Kaul, 2007, and unpublished data) or, if not

available, are similar to isotopic δ13C(CO2) values reported in An-

dres et al. (1994) or (for biogas) Widory et al. (2012).

Emission source δff,iδbf,j or δbio

[‰]

Hard coal −27

Brown coal −29

Peat −30

Solid waste −30

Heavy oil −31

Light oil −31

Natural gas −48

Derived gas −30

Solid biomass −29

Bioliquid −31

Biosphere

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

−27

−26

−25

−24

−23

−22

−22

−23

−24

−25

−26

−27

The 114C(CO2) (114Ctot) balance is also simulated and

follows

ytot

(
114Ctot+ 1

)
≈ ybg

(
114Cbg+ 1

)
+ ybio

(
114Cbio+ 1

)
(4)

+

∑
i

yff,i

(
114Cff,i + 1

)
+

∑
j

ybf,j (1
14Cbf,j + 1),

with 114Cbio, 114Cbf,j and 114Cff,i listed in Table A1 and

CO2 mole fractions taken from model results. As all fossil

fuel CO2 sources are devoid of 14C(CO2), fuel CO2 contribu-

tions are separated into fossil fuel and biofuel contributions.

In the following, we use six different tracers or tracer com-

binations to derive continuous fuel CO2: (a) CO2-only, (b)

CO, (c) CO as a tracer for traffic and δ13C as a tracer for all

fuel CO2 except that of traffic, (d) CO as a tracer for bio-

fuel CO2 and δ13C(CO2) as a tracer for fossil fuel CO2, (e)

δ13C(CO2) and (f) 114C(CO2). The six tracer combinations

were qualitatively motivated and described in the Introduc-

tion and the equations are derived in Appendix A1 and are

summarized in Table 2. They are briefly specified here with
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Table 2. Tracer or tracer combinations, required parameters and formula for estimation of targeted fuel CO2 concentration. In cases (c) and

(d) we further divide fuel CO2 into traffic CO2 and non-traffic CO2, or fossil fuel CO2 and biofuel CO2, respectively. In case (f) we can only

estimate fossil fuel CO2 with 114C(CO2)and therefore lack biofuel CO2 for a comprehensive fuel CO2 estimate.

Case Required

parameters

Formula (for derivation see Appendix A1)

(a) CO2 yF =1y

(b) CO RF yF =
1x

RF

(c) CO (tr)

+δ13C-CO2

Rtr,mtr,

δtr,δF-tr

yF =
1x(t)·mtr

Rtr
+
ytotδtot−ybgδbg−(ytot−ybg−ybf)δbio−ytrδtr

δF-tr−δbio
ytot

(d) CO (bf)

+δ13C-CO2

Rbf,mbf

δbf,δff

yF =
1x(t)·mbf

Rbf
+
ytotδtot−ybgδbg−(ytot−ybg−ytr)δbio−ybfδbf

δff−δbio
ytot

(e) δ13C-CO2 δF yF =
ytotδtot−ybgδbg−(ytot−ybg)δbio

δF−δbio
ytot

(f) 114C-CO2 114Cbf,

114Cbio

yF ≈ yff =
ybg

(
114Cbg−1

14Cbio

)
−ytot

(
114Ctot−1

14Cbio

)
−ybf

(
114Cbio−1

14Cbf

)
114Cbio+1

their underlying assumptions. When using CO2 as a tracer

for anthropogenic CO2 (case a in Table 2), we assume that

all CO2 stems from anthropogenic sources and no biospheric

sources or sinks exist in the catchment area. In the CO-based

method (case b in Table 2), we use CO as a tracer for anthro-

pogenic CO2 as CO is co-emitted during incomplete com-

bustion. We assume to know the monthly mean ratio of fuel

CO2 to CO. In the δ13C(CO2) approach (case e in Table 2),

we use the isotopic depletion of fuel CO2 relative to bio-

spheric CO2 and assume to know the mean isotopic signature

of fuel and biospheric CO2. The114C(CO2)-based approach

(case f in Table 2) makes use of the fact that fossil fuel CO2

contains no 14C(CO2), in contrast to biospheric (and biofuel)

114C(CO2). Both need to be known for calculation. We also

investigate the combination of CO and δ13C(CO2), with CO

as a tracer for (1) traffic CO2 (case c in Table 2) and (2) bio-

fuel CO2 and δ13C(CO2) for the respective remaining fuel

CO2 (case d in Table 2). This separation was made since

in Europe traffic and biofuel emissions both show a rather

large ratio of CO /CO2 compared to emissions from other

sectors, which makes CO a suitable tracer for these sectors.

When separating between traffic and non-traffic fuel CO2, we

need to know the monthly mean values for Rtr, mtr, δtr and

δF-tr. This holds equally true for separation between fossil

fuel and biofuel CO2. The different targeted emission groups

(fuel CO2, fossil fuel CO2, fuel CO2 without traffic, traffic

CO2, biofuel CO2 and biospheric CO2) are also listed and

characterized in Table A1.

3 Results

We investigated how well the different tracer combinations

perform at a typical urban, rural and polluted measurement

site. First, we will discuss the upper limit of precision and

accuracy of fuel CO2 estimation using these tracers when

assuming all parameters (e.g., δF) are known at every time

step. Here, the smallest possible time step is hours. We then

investigate how the use of averaged accurate parameters and

variables affects the fuel CO2 estimate. Next, we also per-

form a sensitivity analysis to identify which parameters and

variables need to be known at which precision and accuracy

for fuel CO2 estimation with satisfying accuracy (of, for ex-

ample, better than 10 %). Finally, we discuss the diurnal vari-

ation in fuel CO2 and include a realistic measurement uncer-

tainty into our considerations.

3.1 High (hourly) resolution of parameters and

variables

The integrated footprint-weighted parameters (e.g., RF, Rtr,

Rbf, δF, δff, δbf, δtr, δF-tr, mbf and mtr) are needed for the es-

timation of fuel CO2 using the tracers CO and δ13C(CO2)

(see Appendix A1 for derivation and Table 2 for summary of

all equations). These parameters are dependent on the emis-

sion characteristics of the sources in the catchment area of

the measurement site. If, for example, the mean isotopic sig-

nature of fuel CO2 sources in the catchment area varies or

if the catchment area itself varies, the integrated footprint-

weighted parameter δF will change. Typically, the integrated

footprint-weighted parameters vary on timescales of hours,

weeks, months and years. If, for a given measurement site,

we could determine these parameters on the timescale of

hours (which is the temporal resolution of our model), we

would be able to estimate fuel CO2 entirely correctly (dif-

ference of estimated and modeled fuel CO2 would be zero)

using CO and δ13C(CO2) or any combination of these trac-

ers.

Atmos. Chem. Phys., 15, 12705–12729, 2015 www.atmos-chem-phys.net/15/12705/2015/
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In contrast to methods using CO and/or δ13C(CO2), CO2-

only will overestimate fuel CO2 when biospheric CO2 con-

tributions are positive (which will often be the case during

nighttime and in winter) and underestimate fuel CO2 when

the biospheric CO2 is negative (which may be the case dur-

ing daytime in summer). This leads to time-dependent biases

depending on the proportion of biospheric CO2 to total CO2

at the location, which is in general not negligible compared

to the fuel CO2 signal.

As 114C(CO2) is not sensitive to biofuel contributions,

114C(CO2)-based fuel CO2 estimates will underestimate the

fuel CO2 contributions approximately by the amount of bio-

fuel CO2 to the regional CO2 concentration offset. Addition-

ally, any 14C(CO2) emissions from nearby nuclear power

plants or nuclear fuel reprocessing plants could potentially

mask the depletion of fuel CO2 contributions. Nuclear power

plant emissions were not implemented in this model, but we

will shortly discuss their possible effects in Sect. 5.

