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Abstract. Isomeric epoxydiols from isoprene photooxi-

dation (IEPOX) have been shown to produce substantial

amounts of secondary organic aerosol (SOA) mass and are

therefore considered a major isoprene-derived SOA pre-

cursor. Heterogeneous reactions of IEPOX on atmospheric

aerosols form various aerosol-phase components or “tracers”

that contribute to the SOA mass burden. A limited num-

ber of the reaction rate constants for these acid-catalyzed

aqueous-phase tracer formation reactions have been con-

strained through bulk laboratory measurements. We have de-

signed a chemical box model with multiple experimental

constraints to explicitly simulate gas- and aqueous-phase re-

actions during chamber experiments of SOA growth from

IEPOX uptake onto acidic sulfate aerosol. The model is

constrained by measurements of the IEPOX reactive up-

take coefficient, IEPOX and aerosol chamber wall losses,

chamber-measured aerosol mass and surface area concentra-

tions, aerosol thermodynamic model calculations, and offline

filter-based measurements of SOA tracers. By requiring the

model output to match the SOA growth and offline filter mea-

surements collected during the chamber experiments, we de-

rive estimates of the tracer formation reaction rate constants

that have not yet been measured or estimated for bulk solu-

tions.

1 Introduction

The gas-phase photooxidation of isoprene (2-methyl-1,3-

butadiene), the largest biogenic volatile organic compound

(VOC) emitted worldwide (Guenther et al., 2012), yields iso-

meric isoprene epoxydiols (IEPOX) (Paulot et al., 2009).

Subsequent acid-catalyzed multiphase chemistry of IEPOX

is a significant source of secondary organic aerosol (SOA)

mass (Lin et al., 2012; Surratt et al., 2010). In recent field

studies, up to 50 % of summertime aerosol mass loadings in

the southeastern United States have been attributed to SOA

resulting from IEPOX heterogeneous reactions (Budisulis-

tiorini et al., 2013, 2015; Lin et al., 2013b). Similar IEPOX-

derived SOA influences are expected in areas with large

isoprene emissions, such as forests primarily composed of

broadleaf vegetation. As a significant SOA precursor, IEPOX

has implications regarding potential climate forcing due to

the scattering of incoming radiation and also impacts human

health due to its large contribution to PM2.5 (particulate mat-

ter < 2.5 µm in diameter) mass (Chung and Seinfeld, 2002;

Dockery et al., 1993).

Gas-phase IEPOX can partition to atmospheric aerosol

surface area where it can react with aerosol liquid water and

aerosol-phase constituents – including sulfate, nitrate, and or-

ganics – to form a variety of lower-volatility organic com-

pounds that can remain in the aerosol and contribute to to-

tal aerosol mass. Because their presence establishes IEPOX
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as the precursor, the particle-phase products are referred to

as IEPOX-SOA “tracers” (i.e., “molecular markers”). The

efficiency of gas-phase IEPOX removal by aerosol surface

area is thought to be largely a function of aerosol acidity

and concentration of nucleophiles that can react with accom-

modated IEPOX by acid-catalyzed oxirane ring opening to

yield the tracer compounds (Eddingsaas et al., 2010; Gas-

ton et al., 2014; Nguyen et al., 2014; Piletic et al., 2013;

Riedel et al., 2015; Surratt et al., 2007b). Products of the re-

actions have been proposed to include the 2-methyltetrols (2-

methylthreitol and 2-methylerythritol) from addition of wa-

ter, and the corresponding isomeric sulfate esters (IEPOX-

OS) from sulfate addition (Reactions R1 and R2) (Claeys et

al., 2004; Surratt et al., 2007a).

IEPOX(aq)+H++H2O→ 2-methyltetrols + H+ (R1)

IEPOX(aq)+H++SO2−
4 → IEPOX-OS+H+ (R2)

Products of nitrate addition, while observed less often, are

also thought to be important in certain cases (Darer et al.,

2011; Lin et al., 2012). Additional condensed-phase reac-

tions are thought to form IEPOX-derived dimeric species

(2-methyltetrol dimers, OS dimers), isomeric C5-alkene

triols, cyclodehydration products (3-methyltetrahydrofuran-

3,4-diols (3-MeTHF-3,4-diols)), and higher-order oligomers

which have also been identified in field and chamber stud-

ies (Lin et al., 2012, 2014, 2013b; Wang et al., 2005). In

the aerosol phase, these oligomers or other high-molecular-

weight aerosol species may be in dynamic equilibrium

with low-molecular-weight tracers (i.e., equilibrium between

monomers and oligomers) (Kolesar et al., 2015). The for-

mation of unsaturated IEPOX-derived oligomers has been

linked to brown carbon formation and therefore potential ra-

diative forcing (Lin et al., 2014). General acids, such as bisul-

fate, can also serve as oxirane ring-opening catalysts, though

rates for such reactions tend to be significantly slower than

rates for acid catalysis under the majority of aerosol condi-

tions (Eddingsaas et al., 2010; Gaston et al., 2014).

