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Abstract. Formaldehyde (HCHO) column data from satel-
lites are widely used as a proxy for emissions of volatile
organic compounds (VOCs), but validation of the data has
been extremely limited. Here we use highly accurate HCHO
aircraft observations from the NASA SEAC4RS (Studies of
Emissions, Atmospheric Composition, Clouds and Climate
Coupling by Regional Surveys) campaign over the southeast
US in August–September 2013 to validate and intercompare
six retrievals of HCHO columns from four different satel-
lite instruments (OMI, GOME2A, GOME2B and OMPS; for
clarification of these and other abbreviations used in the pa-
per, please refer to Appendix A.) and three different research
groups. The GEOS-Chem chemical transport model is used
as a common intercomparison platform. All retrievals feature
a HCHO maximum over Arkansas and Louisiana, consistent
with the aircraft observations and reflecting high emissions

of biogenic isoprene. The retrievals are also interconsistent
in their spatial variability over the southeast US (r = 0.4–
0.8 on a 0.5◦× 0.5◦ grid) and in their day-to-day variability
(r = 0.5–0.8). However, all retrievals are biased low in the
mean by 20–51 %, which would lead to corresponding bias
in estimates of isoprene emissions from the satellite data. The
smallest bias is for OMI-BIRA, which has high corrected
slant columns relative to the other retrievals and low scatter-
ing weights in its air mass factor (AMF) calculation. OMI-
BIRA has systematic error in its assumed vertical HCHO
shape profiles for the AMF calculation, and correcting this
would eliminate its bias relative to the SEAC4RS data. Our
results support the use of satellite HCHO data as a quantita-
tive proxy for isoprene emission after correction of the low
mean bias. There is no evident pattern in the bias, suggesting
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that a uniform correction factor may be applied to the data
until better understanding is achieved.

1 Introduction

Formaldehyde (HCHO) is a high-yield product from the at-
mospheric oxidation of volatile organic compounds (VOCs).
Methane oxidation largely defines the tropospheric HCHO
background. Higher HCHO concentrations over continents
are due to short-lived non-methane VOCs (NMVOCs). Loss
of HCHO is mainly by photolysis and oxidation by OH, re-
sulting in an atmospheric lifetime on the order of a few hours.
HCHO is detectable from space by solar UV backscatter be-
tween 325 and 360 nm (Chance et al., 2000). HCHO column
data from satellites have been used in a number of studies as
top-down constraints on NMVOC emissions from biogenic,
anthropogenic and open fire sources (Palmer et al., 2003;
Shim et al., 2005; Stavrakou et al., 2009; Marais et al., 2012;
Barkley et al., 2013; Zhu et al., 2014). However, the satellite
data have received little validation so far. Here we validate
and intercompare six different HCHO retrievals from four
satellites instruments (OMI, GOME2A, GOME2B, OMPS)
and three different groups with aircraft observations from the
NASA SEAC4RS (Studies of Emissions, Atmospheric Com-
position, Clouds and Climate Coupling by Regional Surveys)
campaign over the southeast US in summer 2013 (Toon et al.,
2015).

HCHO columns (molecules cm−2) have been contin-
uously observed from space since GOME (1996–2003;
Chance et al., 2000) and SCIAMACHY (2003–2012; Wit-
trock et al., 2006). Observations are presently available
from OMI (2004–), GOME2A (2006–), OMPS (2011–) and
GOME2B (2012–). The satellite detects a slant column den-
sity of HCHO along the atmospheric path of the solar radi-
ation backscattered to the satellite from the surface and the
atmosphere. Conversion to a vertical column is done with an
air mass factor (AMF) that depends on the satellite viewing
geometry, the surface albedo, the vertical HCHO profile, and
the vertical distributions of clouds and aerosols (Palmer et
al., 2001). Scattering by air molecules causes the AMF to
be highly sensitive to the HCHO vertical distribution, which
has to be independently specified (Hewson et al., 2015). The
resulting HCHO vertical column retrieved from the satellite
includes errors from the slant column fitting and from the
AMF estimate (Marais et al., 2012).