3.2 Low (monthly) resolution of parameters and

variables

Normally it is not be possible to determine parameters such

as RF, Rtr, Rbf, δF, δff, δbf, δtr, δF-tr, mbf and mtr with hourly

resolution. Thus we investigate how using monthly median

values of these parameters may influence the fuel CO2 esti-

mates. We will discuss later how we can obtain their monthly

mean values and for now we assume their monthly median

value is known. Note that we use the median instead of the

mean value for the footprint-weighted parameters, since the

median is less sensitive to outliers. Using only monthly me-

dian values will introduce sub-monthly inaccuracies into the

fuel CO2 estimate since the footprint-weighted parameters

vary on sub-monthly timescales. The variability in the dis-

crepancy between estimated and reference (directly mod-

eled) fuel CO2 estimates will depend on the magnitude of

sub-monthly variations of RF, Rtr, Rbf, δF, δff, δbf, δtr, δF-tr,

mbf and mtr, as well as on their absolute values. For exam-

ple, the more depleted the fuel CO2 emissions are, the larger

the isotopic difference between emissions from the biosphere

and from fuel burning and the better the tracer δ13C(CO2)

will be for fuel CO2 emissions as both emission groups can

be isotopically distinguished clearly (see Appendix C). For

our model setting, the sub-monthly variations (standard de-

viation) are about ±3 (nmol mol−1)/(µmol mol−1) for RF,

Rtr and Rbf; ±0.2 (nmol mol−1)/(nmol mol−1) for mbf and

mtr; and ±2 ‰ for δF, δff, δbf, δtr and δF-tr (variations due

to varying footprints in the STILT model and temporal emis-

sion patterns of the different emission sectors). This variation

is propagated into the fuel CO2 estimate. The corresponding

distribution of the difference between the estimated and mod-

eled fuel CO2 can be seen in Fig. 1 for the station Heidelberg

and in Figs. 2 and 3 for Gartow and Berlin.

The mean difference between the modeled and tracer-

based fuel CO2 estimate provides a measure for the accu-

racy of the fuel CO2 determination with the different tracer

methods. In principle, one cannot assume that, when using

the correct median values for RF, Rtr, Rbf, δF, δff, δbf, δtr and

δF-tr, no median bias will be introduced into the CO2 esti-

mate. The reason is that the values for RF, Rtr, Rbf, δF, δff,

δbf, δtr and δF-tr are calculated on an hourly basis independent

of the total fuel CO2 value (yF) at that time and are then aver-

aged monthly. However, if yF and RF, Rtr, Rbf, δF, δff, δbf, δtr

and δF-tr are correlated, sub-monthly over- and underestima-

tion of yF due to sub-monthly variation inRF,Rtr,Rbf, δF, δff,

δbf, δtr and δF-tr will not necessarily average out. An analy-

sis of the bias (difference between modeled and tracer-based

fuel CO2 estimate; x axis in Figs. 1–3) introduced when us-

ing monthly median footprint-weighted parameters is there-

fore vital. The standard deviations of the Gaussian fits to the

difference distributions (Figs. 1–3) provide a measure for the

precision of fuel CO2 determination.

All methods using δ13C(CO2) and/or CO (Figs. 1b–e, 2b–

e and 3b–e) are able to estimate fuel CO2 without signifi-

cant systematic biases if the annual median parameters δff,

δbf, δtr, δF-tr and RF are known (see Sect. 3.3. for the case

that they are not accurately known). Mean and median dif-

ferences of modeled and estimated fuel CO2 are within 10 %

of the annual mean fuel CO2 signal. The benefit when using

CO additionally to δ13C(CO2) is very small, which is due

to the fact that traffic or biofuel CO2 contributions are not

very distinct with respect to their isotopic signature or their

CO /CO2 emission ratio from the other fuel CO2 contribu-

tions for our model settings. When using CO as a tracer for

fuel CO2 (Figs. 1b, 2b and 3b) the standard deviation of the

difference between the estimated and the true fuel CO2 value

is larger than when using δ13C(CO2). The reason is the large

sub-monthly variation in footprint-weighted RF in our mod-

eled data.

Generally, the absolute standard deviation of the different

tracer distributions is larger at the polluted station than at ur-

ban and rural stations. At the same time, we found that the

variation in the footprint-weighted parameters such as RF,

Rtr, Rbf, δF, δff, δbf, δtr, δF-tr, mbf and mtr is largest in rural

areas and smallest in polluted areas, which is probably due to

the fact that the many polluters homogenize partly in polluted

catchment areas, whereas the emissions of the few different

polluters are temporally and spatially distinct at cleaner sites.

Hence, the larger spread of the fuel CO2 estimate at polluted

stations is not the result of larger source heterogeneity but is

rather due to the larger absolute signals (and with that larger

absolute variations) of fuel CO2 in the catchment area of

these sites. Only CO2 as a tracer for fuel CO2 shows less

variability at the polluted site Berlin, which is due to smaller

contribution from the biosphere in its catchment area. How-

ever, the relative variability (i.e., 1σ /mean(yF)) is signifi-

cantly higher in Gartow (e.g., the δ13C method: 20 %) than

it is in Heidelberg or Berlin (both ca. 5 %). Differences and

spreads of the CO2-only and 14C(CO2) method have already

been described in Sect. 3.1.
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Figure 1. Histograms showing the differences between the modeled fuel CO2 (assumed as correct) and the tracer-based estimated fuel CO2

for the year 2012 for Heidelberg using the different tracers and tracer configurations listed in Table 2. Differences result from sub-monthly

variations of parameters. Note the different y axis scale. Darker colors denote the winter periods and lighter colors the summer periods (see

legend). The distributions were fitted with a Gaussian fit and the shift (µ) and the standard deviation (σ) for the Gaussian fits are given

in the figure. Since the histograms do not follow Gaussian distributions (especially for 14C(CO2) due to non-normally distributed biofuel

CO2 contributions within 1 year) we also give the interquartile range (IQR) in the figure to remind the reader that the uncertainty may be

underestimated when using the Gaussian standard deviation for uncertainty analysis. The CO2 mole fractions are given in parts per million

(ppm), which is equivalent to µmol mol−1. Note that, in Heidelberg, mean fuel CO2 for summer is 15 µmol mol−1 and that for winter is

16 µmol mol−1.

We have found that only small median differences occur

when using δ13C(CO2) or CO as a tracer for fuel CO2. This

finding is only valid under the premise that the median values

of all input and footprint-weighted parameters are known.

If one or more of the parameters or variables are assigned

incorrectly, this will lead to a systematic error of the fuel

CO2 estimate. The sensitivity of this misassignment for the

different parameters and variables will be assessed in the next

chapter.

3.3 Sensitivity of fuel CO2 estimates on misassigned

parameters and variables

We have investigated how well we are able to estimate fuel

CO2 in a setting in which, for example, the monthly aver-

ages of all parameters are perfectly well known but tempo-

rally varying on a shorter timescale. However, since, in re-

ality, parameters such as δF or RF are only approximately

known, we need to investigate how a misassignment of one

of these parameters will influence fuel CO2 estimates. This

will provide information on how well certain parameters and

variables need to be assigned for a fuel CO2 estimate with

targeted accuracy. For this purpose, we misassign one pa-

rameter and, at the same time, keep the other parameters at

their correct value. We then determine how the fuel CO2 es-

timate changes (y axis in Fig. 4) when the misassignment of

the parameter (x axis) varies. The sensitivities of all methods

to the most important parameters and variables are shown

in Fig. 4 for example of the urban site Heidelberg. We have

done this analysis for the parameters CO2tot (Fig. 4a), δ13Ctot

(Fig. 4b), CO2bg (Fig. 4c), δ13Cbg (Fig. 4d), δF (Fig. 4e), δbio

(Fig. 4f), δbf (Fig. 4g), δtr (Fig. 4h), CO offset (Fig. 4i), mbf

and mtr (Fig. 4j), Rtr and Rbf (Fig. 4k), RF (Fig. 4l), 114Ctot

(Fig. 4m), 114Cbg (Fig. 4n), 114Cbio (Fig. 4o), and 114Cbf

(Fig. 4p). The variation in these values was chosen in a way

that the range includes the typical measurement precision for

CO2meas, CO2bg, δbg, δmeas,1
14Cbg and114Cmeas. The vari-

ation in the CO offset was chosen in a way that it displays the

measurement precision of total CO and of the background

CO but also includes realistic contributions from natural CO

sources and sinks. For the parametersRF,Rtr,Rbf, δF, δff, δbf,
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Figure 2. Same as Fig. 1 but for Gartow. In Gartow, mean fuel CO2 for summer is 2 µmol mol−1 and that for winter is 4 µmol mol−1.
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Figure 3. Same as Fig. 1 but for Berlin. In Berlin, mean fuel CO2 for summer is 23 µmol mol−1 and that for winter is 27 µmol mol−1.
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Figure 4. Sensitivity analysis: median difference between the modeled fuel CO2 and the tracer-based estimated fuel CO2 value (y axis) at

a typical urban site (Heidelberg) when using parameters/variables for fuel CO2 estimation (“assumed”) deviating from the correct parame-

ters/variables used in STILT. The error bars given at x = 0 (assumed value = model value) denote the interquartile ranges (IQR) for all x

positions. If the IQRs vary depending on the assumed value, the errors (IQRs) are drawn as shaded areas.