To date, only the formation of IEPOX-derived 2-

methyltetrols and/or organosulfates has been investigated

through direct bulk kinetic measurements (Cole-Filipiak et

al., 2010), the extension of bulk kinetic measurements of sur-

rogate epoxides (Eddingsaas et al., 2010), and computational

estimates (Piletic et al., 2013). While the tetrol and IEPOX-

OS tracers are responsible for a sizeable fraction of IEPOX-

derived SOA (Lin et al., 2013a, b), the remaining tracer for-

mation reactions have yet to be examined, and accurate es-

timates would benefit SOA modeling efforts (Karambelas et

al., 2014; McNeill et al., 2012; Pye et al., 2013). Here we

present an approach that combines chamber experiments, of-

fline quantification of SOA tracers from filter samples using

authentic standards, and modeling to estimate the formation

reaction rate constants of IEPOX-derived SOA tracers whose

formation rates are currently unknown. This has been done

for a single seed aerosol system, acidified ammonium sulfate

at low relative humidity (RH), but the estimated rate coeffi-

cients are anticipated to be independent of the seed aerosol

used.

2 Methods

2.1 Chamber experiments

Experiments were conducted under dark conditions in an in-

door 10 m3 Teflon smog chamber at the University of North

Carolina at Chapel Hill (UNC) (Lin et al., 2014; Riedel et al.,

2015). Acidic ammonium sulfate seed aerosol was injected

into the dry (RH< 5 %) chamber using a custom-built atom-

izer with an atomizing solution of 0.06 M (NH4)2SO4 and

0.06 M H2SO4 until the desired total aerosol mass concen-

tration was achieved. After seed injection, the chamber was

left static for at least 30 min to ensure that the seed aerosol

concentration was stable and uniformly mixed. IEPOX was

then injected into the chamber for 2 h by passing∼ 4 L min−1

of N2(g) through a glass manifold heated at 60 ◦C contain-

ing 50–300 µL of a 100 mg mL−1 ethyl acetate solution of

trans-β-IEPOX (Zhang et al., 2012), the predominant IEPOX

isomer (Bates et al., 2014). The majority of the SOA mass

growth occurred within the first hour of the injection period;

after 2 h, significant SOA growth had ceased after the major-

ity of IEPOX was injected and reacted.

Chamber aerosol number distributions, which were sub-

sequently converted to total aerosol surface area and vol-

ume concentrations, were measured by a scanning electrical

mobility system (SEMS v5.0, Brechtel Manufacturing Inc.

– BMI) containing a differential mobility analyzer (DMA,

BMI) coupled to a mixing condensation particle counter

(MCPC Model 1710, BMI). Total volume concentration of

seed aerosols was converted to total mass concentration as-

suming a density of 1.6 g mL−1, in accord with aerosol ther-

modynamic model outputs described in more detail below,

and SOA total volume concentration was converted to to-

tal mass concentrations assuming a density of 1.25 g mL−1

(Kroll et al., 2006). The chamber RH and temperature were

monitored with a commercial RH/temperature probe (OM-

62, Omega Engineering Inc.).

2.2 SOA tracer quantification

On completion of IEPOX injection, a filter sample was

collected for analysis of the chamber-generated SOA.

Aerosols were collected onto 46.2 mm Teflon filters (part no.:

SF17471, Tisch Scientific) in a stainless-steel filter holder

for 2 h at ∼ 15 L min−1 with a carbon strip denuder (Sun-

set Labs) upstream of the filter holder. Filters were stored

in 20 mL scintillation vials at −20 ◦C prior to extraction and

analysis. Denuder efficiency tests were performed by passing

∼ 500 ppbv of IEPOX in N2(g) at low RH (< 5 %) through

the denuder at 2 L min−1. Approximately 80 % of IEPOX

was removed from the sampling stream under these condi-
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tions, as measured by an iodide-adduct high-resolution time-

of-flight chemical ionization mass spectrometer (HR-TOF-

CIMS, Aerodyne Research Inc.) (Lee et al., 2014). The de-

nuder is expected to be less efficient at the higher flow veloc-

ities and shorter residence times during filter collection.