Validation of HCHO satellite data sets has been extremely
limited due to (1) the large noise in individual satellite re-
trievals, requiring extensive data averaging to enhance de-
tection, and (2) the limited number of HCHO column mea-
surements acquired from aircraft or from the ground. Mar-
tin et al. (2004) validated GOME HCHO columns with air-
craft observations in eastern Texas averaged over two cam-
paigns (June–July 1999 and August–September 2000) and

found GOME to be too high by 16 % on average. Compari-
son of SCIAMACHY data to ground-based measurements of
HCHO columns found no significant mean bias (Wittrock et
al., 2006; Vigouroux et al., 2009). Barkley et al. (2013) found
that OMI was 37 % lower than aircraft measurements made
in October 2005 over Guyana. Validation with ground-based
remotely sensed vertical profiles indicates a 20–40 % under-
estimate in OMI and GOME2 data (De Smedt et al., 2015).

The SEAC4RS campaign offers an exceptional opportu-
nity for validating satellite HCHO data. HCHO columns
over the southeast US in summer are among the highest in
the world (Kurosu et al., 2004), due to large emissions of
biogenic isoprene from vegetation (Guenther et al., 2006).
Several studies have used HCHO data from space as con-
straints on isoprene emission in the southeast US (Palmer
et al., 2006; Millet et al., 2008; Valin et al., 2016). The
SEAC4RS aircraft payload included two independently cal-
ibrated in situ HCHO measurements: the Compact Atmo-
spheric Multispecies Spectrometer (CAMS) (Richter et al.,
2015) and the NASA GSFC In Situ Airborne Formaldehyde
(ISAF) (Cazorla et al., 2015). CAMS is a mid-IR laser-based
spectrometer, which has 1 Hz detection sensitivity of ∼ 40
ppt HCHO (Richter et al., 2015). ISAF uses rotational-state-
specific laser for detection of HCHO with a 1 Hz detection
limit of 36 ppt (Cazorla et al., 2015).

The SEAC4RS aircraft did not conduct direct satellite val-
idation profiles; hence we did not apply the direct validation
method. Instead we use here an indirect validation method in-
volving joint comparisons of satellite and in situ HCHO ob-
servations with the GEOS-Chem chemical transport model
(CTM; Bey et al., 2001). Satellite and in situ observations do
not need to be concurrent, thus increasing considerably the
range of data and conditions that can be used for validation.

2 Satellite data sets

Table 1 lists the six different satellite retrievals of HCHO
produced during the SEAC4RS campaign. Additional details
on the retrievals are in the Supplement. These are from four
satellite instruments (OMI, GOME2A, GOME2B, OMPS)
on different platforms, with retrievals produced by indepen-
dent groups for OMI and OMPS. OMI, flown on the NASA
Aura research satellite, has much higher spatial resolution
than the other instruments. GOME2A and GOME2B are
the first successive instruments of a long-term operational
commitment by the EUMETSAT (European Organisation for
the Exploitation of Meteorological Satellites) agency for ob-
serving atmospheric composition from space (Callies et al.,
2000). OMPS is the first instrument of a similar long-term
operational commitment by NOAA in the US (Dittman et
al., 2002).

All instruments in Table 1 provide dense data sets, with
full coverage of the Earth’s surface on 1 day for OMI
and OMPS, 3 days for GOME2A (since July 2013) and
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Table 1. Satellite HCHO products validated and intercompared in this worka.

Retrieval Nadir Local Fitting Chemical Detection limit Referencec

resolution (km2) viewing time windows (nm) transport modelb (1016 molecules
cm−2)

OMI-SAO (V003) 24× 13 1330 328.5–356.5 GEOS-Chem v09-01-03 1.0 (1)
OMI-BIRA (V14) 24× 13 1330 328.5–346.0 IMAGES v2 0.7 (2)
GOME2A-BIRA (V14) 40× 40 0930 328.5–346.0 IMAGES v2 0.8 (3)
GOME2B-BIRA (V14) 80× 40 0930 328.5–346.0 IMAGES v2 0.5 (2)
OMPS-SAO 50× 50 1330 327.7–356.0 GEOS-Chem v09-01-03 0.75 (4)
OMPS-PCA 50× 50 1330 328.5–356.5 GMI 1.2 (5)