δtr, δF-tr, mbf, and mtr as well as for 114Cbio and 114Cbf, we

selected realistic ranges of sub-monthly parameter variation.

The error bars given at x = 0 of Fig. 4 show the interquar-

tile ranges (IQR) and stem from the sub-monthly variability

in δF, RF, mbf and mtr, which was discussed in Sect. 3.2.

One can directly identify critical parameters and variables

for which the difference between the modeled and estimated

fuel CO2 (y axis) changes significantly with increasing mis-

assignment of parameters/variables (x axis).

3.3.1 Sensitivity of CO2-only method

We confirm that the CO2-only method (green in Fig. 4)

is insensitive to the variation in the displayed parame-

ters/variables.

3.3.2 Sensitivity of CO method

Critical parameters/variables of the CO method (orange in

Fig. 4) are the CO offset 1CO (Fig. 4i), as well as the ra-

tio RF (=1x/yF) (Fig. 4l). In practice, the CO offset is de-

rived by subtracting the CO background as well as natural

CO source and sink contributions from the total measured

CO mole fraction. Typical fuel CO offsets are on the order

of 40 nmol mol−1. In our model we have not included natu-

ral CO sources and sinks, but in practice the uncertainty of

the CO mole fraction measurement and of the natural CO

contributions will add to the uncertainty of the fuel CO2

estimate. Assuming, for example, a CO background which

is 15 nmol mol−1 too large, or assuming an additional sink

resulting in a 15 nmol mol−1 lower CO background, which

may be a realistic diurnal variation in natural CO variation

(Gros et al., 2002; Vogel, 2010), would lead to a signif-

icant overestimation of fuel CO2 of about 2.5 µmol mol−1

(median). Therefore, for a real data set, it is vital to deter-

mine the natural CO contributions and sinks (also soil sinks)

using chemistry models or calibration with, for example,

114C(CO2) (see Sect. 4). In Heidelberg, the median modeled

ratio RF is about 5 (µmol mol−1)/(nmol mol−1) and shows a

rather large variation of 3 (nmol mol−1)/(µmol mol−1). Fig-

ure 4l shows that such a variation in RF contributes signif-

icantly to the imprecision of fuel CO2 in the CO method.

Also, the correct determination of RF is vital for accurate

fuel CO2 estimates using CO.

3.3.3 Sensitivity of methods using δ13C(CO2)

The sensitivities of fuel CO2 estimates using δ13C(CO2) only

(blue in Fig. 4) and combinations of δ13C(CO2) and CO are

rather similar (red and black in Fig. 4). Note that the sen-

sitivity on δbg or δtot is plotted when keeping ybg and ytot

constant. Changing the ybg or ytot values at the same time

Atmos. Chem. Phys., 15, 12705–12729, 2015 www.atmos-chem-phys.net/15/12705/2015/
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when changing δbg or δtot (following a Keeling curve (Keel-

ing, 1958, 1960) with typical mean δ13C source of −25 ‰)

results in sensitivity about a factor of 10 smaller and is there-

fore not critical. However, small δ13C(CO2) variations (e.g.,

due to finite measurement precision or small inaccuracies)

which are uncorrelated with CO2tot lead to large biases in

fuel CO2, e.g., a measurement bias of δtot = 0.1 ‰, leads to

a fuel CO2 misassignment of 5 (µmol mol−1) (see Fig. 4b).

Therefore, a high measurement precision as well as accuracy

of δ13C(CO2) is required for precise and accurate fuel CO2

estimation. Further critical parameters of the methods using

δ13C(CO2) are the isotopic signature of fuel CO2 and the

isotopic signature of biospheric CO2 in the footprint (see

Fig. 4e, f). The isotopic signatures of fuel and biospheric

CO2 must therefore be well known (or potentially calibrated;

see Sect. 4) if we want to use δ13C(CO2) as a tracer for

fuel CO2. In particular, assuming more enriched fuel iso-

topic signatures or too depleted biospheric signatures biases

the fuel CO2 estimates strongly, because in these cases, bio-

spheric and fuel CO2 sources are difficult to distinguish using

δ13C(CO2).

3.3.4 Sensitivity of 114C(CO2) method

Figure 4m–p display the sensitivity of the 114C(CO2)-

based estimate of fuel CO2 on the variables 114Ctot,

114Cbg and 114Cbio. While fuel CO2 is rather insen-

sitive to misassignment of 114C(CO2)bio (Fig. 4o) and

114C(CO2)bf (Fig. 4p), it is very sensitive to 114C(CO2)tot

(Fig. 4m) and114C(CO2)bg (Fig. 4n) as has already been de-

scribed in Turnbull et al. (2007). Thus, precise and accurate

114C(CO2) measurements are important for fuel CO2 de-

termination. Note that the best currently achieved measure-

ment precision of conventional counting or AMS measure-

ments is ±2 ‰ (equivalent to about ±1.0 µmol mol−1 fuel

CO2), but the hypothetical future continuous GC-AMS mea-

surements may be on the order of ±5 ‰ (equivalent to about

±3 µmol mol−1 fuel CO2). The reason why the fuel (biofuel

+ fossil fuel) CO2 estimate based on 14C is biased by about

1.1 µmol mol−1 is due to the fact that biofuel CO2, in con-

trast to fossil fuel CO2, contains 14C(CO2) and is therefore

not detectable through a lack of 14C(CO2).

3.4 Measurement precision and sub-monthly variation

in parameters/variables

In Sects. 3.3.1–3.3.4, we have seen how sensitive the fuel

CO2 estimates are to the total mole fractions and δ/1 val-

ues. Since they have a large impact on the fuel CO2 estimate,

we now include their uncertainty in our analysis of preci-

sion of fuel CO2 estimation. In order to display the effect

of a limited measurement precision of CO2, CO, δ13C(CO2)

and114C(CO2)we construct random realizations with mean

value zero and a specific standard deviation. Additionally,

we add a random variation to the CO offset and the bio-

spheric/biofuel isotopic (δ/1) signature in order to simulate

the effect of variability in CO to CO2 ratio and of isotopic end

members. These random uncertainties were not included in

Sects. 3.1 and 3.2 and in Figs. 1–3. Note that in reality these

variations may not be randomly distributed but have a dis-

tinct sub-monthly pattern. For example, we may introduce a

systematic bias in one direction if we have unaccounted pro-

duction of CO from VOCs or if we have unaccounted CO

(e.g., soil) sinks. These sources and sinks will not occur ran-

domly, but have a distinct sub-monthly pattern. Depending

on the sign of the net natural CO flux, the bias may be posi-

tive or negative. However, for simplicity, we also include the

natural CO variation here as a random vector as no natural

CO sinks or sources are included in the modeled CO offset

but we want to show the possible effect of their variation.

The random vectors which were used in this study in this

study are summarized and explained in Table 3. The distri-

butions of the difference between estimated (including mea-

surement and parameter uncertainties and sub-monthly vari-

ations) and modeled fuel CO2 can be seen in Figs. 5–7. Note

that a possible misassignment of parameters or variables as

investigated in Fig. 4 is not accounted for in either Figs. 1–3

or Figs. 5–7.

When including the measurement uncertainties and (in-

put and footprint-weighted) parameter variability in the con-

siderations, the mean bias remains unaltered, since the in-

cluded uncertainty is random. However, the distributions of

the CO and δ13C(CO2)-based approaches for rural sites (such

as Gartow), medium polluted sites (such as Heidelberg) and

polluted sites (such as Berlin) widen significantly by about

the same amount for all three sites. This is due to identical

assumed measurement precisions and parameter variations.

Since the absolute fuel CO2 offset is larger in Berlin (an-

nual modeled average ca. 25 µmol mol−1) than in Heidelberg

(16 µmol mol−1) and in Gartow (3 µmol mol−1), the relative

variability (=1σ/mean(yF)) is smallest for the measurement

site in Berlin (e.g., ca. 15 % for the δ13C(CO2) method) and

largest for Gartow (110 % for the δ13C(CO2) method). At

present, it is therefore questionable whether the estimation of

continuous fuel CO2 is possible at rural measurement sites.

Even 114C(CO2) measurements with a precision of 5 ‰ re-

sult in a variability in fuel CO2 of 60 %, but a 114C(CO2)

precision of 2 ‰ would lead to a variability in fuel CO2 of

only 35 % at rural sites (not shown here). The reduced preci-

sion of fuel CO2 estimates which we observe when includ-

ing limited measurement precision into our considerations

highlights again the necessity of performing precise atmo-

spheric measurements of δ13C(CO2) and CO2 if we want to

use δ13C(CO2) as a tracer for fuel CO2.