As described in previous studies (Lin et al., 2012; Sur-

ratt et al., 2010), IEPOX-derived SOA components were

extracted from filters with high-purity methanol prior to

analysis. Analysis was performed on a gas chromatograph

coupled to a mass spectrometer equipped with an electron

ionization source (GC/EI-MS, Hewlett-Packard 5890 Se-

ries II GC coupled to a Hewlett-Packard 5971A MS) and

an ultra-performance liquid chromatograph/high-resolution

quadrupole time-of-flight mass spectrometer equipped with

electrospray ionization (UPLC/ESI-HR-QTOFMS, Agilent

6500 Series). 2-Methyltetrols, C5-alkene triols, 3-MeTHF-

3,4-diols, and the IEPOX-derived dimer were quantified by

GC/EI-MS with prior trimethylsilylation. GC/EI-MS cali-

brations were performed with authentic 2-methyltetrol and

3-MeTHF-3,4-diol standards (Budisulistiorini et al., 2015;

Zhang et al., 2012). In the absence of authentic standards,

the triols and dimer were assumed to have the same re-

sponse factor as the 2-methyltetrols (Lin et al., 2012, 2013b).

Aliquots of filter extracts were reconstituted in a 50 : 50

(v/v) methanol :water mixture from which the IEPOX-OS

and IEPOX-derived dimer organosulfate (IEPOX-dimerOS)

were quantified using UPLC/ESI-HR-QTOFMS operated in

the negative ion mode. An authentic IEPOX-OS standard was

used for calibration, and IEPOX-dimerOS was assumed to

have the same response factor as the IEPOX-OS standard

(Budisulistiorini et al., 2015).

2.3 Model setup and evaluation

Reaction kinetics of SOA generation were investigated with a

zero-dimensional time-dependent chemical box model incor-

porating explicit aqueous-phase tracer formation. The model

is initialized with the amount of trans-β-IEPOX added to

the injection manifold and the measured seed aerosol to-

tal surface area and mass concentration. Estimates of the

aqueous-phase molar concentrations of the inorganic seed

aerosol species ([H+], [H2O], [HSO−4 ], [SO2−
4 ]) and the to-

tal volume of the aqueous phase were obtained from the Ex-

tended AIM Aerosol Thermodynamics Model III (AIM, http:

//www.aim.env.uea.ac.uk/aim/aim.php) (Clegg et al., 1998;

Wexler and Clegg, 2002). The composition of the atomizer

solution was used as the AIM inputs with a RH of 10 %, as

AIM does not allow RH inputs < 10 %. As is typical with

aerosol thermodynamic model calculations, the aerosol com-

ponents were treated as a metastable solution, thereby sup-

pressing the formation of solid-phase species (Hennigan et

al., 2015). Given the low chamber RH and the composition

of the atomizer solution, the seed aerosol was highly acidic,

and this assumption is likely valid (Cziczo et al., 1997; Se-

infeld and Pandis, 2006). While some gas-phase measure-

ments might be used to constrain aerosol thermodynamic

models like AIM, such measurements (e.g., gas-phase am-

monia) were unavailable for this study. Furthermore, the ac-

tual state of aerosols at low RH is difficult to represent in such

models. As a consequence, estimates presented here may be

limited by the ability of so-called “reverse-mode” thermody-

namic aerosol model calculations to appropriately represent

the aerosols in the chamber.

A constant IEPOX–aerosol reaction probability (γ ) of

0.021 was assumed over the course of modeled experiments,

which is consistent with that measured for similar seed

aerosol systems (Gaston et al., 2014; Riedel et al., 2015). The

resulting pseudo-first-order heterogeneous uptake rate coef-

ficient (khet) of IEPOX to the aerosol phase was then calcu-

lated by Eq. (1):

khet = γ Saω/4, (1)

where Sa is the total seed aerosol surface area concentration,

and ω is the mean molecular speed of gas-phase IEPOX.

This approach neglects gas-phase diffusion – the effects of

which are expected to be minor for the γ and particles sizes

involved here (Gaston et al., 2014; Thornton et al., 2003).