a Retrievals operational during the SEAC4RS aircraft campaign (5 August–25 September 2013). These include four different sensors (OMI, GOME2A, GOME2B and OMPS), flown
on different platforms, with different retrievals for OMI and OMPS produced by the Harvard Smithsonian Astrophysical Observatory (SAO), the Belgian Institute for Space Aeronomy
(BIRA), and the NASA Goddard Space Flight Center by principal component analysis (PCA). Further retrieval details are in the Supplement. b Chemical transport model (CTM)
supplying the normalized mixing ratio vertical profiles (shape factors) and background correction (�o; see Sect. 2) used in the retrieval. References are ChanMiller et al. (2014) for
GEOS-Chem v09-01-03, Stavrakou et al. (2009) for IMAGES v2 and Rodriguez (1996) for GMI. c (1) González Abad et al. (2015); (2) De Smedt et al. (2015); (3) De Smedt et
al. (2012); (4) González Abad et al. (2016); (5) Li et al. (2015). OMI-SAO data were downloaded from http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omhcho_v003.shtml.
GOME2A-BIRA and GOME2B-BIRA data were downloaded from http://h2co.aeronomie.be. Other data were courtesy of the retrieval groups.

1.5 days for GOME2B. The single-scene detection limit
(0.5–1.0× 1016 molecules cm−2) is determined by uncer-
tainty in fitting the backscattered solar spectra for SAO re-
trievals (González Abad et al., 2015, 2016) and is estimated
as the standard deviation of HCHO column amounts over the
remote Pacific for BIRA retrievals (De Smedt et al., 2012,
2015). AMFs add another error of 30–100 % for single-scene
retrievals (González Abad et al., 2015). OMPS-PCA has a
single-scene detection limit of 1.2× 1016 molecules cm−2

estimated as 4 times the standard deviation of HCHO column
amounts over the Pacific Ocean (Li et al., 2015). Uncertain-
ties in HCHO columns can be reduced for monthly means,
down to 20–40 % for GOME-2A (De Smedt et al., 2008),
38 % for OMI, 46 % for GOME-2B and ∼ 30 % for OMPS,
corresponding to 0.1–0.4× 1016 molecules cm−2 over the
southeast US. Here and elsewhere, we use only satellite
pixels with solar zenith angle less than 60◦, cloud fraction
less than 0.3, row anomalies (for OMI) screened, quality
check passed (for SAO retrievals) and vertical column den-
sity within the−0.5 to 10× 1016 molecules cm−2 range. The
last criterion excludes data that have passed quality tests but
are nevertheless suspect as outliers. It excludes 5.8 % of the
data.

All retrievals (except OMPS-PCA) fit the slant column
density (SCD) of HCHO from the backscattered solar radi-
ance spectra and then subtract the SCD over the remote Pa-
cific (known as reference sector correction) for the same lat-
itude and observing time to remove offsets (Khokhar et al.,
2005). The resulting corrected SCD (1�S) thus represents
a HCHO enhancement over the Pacific background. Addi-
tional details on reference sector correction are in the Sup-
plement. 1�S is converted to the HCHO vertical column
density (VCD, �) by applying an AMF and a background
correction (�o):

�=
1�S

AMF
+�o. (1)

The background correction, �o, is the HCHO vertical col-
umn simulated by a CTM (Table 1) for the remote Pacific at
the corresponding latitude and observing time. OMPS-PCA
derives the VCD in one step using spectrally varying Jaco-
bians (Li et al., 2015).

The AMF depends on the solar zenith angle (θZ) and satel-
lite viewing angle (θV ), on the scattering properties of the
atmosphere and the surface, and on the vertical profile of
HCHO concentration. It is computed following Palmer et
al. (2001) as the product of a geometrical AMF (AMFG)

describing the viewing geometry in a non-scattering atmo-
sphere and a correction with scattering weights w applied to
the vertical shape factors S:

AMFG =
1

cosθZ
+

1
cosθV

, (2)

AMF= AMFG

0∫
PS

w(p)S (p)dp. (3)

Here the integration is over the pressure (p) coordinate from
the surface (pS) to the top of the atmosphere. The shape
factor is the normalized vertical profile of mixing ratio:
S(p)=C(p)�A/�, where C is the HCHO mixing ratio and
�A is the total air column (Palmer et al., 2001). The scatter-
ing weight measures the sensitivity of the backscattered radi-
ation to the presence of HCHO at a given pressure. Impact of
aerosols is not explicitly addressed in HCHO retrievals be-
cause it is considered to be implicitly included in the cloud
correction scheme to the scattering weights (De Smedt et al.,
2012, 2015).