For urban sites, CO and δ13C(CO2)-based methods show a

very similar precision of about 4 µmol mol−1 (1σ). At urban

sites, δ13C(CO2) is slightly more precise than CO. It is worth

pointing out that CO2-only may be an adequate tracer for fuel

CO2 in polluted areas in the wintertime as absolute biases

are small (< 4 %) and the precision (ca. 12 %) is rather good.
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Table 3. Magnitude, physical reason and reference of parameter variation (included in Figs. 5–7).

Component Variation (random) Physical reason for variation Reference

ytot, ybg 0.05 µmol mol−1 measurement uncertainty Hammer et al. (2013)

δmeas, δbg 0.05 ‰ measurement uncertainty e.g., Tuzson et al. (2011);

Vardag et al. (2015)

xtot 15 nmol mol−1 natural CO sources and sinks Gros et al. (2002); Vogel (2010)

δbio 2 ‰ heterogeneity of biosphere compare with Pataki et al.

(2003)

114Cmeas , 114Cbg 5 ‰ measurement uncertainty McIntyre et al. (2013)

114Cbio 5 ‰ heterogeneity of biosphere and

turnover times

compare with Taylor et al.

(2015)

114Cbf 10 ‰ source/age of biofuels –

RF,Rtr, Rbf, δF
δff,δbf, δtr, δF-tr, mbf and mtr

–

Sub-monthly variation

already included as

only monthly median

values are used, but

parameters vary at an

hourly timescale

footprint or source mix change
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Figure 5. Same as Fig. 1 but now also including measurement imprecision.
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Figure 6. Same as Fig. 2 but now also including measurement imprecision.
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Figure 7. Same as Fig. 3 but now also including measurement imprecision.
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Figure 8. Comparison of median diurnal cycle of fuel CO2 given in model reference or estimated with one of six different tracer methods at

the measurement station Heidelberg. Error bars denote the standard error of the fuel CO2 estimate at each hour for the respective half year.

The diurnal cycle of the CO + δ13C(CO2) methods are not shown since they are very similar to the δ13C(CO2) method.

114C(CO2)measurements with a precision of 5 ‰ would be

the best tracer at all stations but are currently not available.

3.5 Comparison of the estimated fuel CO2 diurnal

cycle with different tracer configurations

As the diurnal cycle of CO2 emissions is coupled to a diur-

nal change of the atmospheric mixing layer height, fuel CO2

mole fraction varies during the day. In our calculations, we

only use monthly median values of RF, Rtr, Rbf, δF, δff, δbf,

δtr, δF-tr, mbf and mtr for fuel CO2 estimation. Discrepancies

between the modeled reference diurnal cycle and the tracer-

based diurnal cycle may be introduced due to a diurnal cycle

of the parameters RF, Rtr, Rbf, δF, δff, δbf, δtr, δF-tr, mbf and

mtr. We thus need to test whether we are able to reproduce the

diurnal fuel CO2 pattern in order to estimate fuel CO2 from

tracers at sub-diurnal resolution. Therefore, we calculate the

median diurnal fuel CO2 cycles with the different methods

and compare them to the reference model diurnal cycle for

summer and for winter (see Fig. 8 for the urban station Hei-

delberg).

One can see that the δ13C(CO2) method reproduces the

reference diurnal cycle within its variability very well (stan-

dard errors of the respective hour in a half year are de-

noted as error bars in Fig. 8). Median hourly differences are

about 0.1± 0.7 µmol mol−1 for methods using δ13C(CO2).

The CO2-only method largely overestimates fuel CO2 con-

tributions during the night by up to 10 µmol mol−1 in winter

and by about 15–25 µmol mol−1 in summer. During the after-

noon, the CO2-only method overestimates fuel CO2 in winter

and underestimates it in summer. Even though the absolute

difference is small during the afternoon, the relative differ-

ence is still large. The CO2-only method is therefore not able

to trace the diurnal fuel CO2 variation at a site like Heidel-

berg correctly. Using 114C(CO2) for fuel CO2 estimation

leads to a slight median underestimation throughout the day

(and season), which is due to the presence of 14C(CO2) in

biofuel CO2 masking all biofuel CO2 contributions. The CO

method slightly overestimates fuel CO2 during nighttime by

about 10 % in winter and 20 % in summer. The standard devi-

ation of the hourly medians of the differences between model

and CO-based fuel CO2 is about 15 % of the total fuel CO2.

One could consider implementing a diurnal correction into

the fuel CO2 estimate in a way that, in addition to monthly

varying values for RF, Rtr, Rbf, δF, δff, δbf, δtr, δF-tr, mbf

and mtr, hourly correction factors are implemented (see Vo-

gel et al., 2010). This will be advantageous if the param-

eters exhibit a significant diurnal cycle themselves. How-

ever, for our setting, implementing a diurnal correction fac-

tor only slightly improves the agreement between the model

and the estimated fuel CO2 (not shown here). The reason

is that the (hourly) median footprint-weighted parameters

do not influence the (hourly) median fuel CO2 estimates

linearly, and that the synoptic variations of the footprint-

weighted parameters are larger than the diurnal variations.

Therefore, an hourly median correction factor does not nec-

essarily improve the hourly fuel CO2 estimate. We note that

no diurnal systematic variability in the isotopic biospheric

(respiration and photosynthesis) signature or in the non-fuel

CO sinks and sources (which would be treated as an en-

hancement or reduction of the CO offset 1CO) was imple-

mented but rather only random uncertainties of ±2 ‰ for

δbio and ±15 nmol mol−1 for 1CO. This assumption of ran-

dom variability will not be correct if systematic (e.g., diur-

nal) variation in δ13Cbio and non-fossil 1CO variation oc-

cur. For δ13Cbio the diurnal changes are expected to be small

(< 1 ‰ (Flanagan et al., 2005) corresponding to fuel CO2 bi-

ases of < 0.5 µmol mol−1), but for CO these may be larger

(e.g., diurnal natural 1CO variation of about 10 nmol mol−1

may occur from dry deposition of CO in forest soils during

night and from photochemical production of CO by hydro-
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carbons during the day (Gros et al., 2002) corresponding to

ca. 2.5 µmol mol−1 fuel CO2). Therefore, in a real setting,

it might be necessary to model natural CO concentration in

order to not introduce a bias into diurnal yF structures.

In inverse model studies, often only afternoon hours are

used to derive fluxes, as the atmospheric mixing can be bet-

ter simulated by the models during conditions with a well-

developed mixed layer (Gerbig et al., 2008). Therefore, it

is especially important to check the afternoon values of fuel

CO2. Figure 8 shows an enlarged inlay of the diurnal cycle

during the afternoon hours. Since in this model study we use

the minimum of total CH4 values within 2 days as a back-

ground value (Appendix A2), the afternoon offsets are very

small, leading to a low signal-to-noise ratio. However, differ-

ences between the δ13C(CO2), CO, and 114C(CO2)-based

and reference fuel CO2 are very small as well (mean dif-

ferences < 10 % of afternoon fuel CO2 value, standard de-

viation of differences about 30 %). Therefore, it seems jus-

tified to use an ensemble of afternoon values of continuous

fuel CO2 estimates (based on δ13C(CO2) or CO) for inverse

model studies despite the small absolute fuel CO2 values of

about 1–2 µmol mol−1 in the afternoon hours at an urban site.

4 Calibration of δF, δF-tr, δff and RF with 114C(CO2)

measurements

In order to estimate fuel CO2 accurately with methods us-

ing CO and/or δ13C(CO2), the parameters δF, δF-tr, δff (and

δbio) and RF need to be known with high accuracy, since

biases are otherwise introduced into the fuel CO2 estimate

(see Fig. 4). However, for the evaluation of a measured data

set, δF, δF-tr, δff, δbio and RF are not per se available but re-

quire either extensive source sampling campaigns or good

bottom-up inventories. Alternatively, these parameters could

also be “calibrated” using fossil fuel CO2 estimates from

114C(CO2) measurements with high precision (in addition

to biofuel contributions, which need to be added on top). For

this purpose, Eqs. (1) and (2) can be rearranged and solved

for calibration of δF, δF-tr, δff or RF (for derivation see Ap-

pendix B).