Aerosol-phase diffusion, adsorption/desorption of aerosol

components, and other potential limitations that, while un-

certain, have been explored in 1-D model studies for other

systems are also not considered (Roldin et al., 2014; Shi-

raiwa et al., 2013; Wilson et al., 2012). Once IEPOX has

partitioned to the particle phase (IEPOX(aq)) it is allowed to

react with the aerosol constituents to form the SOA tracer

species. In addition to Reactions (R1) and (R2), the model in-

corporates acid-catalyzed reactions to form C5-alkene triols,

3-MeTHF-3,4-diols, IEPOX-dimer, and IEPOX-dimerOS –

Reactions (R3)–(R6) below. The model also tracks the for-

mation of “other SOA” – defined as the difference between

the chamber-measured SOA mass and the sum of the quan-

tified tracer mass loadings – comprised of unidentified SOA

products, most likely from acid-catalysis, as is the case for

the other IEPOX tracers. Species comprising other SOA may

be oligomers formed by acid-catalyzed coupling of tetrols

or IEPOX-OS with IEPOX concomitant with reactive uptake

(Lin et al., 2014). Since we are unable to differentiate the

extent to which the other SOA is formed from these two,

or other, pathways, the model assumes all of the other SOA

is formed from reactions of IEPOX-OS with IEPOX (Reac-

tion R7) and has a molecular weight of 334 g mole−1, the

same as that of IEPOX-dimerOS.

IEPOX(aq)+H+→ C5-alkene triols + H+ (R3)

IEPOX(aq)+H+→ 3-MeTHF-3,4-diols + H+ (R4)

IEPOX(aq)+H++ 2-methyltetrols→ IEPOX-dimer + H+

(R5)

IEPOX(aq)+H++ IEPOX-OS→ IEPOX-dimerOS + H+

(R6)

IEPOX(aq)+H++ IEPOX-OS→ other SOA + H+ (R7)
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The coupled differential equations corresponding to

the production and/or loss of IEPOX(g), IEPOX(aq), 2-

methyltetrols, IEPOX-OS, C5-alkene triols, 3-MeTHF-3,4-

diols, IEPOX-dimer, IEPOX-dimerOS, other SOA, HSO−4 ,

and SO2−
4 are integrated over the entire IEPOX injection du-

ration (2 h) or until the observed chamber SOA mass con-

centration has reached a maximum. [H+] and [H2O] are

held constant over the course of a model run. Under the as-

sumption that HSO−4 is converted to SO2−
4 as SO2−

4 forms

IEPOX-OS, the equilibrium ratio (RSO4
≡SO2−

4 /HSO−4 ) is

held constant. Additionally, a general first-order loss, Reac-

tion (R8) from the formation of volatile products that do not

contribute to the overall SOA mass, is applied to IEPOX(aq).

IEPOX(aq)→ volatile products (R8)

This reaction lowers the molar SOA yield (ϕSOA) be-

low unity. First-order wall losses estimated for the cham-

ber from a previous study are also applied to gas-phase

IEPOX (kwall = 9.4×10−5 s−1) and all aerosol-phase species

(kwall-aerosol = 1×10−5 s−1) (Riedel et al., 2015). The rate of

IEPOX injection into the chamber is simulated in the model

by an exponential decay of IEPOX in the injection mani-

fold. The decay constant (λ) was varied between 1× 10−3

and 2× 10−3 s−1 as a fitting parameter to better match the

timescale of observed SOA growth. However, over the 2 h

duration of the experiment, the value of the decay constant

had a negligible effect on the final model-predicted SOA

growth.

The complete set of differential equations used to track

each of the individual species in the model is provided in

Eqs. (2)–(12).

d[IEPOX(g)]

dt
= λ[IEPOX(manifold)] − khet[IEPOX(g)]

− kwall[IEPOX(g)] (2)

d[IEPOX(aq)]

dt
= khet[IEPOX(g)] − kR1[IEPOX(aq)] [H2O]

[
H+
]

− kR2[IEPOX(aq)]

[
SO2−

4

][
H+
]

− kR3[IEPOX(aq)]
[
H+
]
− kR4[IEPOX(aq)]

[
H+
]

− kR5[IEPOX(aq)]
[
H+
]

[tetrol]

− kR6[IEPOX(aq)]
[
H+
]

[IEPOX-OS]

− kR7[IEPOX(aq)]
[
H+
]

[IEPOX-OS]

− kR8[IEPOX(aq)] − kwall-aerosol[IEPOX(aq)] (3)

d[tetrol]

dt
= kR1[IEPOX(aq)] [H2O]

[
H+
]

− kwall-aerosol[tetrol] (4)

d[IEPOX-OS]

dt
= kR2[IEPOX(aq)]

[
SO2−

4

][
H+
]

− kwall-aerosol[IEPOX-OS] (5)

d[triol]

dt
= kR3[IEPOX(aq)]