All satellite data products (except OMPS-PCA) in Ta-
ble 1 report for each retrieval �, AMFG and AMF, as well
as the scattering weights w(p) or equivalent averaging ker-
nels A(p)=w(p) /AMF (Eskes and Boersma, 2003). The
BIRA retrievals report in addition the corrected SCD 1�S
and background correction �o. To be able to interpret differ-
ences between retrievals, we obtained the �o values used by
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Figure 1. Formaldehyde (HCHO) concentrations along SEAC4RS aircraft flight tracks (5 August–25 September 2013). The top left panel
shows the DC-8 flight tracks (in grey) and the CAMS measurements aboard the aircraft in the mixed layer. The mixed layer is the convectively
unstable region of the atmosphere in contact with the surface, diagnosed locally from aerosol lidar observations aboard the aircraft (DIAL-
HSRL Mixed Layer Heights README, 2014) and typically extending to 1–3 km altitude. The states of Missouri (MO), Arkansas (AR)
and Louisiana (LA) are indicated. The right panel shows the mean vertical profiles observed by the CAMS and ISAF instruments, and
simulated by GEOS-Chem, for the southeast US domain (30.5–39◦ N, 95–81.5◦W) defined by the black rectangle in the top left panel.
Horizontal bars represent observed standard deviations. GEOS-Chem is sampled along the flight tracks at the time of the measurements. The
dashed black line shows the mean vertical CAMS profile in marine air over the Gulf of Mexico (22–28◦ N, 96.5–88.5◦W), which is used in
determining background HCHO column (0.40× 1016 molecules cm−2; see Sect. 3). The bottom left panel shows the mean HCHO columns
on a 0.5◦× 0.5◦ grid derived from the CAMS measurements after normalizing for temperature, for mixing depth and for the contribution
from HCHO aloft (see text in Sect. 3).

the SAO retrievals and applied Eq. (1) to compute their val-
ues of 1�S. For OMPS-PCA, we computed the AMF based
on the reported S(p), w(p) and AMFG using Eq. (3); com-
puted �o based on the reported uncorrected and corrected
VCDs; and then obtained 1�S by Eq. (1).

3 Aircraft observations and GEOS-Chem model
simulation

The SEAC4RS DC-8 aircraft flew 21 flights over the south-
east US between 5 August and 25 September 2013, provid-
ing extensive mapping of the mixed layer and vertical profil-
ing from the mixed layer to the upper troposphere (Fig. 1).
The mixed layer is defined here as the convectively unsta-
ble region of the atmosphere in contact with the ground, as
measured from the aircraft by aerosol lidar (Browell et al.,
1989; Hair et al., 2008; DIAL-HSRL Mixed Layer Heights
README, 2014; Scarino et al., 2014). It typically extended

to 1–3 km altitude (∼ 700–900 hPa) during the afternoon.
The mixed layer was often capped by a convective cloud
layer of fair-weather cumuli extending to about 3 km, with
the free troposphere above (Kim et al., 2015). Ninety-five
percent of flight hours were between 09:30 and 18:00 local
time (LT) for the data in Fig. 1, and 78 % in the afternoon.
Diurnal variability of the HCHO columns is expected from
models to be less than 10 %, assuming a correctly simulated
diurnal photochemical cycle, since photochemistry is both a
source and a sink (Millet et al., 2008; Valin et al., 2016).

Figure 2 (left panel) shows a point-to-point comparison
of 1 min averaged ISAF and CAMS HCHO observations
(R3 version) aboard the aircraft. There is excellent corre-
lation in the mixed layer (r = 0.96) and above (r = 0.99).
Reduced major axis (RMA) regression of the two data sets
yields a slope of 1.10± 0.00, with ISAF being 10 % higher
than CAMS due to the fact that the two instruments are inde-
pendently calibrated. This difference is generally within the
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Figure 2. Comparisons between HCHO measurements from the CAMS and ISAF instruments aboard the SEAC4RS aircraft, and simulated
by GEOS-Chem, for the southeast US flight tracks (box in Fig. 1). The left panel compares 1 min measurements from CAMS and ISAF. The
right panel compares GEOS-Chem and CAMS HCHO. Here and elsewhere for model–observation comparisons, HCHO observations along
the flight tracks are averaged onto the GEOS-Chem grids (0.25◦× 0.3125◦, 47 vertical layers) and time steps (10 min). HCHO data points
are colored by atmospheric pressure. Slopes and intercepts of reduced major axis (RMA) regressions are shown along with the correlation
coefficient (r), sample size (N ), RMA regression line (in blue) and 1 : 1 line.

mutual stated accuracy for both instruments. The strong cor-
relation between CAMS and ISAF provides confidence that
they can be used for satellite validation purposes and sug-
gests that they can be used as equivalent data sets after 10 %
bias correction. We use CAMS in what follows.