Since 114C(CO2) measurements are time-consuming and

costly, in practice only a limited number of 114C(CO2)

measurements can be regularly performed. For example, in

the Integrated Carbon Observation System (ICOS) atmo-

spheric network, the radiocarbon measurement capacity was

designed for about 50 radiocarbon measurements per station

per year, of which about 26 will be used for integrated sam-

pling for long-term monitoring of fossil fuel CO2.

Previous radiocarbon calibration approaches have sug-

gested integrated (e.g., monthly) sampling of114C(CO2) for

CO tracer calibration (cf. Levin and Karstens, 2007, and Vo-

gel et al., 2010, for RF). Another possible approach for tracer

calibration is to take grab samples rather than integrated sam-

ples (e.g., Turnbull et al., 2011). Grab samples could be taken

throughout the year and the derived parameters δF, δF-tr, δff,

and RF could then be averaged to one median value or sep-

arated into seasons and averaged to separate values, for in-

stance, for summer and winter. The optimal sampling strat-

egy depends on the structure, variation and noise of δF, δF-tr,

δff, and RF within 1 year. Principally, it would also be possi-

ble to take all the samples consecutively at 2 h intervals dur-

ing a so-called “event” and calculate the median value from

the event. Therefore, we compare here four different sam-

pling strategies for parameter calibration, all using a total of

n samples per year (in ICOS: n≈ 24). Note that we include

sub-monthly variation in the parameters and measurement

uncertainties in the observations (as in Sect. 3.4).

1. Integrated sample calibration: take n/24 integrated sam-

ples each month and their associated background sam-

ples (for n≈ 24, consisting of 12 monthly integrated

samples at the measurement station as well as 12

monthly integrated samples at the background station)

and calibrate δF, δF-tr, δff, and RF on a monthly ba-

sis from the integrated samples (this corresponds to

the approach suggested by Levin and Karstens, 2007,

and Vogel et al., 2010, for RF). In this approach, the

mean 1CO and fuel 1CO2 (from integrated CO and

114C(CO2) sampling) over the course of 1 month are

used to calculate monthly 1x
1yF

. However, since the mean

of ratio < RF >=<
1x
1yF

> is actually required, and not

the ratio of means <1x>
<1yF>

(Vogel et al., 2010), biases

may be introduced into the fuel CO2 estimate (the same

holds for the factors in δF, δF-tr and δff).

2. Annual grab sample calibration: randomly select a num-

ber of samples n/2 (and their associated afternoon back-

ground (n/2)) each year and calibrate annual median

δF, δF-tr, δff, and RF. Biases introduced by this sampling

strategy are twofold. First, the random choice of grab

samples may not represent the median annual value.

This potential bias decreases with increasing number of

grab samples used. Second, the potential seasonal cy-

cle of the parameters is not considered. Therefore, in

the annual grab sample calibration, the wintertime and

summertime fuel CO2 estimates will always be shifted

against each other if δF, δF-tr, δff, and RF exhibit a sea-

sonal cycle, but only one annual median value for these

parameters would be used.

3. Seasonal grab sample calibration: randomly select a

number of samples n/4 (and their associated afternoon

background (n/4)) in summer and in winter and cali-

brate a median δF, δF-tr, δff, and RF with half-yearly res-

olution. Here, again, the random choice of grab samples

may not represent the median half annual value, and a

potential bias may be even larger here than in the annual

grab sample calibration, since only half the samples are

available to obtain a robust value for δF, δF-tr, δff, and
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Table 4. Absolute mean difference of tracer-based estimate and modeled (assumed as correct) fuel CO2 in µmol mol−1 for the tracers CO

and δ13C(CO2) for different sampling strategies and respective standard deviation (both determined from a Gaussian fit to the difference

histogram) for an urban setting (here: Heidelberg). Depending on the random selection of grab samples, the bias of the calibration with

annually distributed grab samples is sometimes positive and sometimes negative. Therefore, the mean absolute difference between the

modeled and calibrated value was determined in a Monte Carlo simulation and is shown with a “±” sign in front of the mean value to show

that the bias does not have a unique sign. The standard deviation denotes the 1σ uncertainty of the difference, which is always bidirectional.

Note that we only show the results for CO and δ13C(CO2), since the results when using a combination of these tracers are very similar to

those of the δ13C(CO2) method. Measurement uncertainties are included in all calibration methods.

Method CO mole fraction δ13C-CO2

Summer Winter Summer Winter

No uncertainties, monthly median values 0.0± 2.1 −0.3± 2.0 0.0± 0.7 0.1± 1.0

known (as shown in Fig. 1)

Measurement uncertainties included, monthly −0.2± 4.3 −0.3± 3.7 −0.1± 3.5 0.0± 4.2

median values known (as shown in Fig. 5)

Calibration with integrated n=24 −0.8± 4.9 −0.7± 4.0 −2.4± 5.2 −1.8± 5.1

samples (method 1)

Calibration with annually distributed n=24 ±1.2± 5.3 ±1.5± 4.7 ±0.8± 4.0 ±1.6± 4.9

grab samples (method 2) n=96 ±1.1± 5.2 ±1.3± 4.5 ±0.5± 3.8 ±1.1± 4.5

Calibration with seasonal grab n=24 ±1.2± 5.3 ±1.5± 4.7 ±1.6± 4.6 ±1.6± 4.9

sample calibration (method 3) n=96 ±0.8± 4.8 ±1.1± 4.3 ±0.9± 4.3 ±0.8± 4.3

Seasonal event calibration n=24 ±2.1±6.1 ±2.0± 5.1 ±1.2± 4.3 ±1.9± 5.1

(method 4) n=96 ±1.5± 5.6 ±1.9± 4.9 ±1.1± 4.2 ±1.3± 4.6

RF for summer and winter. In return, it is in principal

possible to detect the seasonal variation in RF and δF,

δF-tr, δff.

4. Seasonal event calibration: Randomly select an “event

day” each season. On this day, select n/2− 2 consecu-

tive grab samples (and one associated afternoon back-

ground) and calibrate a median RF and δF, δF-tr, δff with

half-yearly resolution. This approach is similar to ap-

proach 3 but entails a greater risk of choosing an event,

which is not representative of the entire season, since

subsequent samples are not independent of each other.

On the other hand, it has the advantage of using more

calibrations for the same number of radiocarbon mea-

surements than approach 3 since only one background

sample is needed for each event. However, if the back-

ground sample is biased, it will influence the entire

event.

Comparing these sampling strategies to each other using

one model run is difficult, since the result changes from ran-

dom realization to random realization, depending on the se-

lection of calibration samples in sampling strategy 2–4. We

have therefore performed a Monte Carlo simulation (with

500 runs) and used the root median square difference be-

tween the obtained and originally modeled reference values

RF and δF, δF-tr, δff to calculate the difference between tracer-

based estimate and modeled reference fuel CO2.

Table 4 shows the absolute mean difference and standard

deviation (as determined from a Gaussian fit to the difference

histogram of modeled and tracer-based fuel CO2, in analogy

to Fig. 5) for an urban setting. One can see that the “inte-

grated sample calibration” causes biases due to the covari-

ance of the factors in Eqs. (B1)–(B4). The effect is much

stronger for methods using δ13C (ca. 15 % of mean fuel CO2

offset in Heidelberg (16 µmol mol−1)) than it is for the CO

method (ca. 5 %). This bias is directed meaning that it is not a

random uncertainty but actually a systematic bias introduced

by computation. This is different from the calibrations on

grab samples, which have a bidirectional absolute difference.

Bidirectional differences may be advantageous over unidi-

rectional differences when analyzing long-term records as

bidirectional differences contribute to long-term noise rather

than biases. For CO, it seems that the integrated calibration

approach works well, but a uni-directed bias remains. Note

that the differences found here are not due to the insensitiv-

ity of biofuel CO2 contributions of 114C(CO2), as we add

the (assumed as known) biofuel CO2 prior to “calibration”

(see Eqs. B1–B3).

We further find that, since δF, δF-tr δff, and RF do not

exhibit a strong annual cycle but show rather large, high-

frequent variations, the best sampling strategy for 24 avail-

able radiocarbon measurements per year (as would be the

case for the ICOS network) is using all available samples

to calibrate well-defined median annual values of δF, δF-tr
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δff, and RF (sampling strategy 2). With 96 (or more) avail-

able radiocarbon measurements, it may only be advisable to

group the calibrations into half-yearly intervals. Having such

many radiocarbon grab samples available may be a realis-

tic scenario if the parameters do not show any trend over

the course of several years. Note that a monthly grab sample

calibration (not shown here) results in large biases of about

±3 µmol mol−1 for CO-based as well as δ13C(CO2)-based

methods and is thus not advisable.