[
H+
]
− kwall-aerosol[triol] (6)

0 20 40 60 80 100
100

150

200

250

300

Experiment time, minutes

A
er

os
o

l m
as

s,
 µµ µµ

g 
m

-3

 

 

Model
Chamber data

Figure 1. Aerosol mass loadings from IEPOX-SOA Exp. no. 1 and

corresponding model output. IEPOX injection starts at experiment

time t = 0 min.

d[diolTHF]

dt
= kR4[IEPOX(aq)]

[
H+
]

− kwall-aerosol[diolTHF] (7)

d[dimer]

dt
= kR5[IEPOX(aq)]

[
H+
]

[tetrol]

− kwall-aerosol[dimer] (8)

d[dimerOS]

dt
= kR6[IEPOX(aq)]

[
H+
]

[IEPOX-OS]

− kwall-aerosol[dimerOS] (9)

d[other]

dt
= kR7[IEPOX(aq)]

[
H+
]

[IEPOX-OS]

− kwall-aerosol[other] (10)

d[HSO−4 ]

dt
=−kR2[IEPOX(aq)]

[
H+
][

HSO−4

]
RSO4

− kwall-aerosol[HSO−4 ] (11)

d[SO2−
4 ]

dt
= kR2[IEPOX(aq)]

[
H+
][

HSO−4

]
RSO4

− kR2[IEPOX(aq)]
[
H+
][

SO2−
4

]
− kwall-aerosol[SO2−

4 ] (12)

Rate constants (k) for Reactions (R1)–(R8) were systemi-

cally varied until model output closely matched the offline

tracer measurements. Initial values were assigned to kR1–

kR8, and the model was run in a continuous loop, varying

each rate constant to minimize the sum of the squares of the

differences between the filter measurements and model out-

put, under the constraint that all k > 0. Functions available in

MATLAB’s Optimization Toolbox were used to perform the

minimization. Implicitly, this approach assumes that tracer

quantitations are robust, a correct representation of IEPOX-

derived SOA speciation and mass loading, and that the filter

collection and extraction efficiency are 100 %.
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Figure 2. Model output of aqueous-phase IEPOX concentrations

during Exp. no. 1 simulation.

3 Results and discussion

3.1 Model output and comparison to chamber data

Five chamber experiments were performed with the low-RH

(NH4)2SO4+ H2SO4 seed aerosol system. Table 1 lists ini-

tial chamber conditions, including seed aerosol surface area

and mass loading and the mass of IEPOX placed in the in-

jection manifold. Figure 1 shows aerosol mass data and the

corresponding model simulation for one experiment (Exp.

no. 1). The initial seed aerosol mass loading is 113 µg m−3,

and IEPOX injection is initiated at experiment time (t)= 0.

SOA mass growth is most rapid for 30 min post-injection

and slows thereafter, reaching a maximum total aerosol mass

concentration of ∼ 275 µg m−3 at t ≈ 90 min. The timescale

of SOA growth for other experiments was similar to that

in Fig. 1. Figure 2 shows the model-predicted aqueous-

phase IEPOX concentration for Exp. no. 1. Despite the large

amount of IEPOX injected into the chamber, the maximum

predicted aqueous-phase IEPOX concentration reaches only

0.92 moles L−1 due to rapid formation of the SOA prod-

ucts. For all simulated experiments, the model reproduced

the SOA growth well, both the rate and the maximum mass

loading. Nevertheless, caution is necessary in interpreting the

significance of this agreement since the model parameters are

adjusted to maximize the agreement.

Figure 3 compares the modeled evolution of the SOA trac-

ers in Exp. no. 1 to offline measurements of the correspond-

ing tracers. Measured tracer mass loadings for all experi-

ments are provided in Table 2. The tracer concentrations pre-

dicted by the model agree well with the filter measurements,

differing by < 5 % for all tracers.

The model also predicts significant titration of total aque-

ous inorganic sulfate species ([SO2−
4 ] + [HSO−4 ]) over the

course of each experiment due to the formation of IEPOX-

OS, IEPOX-dimerOS, and other SOA. Sulfate loadings were

predicted to drop 36, 28, and 27 % for the 30, 15, and 5 mg

IEPOX injections, respectively. Figure 4 shows the model-
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Figure 3. Model output of IEPOX-SOA tracers (left panel) and

the associated filter-based tracer measurements (right panel) for

Exp. no. 1. The “other SOA” is calculated as the difference be-

tween the chamber-measured aerosol mass loadings and the sum

of the filter-based tracer loadings.
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Figure 4. Model output of predicted titration of total inorganic

aerosol sulfate ([SO2−
4

] + [HSO−
4

]) due to sulfated tracer forma-

tion during Exp. no. 1 simulation.

predicted sulfate titration for Exp. no. 1, in which sulfate

loading drops from an initial value of∼ 95 to∼ 60 µg m−3 at

the conclusion of the model run. These titration levels closely

match those reported in Surratt et al. (2007a) for a low-NOx
isoprene oxidation experiment with acidified ammonium sul-

fate seed aerosol.