The aircraft data show high concentrations in the mixed
layer due to biogenic isoprene emission and a sharp drop
above the mixed layer because of the short lifetimes of iso-
prene (∼ 1 h) and of HCHO itself (∼ 2 h). Horizontal vari-
ability in the mixed layer reflects not only the density of
isoprene-emitting vegetation but also surface air tempera-
ture (affecting isoprene emission) and mixing depth (affect-
ing vertical mixing) at the time of the flights. We wish to
convert the data to mean HCHO columns for the SEAC4RS
period (5 August–25 September) in order to compare to
the satellite data averaged over the same period. This re-
quires time averaging of the local surface air temperature
and mixing depth, and conversion of the mixed-layer con-
centration to a total column. We convert the aircraft HCHO
mixing ratios in Fig. 1 to HCHO columns by assuming
uniform HCHO mixing ratios from the surface up through
the local mixing depth measured from the aircraft (DIAL-
HSRL Mixed Layer Heights README, 2014), an expo-
nential decay from the top of the mixed layer to 650 hPa
with a scale height of 1.9 km and a fixed background of
0.40× 1016 molecules cm−2 above, based on the mean ver-
tical profiles information in Fig. 1. Day-to-day variability in
HCHO columns in the southeast US is mainly driven by the
temperature dependence of isoprene emission and can be fit-
ted well by ln�= 0.11T + 2.62 (r2

= 0.64), where � is in
units of 1015 molecules cm−2 and T (K) is the surface air tem-
perature (Palmer et al., 2006; Zhu et al., 2014). We applied
this temperature dependence to the local HCHO columns in-

ferred from the aircraft mixed-layer data converted HCHO
columns in order to correct for the difference between the lo-
cal surface air temperature at the time of the flight and the
local mean midday (12:00–13:00 LT) surface air temperature
for the SEAC4RS period. Temperatures were taken from the
Goddard Earth Observing System–Forward Processing (ver-
sion 5.11.0, GEOS-FP hereafter) assimilated meteorological
data product of the NASA Global Modeling and Assimilation
Office (GMAO) (Molod et al., 2012).

The bottom left panel of Fig. 1 shows the resulting mean
HCHO columns for the SEAC4RS period as inferred from
the CAMS measurements. We estimate the error in this mean
HCHO columns is ∼ 15 %, which is mainly from the mix-
ing depths, assumed background, scale height and temper-
ature dependence. The spatial distribution is markedly dif-
ferent and smoother than for the original mixed-layer data
(top left panel), reflecting in large part the temperature nor-
malization. Figure 3 shows the spatial distribution of mid-
day temperatures for the SEAC4RS period, along with base
isoprene emissions at 303 K from the MEGAN 2.1 model
(Guenther et al., 2012). The base isoprene emissions feature
a hot spot in the Ozarks region of southeast Missouri, where
there is dense oak cover. This region was repeatedly sam-
pled by the aircraft on hot days. The HCHO aircraft obser-
vations are particularly high there, but this feature is muted
after correction for the mean August–September tempera-
tures, which are much cooler in Missouri than further south.
Inferred HCHO columns in Fig. 1 are instead highest over
Arkansas and Louisiana, where August–September tempera-
tures are high.