The accuracy of the seasonal event calibration is slightly

worse than the accuracy of the seasonal calibration (see Ta-

ble 4) due to non-representativeness of a single event for the

entire season.

5 Discussion and conclusion

In this work, we analyzed the advantages and disadvantages

of different tracers for estimating continuous fuel CO2 at dif-

ferent types of measurement stations. The accuracy and pre-

cision of continuous fuel CO2 estimates at three example sta-

tions – one rural, one urban and one polluted site – were

calculated. This should serve as orientation for the devel-

opment of an atmospheric measurement strategy, so that the

best tracer configuration for a particular station can be chosen

to resolve the different CO2 source components over a coun-

try or region. The results can be used to plan and construct

new measurement networks and sampling strategies with the

goal of deriving fuel CO2 concentrations at high temporal

resolution.

The results of our model study suggest that, with our cur-

rent measurement precision of continuous tracers such as

CO or δ13C(CO2) (or 114C(CO2)), in general it is not pos-

sible to estimate fuel CO2 in rural areas (5 µmol mol−1 or

less of fuel CO2) with a precision better than 100 % (due to

the small signal-to-noise ratio). It could still be possible to

monitor single pollution events since the signal-to-noise ra-

tio is much higher during such events. At present, it does not

thus seem helpful to equip measurement stations in rural ar-

eas with continuous δ13C(CO2) and CO measurements with

the objective of monitoring continuous fuel CO2. However,

it seems that tracer-based fuel CO2 monitoring may be possi-

ble at urban or polluted sites (as planned, for example, within

the Megacities Carbon Project) and may have the potential to

improve the fuel CO2 bottom-up inventories.

We find that CO2-only cannot be used as a tracer for fuel

CO2, as a significant contribution of CO2 is released or taken

up by the biosphere even in wintertime. Only during winter

in strongly polluted areas do biogenic CO2 contributions lead

to a relatively small bias of about 5 % with the CO2-only ap-

proach and a small variation (σ /mean(yF): 5 %; see Fig. 7).

In contrast to CO2-only, CO and δ13C(CO2) can be used

as a tracer for fuel CO2 in summer and in winter at urban and

polluted sites. The accuracy of CO- and/or δ13C(CO2)-based

fuel CO2 estimates depends to a large degree on how well the

different parameters such as RF, δF, and δbio are known. Mis-

assignment leads to significant biases in the fuel CO2 esti-

mate (Fig. 4). Therefore, in practice, it is important to screen

and monitor all sources and sinks in the catchment area of

the measurement site and to determine the median isotopic

source signature and the median ratios RF, Rtr, Rbf as well

as the CO offset as accurately as possible, for example, by

calibration with co-located 114C(CO2) measurements. The

accuracy of the fuel CO2 estimate after 14C calibration de-

pends strongly on the number of radiocarbon samples avail-

able for calibration and on the sampling strategy used. For

example, in the ICOS project, approximately 24 radiocarbon

samples will be available for calibration of RF, δF, δff, or

δF-tr. With that number of calibration samples available, due

to the large noise of the calibrated footprint-weighted param-

eters δF δff, or δF-tr, it may be advantageous to group all cal-

ibrations to obtain robust annual median values for δF, δff,

or δF-tr. If a large number of precise radiocarbon measure-

ments are available, or if the parameters do not change over

the course of several years and thus several years of calibra-

tion samples can be accumulated, it is advantageous to ap-

ply radiocarbon calibrations at half-yearly resolution. Note

that due to changes in technology and technical processes,

as well as due to a year-to-year variation in extreme tem-

peratures, the contribution from fuel CO2 different sectors

is likely to change within a period of four years. However,

this could be checked, for example, using nighttime Keeling

plot intercepts (Vardag et al., 2015). For calibration of RF,

integrated 114C(CO2) calibration could be used with rather

small but systematic biases or grab samples could be used

for slightly larger but random uncertainty. The accuracy will

then typically be better than 10 % for the CO method or the

δ13C(CO2) method.

The precision of CO- and δ13C(CO2)-based approaches

is very similar for all site classes, but for polluted sites

δ13C(CO2) seems slightly more precise. For Heidelberg it

is about 25 % (e.g., 1σ /mean(yF)). For CO, the uncertainty

originates mainly from the large variation in RF in our model

runs due to the inhomogeneity of fuel CO sources in the foot-

print area of urban or polluted measurement stations and due

to natural CO sources. The uncertainty of the δ13C(CO2) ap-

proach is mainly determined by the limited measurement pre-

cision of δ13C(CO2). Thus in order to use δ13C(CO2) as a

tracer for fuel CO2 it is vital to perform isotopic measure-

ments with a precision of at least 0.05 ‰. The combination

of δ13C(CO2) and CO for fuel CO2 estimation is favorable in

cases where each of two emission groups is well distinguish-

able by one of the tracers. Since for our model setting this

is only partly the case (EDGAR emission inventory; see Ta-

ble A1), the combination of these tracers provides only little

additional information.

We have found that hypothetical future 114C(CO2) mea-

surements with 5 ‰ absolute precision of background and

measured 114C(CO2) values (see Figs. 5f–7f) would gen-

erally be a very precise tracer for continuous fuel CO2 es-
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timation at rural (1σ /mean(yF)≈ 60 %), urban (ca. 15 %)

and polluted (ca. 10 %) stations. The precision of fuel CO2

estimates is determined mainly by the limited measurement

precision of background and total114C(CO2) (±5 ‰). Note,

however, that 114C(CO2) measurements with 5 ‰ precision

are not yet fully developed and commercially available. For

comparison, a 114C(CO2) measurement precision of 1 %

would be needed to achieve a fuel CO2 precision similar to

that of δ13C(CO2)- and CO-based methods. An uncertainty

of 2 %, which could be a realistic near-future precision of

laser-based instruments (Galli et al., 2013), would lead to

relative uncertainties of 260, 50 and 30 %, respectively. The

downside of 114C(CO2) is its inability to determine biofuel

CO2. Therefore, the114C(CO2)methods will underestimate

the fuel CO2 (biofuel plus fossil fuel) contributions approx-

imately by the share of biofuel in CO2 at the site. This may

be only a small contribution, as was the case for the stud-

ied year 2012 (e.g., 5 % in Heidelberg), but may increase in

the future. Note also that we have not investigated the effect

of nuclear power plant 14C(CO2) contributions at the mea-

surement site, which could additionally bias fuel CO2 esti-

mates derived from 114C(CO2) measurements. Dispersion

model results for Heidelberg (M. Kuderer, personal commu-

nication, 2015) suggest that the nuclear power facilities (most

importantly Philippsburg, located about 25 km southwest of

Heidelberg) increase monthly mean 114C(CO2) by about

(2± 2) ‰, corresponding to a misassignment in fuel CO2

of about 0.8± 0.8 µmol mol−1 (≈ 5 %). If there are nuclear

power plants or fuel reprocessing plants in the catchment area

of the measurement site and if monthly mean emission data

of pure 14C(CO2) from these nuclear facilities are available,

it is advisable to correct for them at the highest possible tem-

poral resolution using, for example, transport models (Vogel

et al., 2013b). Note that for the calibration of RF, δF, δff or

δF-tr using 114C(CO2) grab samples, it should be possible

to choose the calibration grab samples via trajectory forecast

such that no nuclear power plant influences are encountered

in the grab samples. However, this limits the footprint area

that can be sampled and calibrated.

We have compared the diurnal cycle of the tracer-based

fuel CO2 estimates for Heidelberg and found that the tracer

configurations using CO, δ13C(CO2) and 114C(CO2) were

able to reproduce the diurnal cycle well and show a mean

difference of better than 5± 15 % and a root mean square

difference of 15 % at the most. This seems surprising, since

one might expect a diurnal pattern of δF and RF due to a

varying share of emissions of different emission sectors in

the footprint, leading to a systematic deviation of the esti-

mated from the real modeled diurnal cycle. However, since

the diurnal patterns are small (e.g., peak-to-peak difference

of δ13C(CO2) ca. 2 ‰), the mean diurnal variations are not

significantly improved when using a diurnal correction of the

mean isotopic source signatures. One should keep in mind

that natural CO contributions may also vary systematically

on a diurnal basis. Such a natural systematic variation was

not included in the model simulation but will potentially in-

troduce a diurnal bias into the continuous fuel CO2 estimate

in a real setting. Therefore, it may be necessary to model or

approximate natural CO in a real setting. It may be possible

to approximate the (sub-monthly) natural CO component us-

ing formaldehyde (HCHO) measurements, since the produc-

tion of CO from NMHC passes HCHO as an intermediate

molecule (Atkinson, 2000). However, the high dry deposi-

tion rate of HCHO may complicate the interpretation further.