3.2 Model-predicted tracer formation kinetics

The model-predicted tracer formation rate constants for Re-

actions (R1)–(R7) are given in Table 3. These are aver-

aged over all experiments, and the listed errors correspond

to 1 standard deviation (1σ ). While the aerosols are not

a priori ideal solutions, comparison of the rate constants

obtained in this study to those estimated from prior stud-

ies provides useful insights. Eddingsaas et al. (2010) de-

termined the pseudo-second-order formation constants for

bulk solutions of cis-2,3-epoxybutane-1,4-diol and used
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Table 1. Summary of conditions for each chamber SOA experiment.

Exp. IEPOX injected Seed surface area Seed mass

no. mg µm2 cm−3 µg m−3

1 30 1480 113

2 30 1660 125

3 15 1200 76

4 5 800 59

5 5 800 57

Table 2. Tracer mass loadings for each chamber SOA experiment.

Exp. no. Loading/µg m−3

Total SOA 2-Methyltetrols IEPOX-OS C5-alkene triols 3-MeTHF-3,4-diols IEPOX-dimer IEPOX-dimerOS Other SOA

1 170.00 39.13 16.97 12.01 15.05 0.40 1.45 84.99

2 185.00 41.35 23.69 12.17 13.67 0.70 3.01 90.41

3 131.00 34.01 13.25 35.31 3.68 3.59 4.01 37.15

4 60.99 3.72 27.13 18.42 0.04 0.27 10.51 0.90

5 63.00 3.97 27.44 19.36 0.10 0.25 9.05 2.83

the relationship between 2-methyl-2,3-epoxybutane and

2,3-epoxybutane reaction rate constants to estimate those

for 2-methyl-2,3-epoxybutane-1,4-diol (β-IEPOX). For 2-

methyltetrol formation, Pye et al. (2013) used the β-IEPOX

value from Eddingsaas et al. (2010) and assumed a wa-

ter concentration of 55 M to derive a third-order rate con-

stant with an explicit water dependence. The resulting

rate constants are 9× 10−4 M−2 s−1 for the overall for-

mation reaction of 2-methyltetrol (Reaction R1) and 2×

10−4 M−2 s−1 for the overall formation reaction of IEPOX-

OS (Reaction R2). A similar treatment can be applied

to the pseudo-second-order hydrolysis rate constant (2-

methyltetrol formation) for a mixture of cis- and trans-β-

IEPOX from Cole-Filipiak et al. (2010) to obtain a rate con-

stant of 6.5× 10−4 M−2 s−1. Purely computational estimates

of 5.3× 10−2 and 5.2× 10−1 M−2 s−1 for 2-methyltetrol

and IEPOX-OS, respectively, are also available for com-

parison (Piletic et al., 2013). Apart from the computational

study, these rate constants are of the same order as those

predicted by the model, 3.4± 3.2× 10−4 M−2 s−1 for 2-

methyltetrols and 4.8± 3.4× 10−4 M−2 s−1 for IEPOX-OS,

indicating that the model gives a reasonable representation

of the kinetics of the multiphase process in light of the low-

RH, non-ideal conditions in the highly concentrated chamber

aerosols.

Epoxide ring-opening reactions by general acids (i.e.,

bisulfate) have not been explicitly included in the model. The

contribution is expected to be negligible as the branching ra-

tio between the bisulfate and H+-catalyzed reaction channels

is likely to heavily favor the H+ channel. For example, in

Exp. no. 1, ∼ 98 % of the epoxide ring opening is predicted

to proceed through the H+-catalyzed channel compared to

that of bisulfate.

Table 3. Model-predicted formation reaction rate constants for

IEPOX-SOA tracers.