We simulated the SEAC4RS period using the
GEOS-Chem v9-02 CTM (http://geos-chem.org) with
0.25◦× 0.3125◦ horizontal resolution over North America

www.atmos-chem-phys.net/16/13477/2016/ Atmos. Chem. Phys., 16, 13477–13490, 2016
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Figure 3. Mean temperature, base isoprene emissions and HCHO
columns in the GEOS-Chem model for the SEAC4RS period
(5 August–25 September 2013). The top panel shows the mid-
day (12:00–13:00 LT) surface air temperature from the GEOS-
FP assimilated meteorological data. The middle panel shows the
MEGAN 2.1 base isoprene emissions from Guenther et al. (2012)
for standard conditions (air temperature= 303 K; photosynthetic
photon flux density= 200 µmol m−2 s−1 for sunlit leaves and
50 µmol m−2 s−1 for shaded leaves.) The bottom panel shows the
GEOS-Chem HCHO columns computed with MEGAN 2.1 iso-
prene emissions and sampled at 13:30 LT, under OMI-SAO sched-
ule, and filtered by OMI-SAO quality flags and cloud conditions.

driven by NASA GEOS-FP assimilated meteorological
fields. The model has 47 vertical levels, including 18 below
3 km. As can be seen in Fig. 4, initial simulations of the
SEAC4RS data with GEOS-Chem pointed to a positive
bias in the daytime GEOS-FP diagnostic for the height of
the mixed layer (mixing depth), used in GEOS-Chem for

Figure 4. Frequency distribution of mixed layer depths over the
southeast US during the SEAC4RS period (5 August–25 Septem-
ber 2013). Observations by aerosol lidar aboard the aircraft (DIAL-
HSRL Mixed Layer Heights README, 2014) are compared to the
local GEOS-FP data used to drive GEOS-Chem, before and after
the 40 % downward correction. The frequency distributions are con-
structed from 1 min average data along the aircraft flight tracks over
the southeast US (box in Fig. 1) for the 12:00–17:00 LT window.

surface-driven vertical mixing. Previous comparisons of
GEOS-FP mixing depths to lidar and ceilometer data for
other field studies in the southeast US found a 30–50 %
high bias (Scarino et al., 2014; Millet et al., 2015). For
the SEAC4RS simulation we decreased the GEOS-FP
mixing depths by 40 %, and comparison to the aircraft lidar
measurements along the DC-8 flight tracks shows that this
corrects the bias (red line in Fig. 4). Corrected afternoon
(12:00–17:00 LT) GEOS-FP mixing depths along the flight
tracks in the southeast US average 1530± 330 m, compared
to 1690± 440 m in the lidar data.

Formaldehyde production in GEOS-Chem over the south-
east US in summer is mainly from isoprene. Companion pa-
pers by Fisher et al. (2016), Marais et al. (2016) and Travis
et al. (2016) describe the GEOS-Chem simulation of iso-
prene chemistry in SEAC4RS and comparisons to aircraft
and surface observations. Biogenic VOC emissions are from
the MEGAN 2.1 model as implemented in GEOS-Chem by
Hu et al. (2015) and with a 15 % decrease applied to isoprene
(Wolfe et al., 2015). Surface-driven vertical mixing up to the
mixing depth uses the non-local mixing scheme of Holtslag
and Boville (1993), as implemented in GEOS-Chem by Lin
and McElroy (2010).

Figure 2 (right panel) compares simulated and observed
HCHO mixing ratios along the SEAC4RS flight tracks, aver-
aged over the GEOS-Chem grid and time step. Comparison
of the ensemble of data shows high correlation (r = 0.80)
and no significant bias. Part of the correlation reflects the
dependence on altitude, which is well captured by GEOS-
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Chem (Fig. 1, right panel). After removing this dependence
on altitude (by only examining observations within the mixed
layer), the correlation between model and observations re-
mains high (r = 0.64), with only a small bias (−3± 2 %) in-
dicated by the RMA linear regression. GEOS-Chem is less
successful in reproducing the HCHO concentrations in the
free troposphere (3–12 km, ∼ 700–200 hPa), with a −41 %
normalized mean bias. This may be due to insufficient deep
convection in the model.

Integration of the mean vertical profiles in Fig. 1
indicates a mean GEOS-Chem HCHO column of
1.46× 1016 molecules cm−2 over the southeast US during
the SEAC4RS period, which is 10 % lower than observed
by CAMS (1.63× 1016 molecules cm−2) and 23 % lower
than observed by ISAF (1.90× 1016 molecules cm−2). The
spatial correlation between GEOS-Chem mean HCHO
columns (Fig. 3, bottom panel) and the HCHO columns
inferred from the CAMS data is 0.44 (0.47 for ISAF) on the
0.5◦× 0.5◦ grid, with GEOS-Chem capturing the region of
maximum HCHO in Arkansas and Louisiana.