Since afternoon values are often used in inverse model stud-

ies to derive fluxes, it is important that afternoon fuel CO2

values can be estimated accurately. This could be confirmed

for δ13C(CO2) and CO in this study (see Fig. 8).

In order to better study the biospheric carbon fluxes on all

relevant scales, it is important to improve fuel CO2 bottom-

up inventories, so that fuel and biospheric CO2 can be sep-

arated for independent use in inverse model approaches. At

present, emission inventories typically have uncertainties of

30–150 % at regional resolution (Wang et al., 2013). We were

able to show in our study that some tracer-based approaches

such as CO and δ13C(CO2)-based methods lead to uncertain-

ties of fuel CO2 of 30 % and accuracies of 10 % (after calibra-

tion). However, for retrieving improved emission estimates

using inverse models, also the model transport errors need to

be taken into account and convoluted with the accuracy of

fuel CO2 estimates. At the moment, the model transport er-

rors are usually larger during nighttime (ca. 100 %) than in

the afternoon (ca. 40 %) (excluding at mountain sites), which

is why mainly afternoon values are used in model inversions

(Gerbig et al., 2008). Obviously, but unfortunately during the

afternoon hours, the fuel CO2 signal is very small, compli-

cating the unbiased estimation of fuel CO2 emissions using

continuous tracers in inverse transport models in these hours

until better transport models and boundary layer height mod-

els exist.

Appendix A: Methods of continuous fuel CO2

determination

A1 Tracer configurations and their emission groups

We formally introduce six different tracers or tracer combi-

nations, which we use to estimate fuel CO2 continuously:

CO2 is used as the sole tracer for fuel CO2. CO, δ13C(CO2)

and 114C(CO2) records are each used solely with CO2 to

estimate fuel CO2. Further, CO is used as a tracer for traffic

(and δ13C(CO2) as a tracer for fuel CO2 minus traffic) and

finally CO is used as a tracer for biofuels (and δ13C(CO2) as

a tracer for fuel CO2 minus biofuels). The different emission

groups are also listed and characterized in Table A1.

A1.1 CO2 as the sole tracer for fuel CO2

When using CO2 alone as “tracer” for fuel CO2 (yF = yff +

ybf), the total regional CO2 offset is assumed to solely origi-
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Table A1. Annual or half-yearly (summer: S; winter: W) averaged114C(CO2), δ
13C(CO2),1CO /1CO2 ratios, and mean fraction of CO2

and CO relative to total CO2 and CO offsets as used in our model study for the measurement site Heidelberg for the year 2012. Biosphere

114C(CO2) values are based on Taylor et al. (2015). The 1CO /1CO2 ratio and the fractions of CO2 and CO offset were taken from the

STILT model runs, which were fed with anthropogenic emissions from the EDGAR emission inventory. Note that fractions of biofuels in

traffic CO2 emissions are not included. δ values were derived by assigning an isotopic value to each fuel type and weighting these depending

on the respective share of the fuel type to total fuel CO2 at the measurement site. The δ values of the biosphere are the half-yearly mean

values from Table 1. Analogously, Rx (and 114Cx) values were derived by assigning an emission ratio CO /CO2 (and 114C(CO2)value)

to each emission sector and weighting these depending on the respective share of the emission sector to total fuel CO2 at the site.

Emission group 114C-CO2[‰] δ13C [‰] Rx = (1CO /1CO2)x % of 1CO2 % of 1CO

S W [ppb ppm−1] S W S W

Fuel CO2 −995 −31.5 −33.5 7 50 80 100 100

Fossil fuel CO2

(excl. biofuels)

−1000 −32 −34 3 45 70 50 37

Biofuel CO2 90 −27 −28 30 5 10 mbf = 50 mbf = 63

Fuel CO2 excl.

traffic CO2 (but

incl. biofuels)

−990 −31.5 −33.8 7 35 67 70 80

Traffic fuel CO2 −1000 −31 −31 7 15 13 mtr = 30 mtr = 20

Biospheric CO2 60 −23 −25.5 0 50 20 0 0

nate from fuel emissions:

yF =1y, (A1)

with 1y = ytot− ybg.

This simple approach is valid if (nearly) all CO2 emissions

are from fuel burning, as might be the case in cold winters or

in areas without biospheric activity (e.g., megacities).

A1.2 CO as a tracer for fuel CO2

The CO offset (1x = xtot−x
′

bg) can be used to estimate fuel

CO2 offset if it is divided by the mean ratio RF =1x/1yF

of all fuel sources:

yF =
1x

RF

. (A2)

Note that, in reality, the ratio RF varies depending on the

share of emissions of different emission sectors in the catch-

ment area and their temporal emission patterns, as well as

due to natural CO sources and sinks, at least in summer

(Prather et al., 2001). We show RF with an overbar to em-

phasize that this is a footprint-weighted average of the fuel

emission ratio.

A1.3 CO as a tracer for traffic CO2 and δ13C(CO2) as

a tracer for all fuel CO2, except for traffic CO2

We now include δ13C(CO2) in fuel CO2 estimation as a

tracer for all fuel CO2 except those of traffic (yF-tr = yff+

ybf− ytr).

ytot = ybg+ ybio+ ytr+ yF−tr (A3)

ytotδtot = ybgδbg + ybioδbio+ ytrδtr + yF−trδF-tr (A4)

In analogy to RF we show δtr and δF-tr with an overbar to

emphasize that these are footprint-weighted averages of the

emission groups traffic CO2 and fuel CO2 excluding traffic,

respectively. Solving Eq. (A3) for ybio, we can substitute ybio

in Eq. (A4). In analogy to Eq. (A2), we use CO as a tracer

for traffic CO2:

ytr(t)=
xtr(t)

Rtr

, (A5)

with the mean 1CO /1CO2 ratio of traffic Rtr =

(1x/1y)tr. COtr can be determined from

COtr(t)=1CO(t) ·mtr, (A6)

withmtr = (1xtr/1x) being the share of traffic CO to the to-

tal CO offset. mtr needs to be estimated from bottom-up in-

ventories and can be found in Table A1 (right column) and is

also dependent on the footprint area of the measurement site

and the sources and sinks lying in this area. Equations (A3)–

(A6) can then be rearranged:

yF−tr =
ytotδtot− ybgδbg−

(
ytot− ybg− ytr

)
δbio− ytrδtr

δF-tr− δbio

. (A7)

Total fuel CO2 (yF) contribution can then be determined

as the sum of ytr (Eq. A5) and yF-tr (Eq. A7).
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A1.4 CO as a tracer for biofuel CO2 and δ13C(CO2) as

a tracer for all fuel CO2, except for biofuel CO2

This method of fuel CO2 estimation is in analogy to case

A.1.3, but instead of separating fuel CO2 into traffic con-

tributions (ytr) and others (yF-tr), we separate it into biofuel

contributions (ybf) and others (yF-bf = yff); this leads to

yF−bf =
ytotδtot− ybgδbg− (ytot− ybg− ybf)δbio− ybfδbf

δff− δbio

. (A8)

Analogously to Eq. (A10), we formulate for ybf:

ybf(t)=
1x(t) ·mbf

Rbf

, (A9)

with mbf = (1xbf/1x) from bottom-up inventories (see Ta-

ble A1). Total fuel CO2 (yF) is calculated as the sum of ybf

(Eq. A9) and yF-bf (Eq. A9).

A1.5 δ13C(CO2) as the sole tracer for fuel emission

When using δtot as a tracer for all fuel contributions, Eq. (A3)

and Eq. (A4) simplify to

yF =
ytotδtot− ybgδbg− (ytot− ybg)δbio

δF− δbio

(A10)

if all fuel CO2 (yF-tr and ytr) contributions are pooled to yF.

A1.6 114C(CO2) as a tracer for fossil fuel CO2

Following Levin et al. (2008), we can derive fossil fuel CO2

from 114C(CO2)and total CO2 measurements according to

yff = (A11)

ybg

(
114Cbg −1

14Cbio

)
− ytot

(
114Ctot −1

14Cbio

)
− ybf

(
114Cbio −1

14Cbf

)
1+114Cbio

.

However, since114Cbio ≈1
14Cbf, and because biofuel con-

tributions are not known, we neglect the last term of the nu-

merator in the following. Note that, since 114C(CO2) is not

sensitive to biofuel contributions, it is only possible to esti-

mate the fossil fuel CO2 contributions without biofuel con-

tributions.