SOA tracer formed k Reaction

2-Methyltetrols 3.4± 3.2× 10−4 M−2 s−1 (R1)

IEPOX-OS 4.8± 3.4× 10−4 M−2 s−1 (R2)

C5-Alkene triols 8.8± 3.8× 10−4 M−1 s−1 (R3)

3-MeTHF-3,4-diols 2.6± 3.5× 10−4 M−1 s−1 (R4)

IEPOX-dimer 1.3± 0.7× 10−5 M−2 s−1 (R5)

IEPOX-dimerOS 6.8± 4.6× 10−5 M−2 s−1 (R6)

Other SOA 5.7± 6.9× 10−4 M−2 s−1 (R7)

Aerosol surface area was held constant at initial seed

aerosol levels over the course of a model run, and thus khet is

insensitive to additional surface area resulting from IEPOX-

derived SOA (Riedel et al., 2015). However, the presence

of organics such as polyethylene glycol has been shown to

lower γ and therefore khet (Gaston et al., 2014), and it is un-

clear whether the presence of IEPOX-derived SOA compo-

nents would have a similar effect. A consequence of the con-

stant surface area is that the model does not account for any

possible slowing of the uptake rate resulting from increased

aerosol organic content. Measurements of γ on mixed and

pure IEPOX-SOA would be required to resolve this question.

As a sensitivity test to the choice of 334 g mole−1 for the

molecular weight of the other SOA, individual model runs

were also performed assuming a molecular weight of 100

and 600 g mole−1. As expected, these tests had the most pro-

nounced effect on the rate constants extracted from simula-

tions with the largest other SOA loadings, Exp. nos. 1 and

2 (see Table 2). For the 100 g mole−1 case, the resulting ad-

justment to the rate constants presented in Table 3 was at
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most a factor of 2.4 increase for IEPOX-OS and a 23 %

decrease, on average, across the remaining rate constants.

For the 600 g mole−1 case, all of the rate constants were de-

creased by 25 % on average. Apart from the IEPOX-OS rate

constant under the 100 g mole−1 case, which was within 2σ ,

all of the rate constants resulting from these sensitivity tests

fell within the stated 1σ uncertainties given in Table 3.

Given the estimates of the tracer formation rate constants,

the calculated khet, and the model output, the molar SOA

yield (ϕSOA) can be estimated as the ratio of the sum of

the tracer production rates over the IEPOX(g) heterogeneous

loss rate (Riedel et al., 2015). Averaged over the five experi-

ments, ϕSOA = 0.078± 0.025 (1σ), with the largest ϕSOA be-

ing from the 5 mg IEPOX injections and the smallest ϕSOA

being from the 30 mg injections. The drop in ϕSOA with in-

creased IEPOX injection mass is a result of the increased

amount of other SOA measured in these experiments. The

higher molecular weight assumed for the oligomeric prod-

ucts relative to the molecular weight of the tracers requires

less IEPOX to be reacted in order to match the total SOA

mass loadings, thus driving down ϕSOA. As described by

Matsunaga and Ziemann (2010) and Zhang et al. (2014), wall

losses of VOC and SOA material can effectively decrease

calculated ϕSOA for chamber studies. Considering the IEPOX

and aerosol wall-loss rate constants provided above, the cor-

rections for these experiments are minor (< 2 % change to

ϕSOA). In general, ϕSOA should mainly be a function of the

availability of nucleophiles, provided there is ample time for

uptake and tracer formation (Riedel et al., 2015). ϕSOA =

0.078 is similar to that predicted from an independent model-

ing approach which estimated the ϕSOA for this aerosol sys-

tem at 0.1–0.12 (Riedel et al., 2015). These results indicate

that the molar yield of SOA from IEPOX heterogeneous re-

actions is likely to be significantly < 1 for the majority of

atmospheric conditions where aerosols are likely to contain

more water and be less acidic than in this study.

3.3 Atmospheric implications

Figure 5 shows the model output after 6 h processing time,

using as inputs the rate constants from Table 3 and ini-

tial atmospheric conditions which might be representative

of a daytime summer urban–rural mixed air mass: 50 %

RH, ∼ 500 pptv gas-phase IEPOX, and 250 µm2 cm−3 of

ammonium bisulfate aerosol surface area, corresponding to

an aerosol mass loading of ∼ 10 µg m−3. The model pre-

dicts 0.37 µg m−3 of total SOA, with the bulk (77 %) being

2-methyltetrols, and minor amounts of IEPOX-OS (14 %),

C5-alkene triols (7 %), and 3-MeTHF-3,4-diols (2 %). The

remaining tracers – IEPOX-dimer, IEPOX-dimerOS, and

other SOA – are predicted to form in small amounts

(< 0.6 ng m−3). At the increased RH and associated increase

in aerosol liquid water, the 2-methyltetrols represent the

majority of the formed tracers (see Eq. 4). With the lack

of wall losses and the minor contribution of other SOA,

Total predicted SOA mass = 0.37 µµµµg m-3

 