4 Intercomparison and validation of satellite data sets
over the southeast US

Figure 5 shows the spatial distribution of mean HCHO
columns over the SEAC4RS period taken from the six satel-
lite retrievals of Table 1, along with values from GEOS-
Chem and columns inferred from the CAMS aircraft ob-
servations. All retrievals feature high values over the south-
east US due to isoprene emission and maximum values over
and around Arkansas and Louisiana, consistent with GEOS-
Chem and CAMS (Fig. 3).

Spatial correlation coefficients between HCHO columns
for different pairs of satellite retrieval data in Fig. 5 are given
in Table 2. The correlation coefficients are computed for the
temporally averaged (5 August–25 September 2013) data on
the 0.5◦× 0.5◦ grid of Fig. 5 for the southeast US domain
(box in Figs. 1 and 5). Correlation coefficients for the dif-
ferent satellite retrievals are only 0.24–0.44 with CAMS but
0.38–0.85 with GEOS-Chem and typically 0.4–0.8 between
pairs of retrievals. We conclude that there is consistency be-
tween retrievals in the spatial information even at the 0.5◦

scale. The GOME2A-BIRA retrieval is noisier than the oth-
ers, and we attribute this to degradation of the instrument af-
ter 7 years of operations rather than its reduced swath mode
operated since July 2013 (De Smedt et al., 2015), because
the noise of GOME2A columns is almost the same before
and after the swath mode reduction.

We see from Fig. 5 that all retrievals are biased low rela-
tive to CAMS and GEOS-Chem. Table 3 gives statistics for
these biases as spatial averages for the southeast US. GEOS-
Chem columns are sampled on the same schedule and scenes
as the individual retrievals, and are increased by 10 % to cor-
rect for the bias with CAMS. Satellite retrieval biases rela-

Figure 5. HCHO vertical column densities over the southeast
US averaged over the SEAC4RS period (5 August–25 Septem-
ber 2013). The bottom panels show six retrievals from four satellites
(OMI, GOME2A, GOME2B and OMPS) and three different groups
(Table 1). The top panels show (1) GEOS-Chem model results sam-
pled on the OMI schedule with filtering by OMI-SAO quality flags
and cloud conditions, and increased by 10 % to correct for the bias
relative to CAMS aircraft measurements, and (2) columns derived
from the CAMS aircraft measurements (same as bottom left panel
of Fig. 1 but on a different color scale). The black rectangle repre-
sents the southeast US domain (same as in Fig. 1). Color bar is a
logarithmic scale.

tive to the corrected GEOS-Chem values range from −20 %
(OMI-BIRA) to −51 % (OMPS-PCA). The GOME2A and
GOME2B observations are made at 09:30 LT, while the OMI
and OMPS observations are made at 13:30 LT. GEOS-Chem
columns increase by 6 % from 09:30 to 13:30 LT, and this is
accounted for in the GEOS-Chem comparisons of Table 3.

Retrieval biases in the vertical column � could be con-
tributed by the corrected slant column (1�S), the AMF and
the background correction �o (Eq. 1). Table 3 gives mean
values for these different terms. We see that the OMI-BIRA
column is the highest because it has the highest 1�S and
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Table 2. Spatial/temporal correlation coefficients (r) between pairs of HCHO column productsa.

HCHO product OMI-SAO OMI-BIRA GOME2A-BIRA GOME2B-BIRA OMPS-SAO OMPS-PCA
(V003) (V14) (V14)

OMI-SAO (V003) 1/1
OMI-BIRA 0.55/0.67 1/1
GOME2A-BIRA (V14) 0.28/0.48 0.38/0.50 1/1
GOME2B-BIRA (V14) 0.50/0.76 0.65/0.60 0.49/0.26 1/1
OMPS-SAO 0.48/0.77 0.70/0.50 0.45/0.55 0.72/0.76 1/1
OMPS-PCA 0.40/0.70 0.60/0.51 0.53/0.63 0.71/0.68 0.85/0.84 1/1
GEOS-Chemb 0.38/0.88 0.50/0.65 0.68/0.82 0.85/0.88 0.74/0.86 0.82/0.75
Aircraft (CAMS)c 0.24/– 0.44/– 0.26/– 0.35/– 0.43/– 0.37/–

a Correlation coefficients between HCHO columns for different pairs of satellite retrievals, GEOS-Chem and CAMS aircraft observations. Values are for the
southeast US domain (box in Figs. 1 and 5) during SEAC4RS (5 August–25 September 2013). Spatial correlation coefficients are computed for the temporally
averaged data on the 0.5◦ × 0.5◦ grid of Fig. 5. Temporal correlation coefficients are computed from daily averages of each retrieval over the southeast US domain.
b GEOS-Chem CTM columns sampled for the same scenes as the individual retrievals. c Aircraft column data are temporal averages for the SEAC4RS period as
shown in Fig. 1 (bottom left panel) and Fig. 5 (top right panel).