A2 Determination of parameters and variables

The background values ybg, x′bg, δbg and 114Cbg should rep-

resent the regional clean air to which the source contributions

from the footprint area are added. Since there are often no

nearby clean-air observations available for a polluted station,

we use those mole fractions as a background where the air

masses in the boundary layer are well mixed with the free

troposphere. This is usually the case in the afternoon and is

associated with low mole fractions. Since CO2 and CO both

have local sinks relevant on the timescale of days, we here

use CH4 as an indicator for a well-mixed boundary layer and

assume that, when the CH4 mole fraction reaches a minimum

value (within 2 days), vertical mixing is strongest. In princi-

pal, if continuous radon measurements were available, these

could also be used as an indicator for vertical mixing (Dörr

et al., 1983), instead of CH4. We checked that the CH4 min-

imum values always represent a lower envelope of the simu-

lated greenhouse gas record and does not vary at the synoptic

timescale. We then use the total mole fractions and isotopic

records ytot, xtot, δtot, and114Ctot observed during situations

with minimal CH4 mole fractions as background values.

Further, in order to solve Eqs. (A2)–(A11), we need the

input parameters δbio and 114Cbio. These input parameters

were assigned with the objective of creating a realistic mod-

eled data set (see Tables 1 and A1). Additionally, the inte-

grated footprint-weighted parameters RF, Rtr, Rbf, δF, δff,

δbf, δtr, δbio, δF-tr, mbf and mtr are required (see Table A1).

We call these parameters footprint-weighted since the ratios

and isotopic signatures depend on the relative contribution

from the different emission sectors (with their sector spe-

cific emission ratios and isotopic signatures) within the foot-

print of the measurement site. We represent the integrated

footprint-weighted parameters with an overbar to draw at-

tention to the fact that the parameters are averaged over the

(e.g., monthly) footprint area. Even though the emission fac-

tors of the source categories used here are fixed for every

pixel, integrated footprint-weighted RF, Rtr, Rbf, δF δff, δbf,

δtr, δbio, δF-tr, mbf and mtr are not constant in time, because

the footprint of the measurement site and the emission pat-

terns are temporally variable. Thus, the footprint-weighted

parameters change when the emissions from the different

sectors or the footprint of the measurement site vary. Note

that for our model study we do not require the parameters

to be absolutely correct, since we do not compare them to

measured data. However, since we want to provide a realistic

case study, we seek to use the most realistic parameters (see

values in Tables 1 and A1).

Appendix B: “Calibration” with 114C(CO2)

Solving Eqs. (A3), (A8), (A9) and (A11) for fuel CO2 re-

quiresRF, δF, δff and δF-tr. If these values are not known, they

may be derived from114C(CO2)observations (what we then

call 114C(CO2)-calibrated). For the calibration, yff must be

known. The idea is to calibrate fossil fuel CO2, e.g., with

precise 114C(CO2)measurements, on a lower time resolu-

tion (e.g., monthly) and assume that the footprint-weighted

parameters RF, δF, δff and δF-tr do not change significantly

within this calibration interval.

Re-arranging Eqs. (1) and (2) for δff leads to

δff = (B1)

ytotδtot− ybgδbg− (ytot− ybg− yff− ybf)δbio− ybfδbf

yff

,
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Figure B1. (a) Example period showing fuel CO2 of different fuel CO2 estimation methods and reference modeled fuel CO2. Dark blue:

mean δF is −32 ‰; cyan: mean δF is −39 ‰. (b) Correlation plot between estimated and modeled fuel CO2 for mean δF =−32 ‰ (dark

blue and solid line) and mean δF =−39 ‰ (cyan and dotted line) during the entire year of 2012. Fuel CO2 can be estimated much better

using δ13C(CO2) when the fuel δ13C signature is strongly depleted with respect to the biosphere. Note that the slope slightly changes when

using more depleted sources. This is because few high fuel CO2 peaks span the linear regression and therefore determine the slope to a large

degree, but as a general tendency for the Heidelberg data set, the high fuel CO2 peaks exhibit an isotopic signature, which is more enriched

as the isotopic signature of the mean fuel source mix.

which could then be used in Eq. (A9). Note that we re-

quire the biofuel CO2 in addition to the fossil fuel CO2 from

114C(CO2).

δF can then be derived if the ybf concentration is known.

δF =
δffyff+ δbfybf

yff+ ybf

(B2)

If fossil fuel emissions are divided into fossil fuel contribu-

tions without traffic (yF-tr) and traffic contributions (ytr), we

can derive δF-tr required for solving Eq. (A8):

δF-tr =
δFyF− δtrytr

yF− ytr

. (B3)

Analogously, the ratio RF could be calibrated following

RF =
1x

1yF

. (B4)

In order to calculate the monthly mean value of 〈δF〉 and

〈RF〉, the mean ratios 〈 1x
1yF
〉 (Eqs. B1–B4) are needed. How-

ever, from integrated 114C(CO2) sampling, we only have

the mean fossil fuel CO2 and fuel CO2 values and can thus

only calculate 〈1x〉/〈1yF〉. Using the product (or ratio) of

the means rather than the mean of the product (ratio) is only

correct if the factors are uncorrelated. Since the factors in

Eqs. (B1)–(B4) (and 1x and 1yff) are correlated, the inte-

grated calibration cannot be applied without introducing a

bias into monthly mean 〈δF〉, 〈δff〉, 〈δF-tr〉 and 〈RF〉. Instead

of using integrated 114C(CO2) samples in order to obtain

the monthly fossil fuel CO2 values, it is possible to take grab

samples and analyze these for114C(CO2) (and with that yff),

total CO2, δ13C(CO2)tot and CO in order to calculate the in-

dividual (non-averaged) values for δF, δF-tr, δff and RF (see

Sect. 4).

Appendix C: Influence of more depleted fuel δ13C(CO2)

signatures

We have argued that we only require a realistic set of input

parameters, rather than an absolutely correct set of param-

eters to estimate uncertainties of the different tracer meth-

ods. However, the results presented so far are to some de-

gree dependent on the emission characteristics used in our

model (see Table A1). When using CO as a tracer for fuel

CO2, it would be advantageous if natural sources of CO were

negligible and if the emission ratio RF were the same for

all sources. When using CO2 as a tracer for fuel CO2, bio-

spheric CO2 emissions should be negligible, and when using

δ13C(CO2), it would be advantageous if fuel CO2 emissions

were strongly depleted compared to biospheric emissions. It

is beyond the scope of this work to show explicitly, for all

cases, how the “choice” of different emission characteristics

influences the fuel CO2 estimate in terms of precision and ac-

curacy. However, in Fig. B1, we illustrate for this latter case

how the presence of more depleted fuel sources in the foot-

print area of the measurement site could improve the tracer

δ13C(CO2) for fuel CO2 estimation. This should serve as an

example showing how much the emission characteristics at a

site may influence the precision of fuel CO2 estimates using

different tracer configurations.

Figure B1 shows that fuel CO2 can be estimated much bet-

ter when the mean source mix in the catchment area of the

measurement site exhibits a strongly depleted isotopic source

signature. The regression coefficient improves from 0.94 to

0.99 and the precision within 1 year decreases significantly

by 40 % when choosing δF that is 7 ‰ more depleted (−39 ‰

instead of −32 ‰). The precision of δ13C(CO2)-based fuel

CO2 will increase with decreasing isotopic signature of fuel

CO2 sources. Analogously, the precision of CO-based fuel
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CO2 estimates will increase with decreasing inhomogeneity

of CO /CO2 ratio of fuel CO2 sources. This effect should

be taken into account when designing a measurement net-

work and thus highlights the importance of a thorough source

evaluation in the catchment area prior to instrumental instal-

lation.

Appendix D: List of abbreviations

AMS Accelerator mass spectrometry

bf Biofuel

bg Background

bio Biosphere

EDGAR Emissions Database for Global Atmospheric

Research

F Fuel

F-bf Fuel excluding biofuels (i.e., ff)

ff Fossil fuel

F-tr Fuel excluding traffic

GC Gas chromatography

ICOS Integrated Carbon Observation System

IQR Interquartile range

mx CO share of emission group x to CO offset

NPP Nuclear power plant

ppm parts per million, equivalent to µmol mol−1

Rx Ratio of CO to CO2 in the emission group x

SD Standard deviation

STILT Stochastic Time-Inverted Lagrangian Particle

model

tot Total

x CO mole fraction

y CO2 mole fraction
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