2-methyltetrols
IEPOX-OS
C5-alkene triols

3-MeTHF-3,4-diols
IEPOX-dimer
IEPOX-dimerOS
Other

Figure 5. Model-predicted IEPOX-SOA tracer distribution and

loadings for atmospherically relevant initial conditions.

which lowers ϕSOA as described above, ϕSOA will be larger

(ϕSOA= 0.125) for this atmospheric case compared to the

chamber simulations. Additionally, this simulation predicted

no appreciable titration of total aqueous inorganic sulfate,

suggesting that titration is unlikely to occur in atmospheric

sulfate-containing aerosols given expected IEPOX mixing

ratios on the order of 1 ppbv.

Keeping in mind that we cannot hope to capture two

field studies perfectly for such a general model case,

the model total IEPOX tracer loading predictions are in

relatively close correspondence to recent measurements

in the southeastern United States. Analysis of tracers in

ambient PM2.5 collected by high-volume sampling dur-

ing summer 2010 in Yorkville, GA, determined that 2-

methyltetrols (330 ng m−3), C5-alkene triols (290 ng m−3),

and IEPOX-OS (72 ng m−3) were major constituents, with

minor amounts of 3-MeTHF-3,4-diols (27 ng m−3), IEPOX-

dimerOS (5 ng m−3), and IEPOX-dimer (0.5 ng m−3) (Lin

et al., 2012). IEPOX tracer mass loadings from analysis

of high-volume PM2.5 samples collected at Look Rock,

TN, in summer 2013 as part of the Southern Oxidant and

Aerosol Study (SOAS) were also dominated by IEPOX-

OS (169.5 ng m−3), 2-methyltetrols (163.1 ng m−3), and C5-

alkene triols (144.4 ng m−3), whereas 3-MeTHF-3,4-diols

(4.4 ng m−3) and IEPOX-dimerOS (1.4 ng m−3) made only

minor contributions (Budisulistiorini et al., 2015).

4 Concluding remarks

Attempts to replicate the chamber experiments at higher RH

(50 %) resulted in large positive deviations (1.2–2.3-fold) in

total IEPOX tracer mass loadings compared to measured to-

tal aerosol mass loadings by the SEMS-MCPC. This result

www.atmos-chem-phys.net/16/1245/2016/ Atmos. Chem. Phys., 16, 1245–1254, 2016



1252 T. P. Riedel et al.: Constraining condensed-phase formation kinetics

precluded the extension of these kinetic studies to include

humid conditions. A possible explanation for the enhance-

ment of filter mass loadings could be subsequent reactions

at the Teflon filter surface; however, appropriate controls are

required to confirm such effects. The deviation in mass load-

ings at higher RH indicates that artifacts may be introduced

into field and chamber measurements during filter collection

even when sampling through a carbon strip denuder.

Low-molecular-weight tracers with significant vapor pres-

sures may be detected as a result of decomposition of SOA

products. Such a possibility would dictate caution in adopt-

ing the kinetic estimates presented here. The sum of these

formation rates would likely represent an upper limit to the

formation of such SOA species under the assumption that

more than one tracer could potentially be formed from the

degradation of these products. However, in the absence of

evidence to the contrary, there is general agreement that trac-

ers constitute a large fraction of IEPOX-SOA, and additional

investigations are required prior to the proposal that certain

SOA tracers represent decomposition products.

In summary, this study is a first approach to placing ki-

netic constraints on the formation of species that have been

quantified in laboratory and field measurements but lack di-

rectly measured experimental rate constraints. While bulk

solution rate constant estimates are desirable, such measure-

ments pose a challenge when authentic standards are unavail-

able or when surrogates do not adequately represent the true

compounds. Additionally, it is unclear that bulk-phase kinet-

ics can approximate aerosol-phase reactions where non-ideal

conditions likely play a role. The flexible approach described

here may readily be extended to other SOA production sys-

tems known to have atmospheric importance.

This study approximates tracer branching ratios for the

currently proposed SOA tracers resulting from IEPOX up-

take, a necessary step to predict isoprene-derived SOA pro-

duction in regional models that guide policy decisions. Ad-

ditional laboratory studies to identify SOA products and elu-

cidate formation mechanisms are important to ensure that

both chamber and field measurements accurately reflect at-

mospheric processes. Modeling developed on the basis of

such experimental systems can then be extended to large-

scale models.
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