Table 3. Satellite retrievals of HCHO columns over the southeast USa.

Mean valuesb With CAMS shape factors GEOS-Chem
+ 10 %c

Retrieval � 1�S AMFG AMF �o Biasd AMFe �f Biasd �

OMI-SAO (V003) 1.06 0.65 2.66 0.95 0.38 −37 % 1.01 0.96 −43 % 1.69
OMI-BIRA 1.33 0.87 2.62 0.88 0.31 −20 % 0.74 1.47 −12 % 1.67
GOME2A-BIRA (V14) 0.89 0.62 2.37 1.12 0.30 −44 % 1.14 0.84 −47 % 1.59
GOME2B-BIRA (V14) 1.09 0.86 2.56 1.22 0.30 −34 % 1.27 0.98 −41 % 1.65
OMPS-SAO 1.09 0.72 2.54 1.01 0.38 −34 % 1.02 1.01 −39 % 1.66
OMPS-PCA 0.80 0.49 2.53 1.11 0.35 −51 % 1.15 0.78 −52 % 1.63

a Mean values over the southeast US domain (box in Figs. 1 and 5) for the data in Fig. 5 collected during the SEAC4RS period (5 August–25 September 2013). b

Mean values provided as part of the retrieval product including vertical HCHO columns (�), corrected slant columns (1�S), geometrical and scatter-corrected
AMFs, and background correction (�o), following Eq. (1). Columns are in units of 1016 molecules cm−2, and AMFs are dimensionless. The corrected slant
columns and background correction are not reported in the SAO and OMPS-PCA retrievals and are reconstructed here to enable comparison with the other
retrievals (see Sect. 2). c GEOS-Chem columns sampled for the same scenes as the individual retrievals and increased by 10 % to correct for the bias relative to the
SEAC4RS CAMS aircraft measurements (Fig. 1). Mean GEOS-Chem columns increase with time of day by 6.0 % from 09:30 LT (GOME2A and GOME2B) to
13:30 LT (OMI and OMPS). d Normalized mean bias relative to the corrected GEOS-Chem values (last column in the table). e AMFs recalculated using the mean
HCHO vertical shape factor from the CAMS aircraft instrument (Figs. 1 and 6) and the scattering weights or averaging kernels provided as part of the satellite
product (Fig. 6). f Columns recomputed using AMFs constrained by the CAMS aircraft measurements.

lowest AMF, while the OMPS-PCA column is the lowest be-
cause its 1�S is the lowest. OMPS-SAO and OMPS-PCA
use the same OMPS spectra, but the OMPS-SAO 1�S are
much higher and more consistent with the other retrievals.
One caveat is that the derived 1�S of OMPS-PCA may
not be the best measure for its algorithm sensitivity, since
OMPS-PCA does not retrieve a slant column, nor does it
subtract the Pacific SCD to remove offsets, as described in
Sect. 2.

GOME2A-BIRA columns average 18 % lower than
GOME2B-BIRA despite sharing the same retrieval algo-
rithm and overpass time. This reflects instrument degradation
as pointed out above. GOME2A performed much better dur-
ing its first 5 years of operation (2007–2011) (De Smedt et
al., 2012, 2015).

The OMI-BIRA retrieval has the smallest bias relative
to the GEOS-Chem and CAMS HCHO columns, and this

is due in part to its low AMF (0.88). Figure 6 shows the
mean reported scattering weights and shape factors for that
retrieval (Eq. 3), in comparison to other retrievals and to
the CAMS aircraft observations. OMI-BIRA has lower scat-
tering weights than the other retrievals, contributing to the
lower AMF, and we discuss that below. The shape factors
in the SAO (from GEOS-Chem CTM with horizontal reso-
lution of 2◦× 2.5◦) and BIRA retrievals (from the IMAGES
CTM with horizontal resolution of 2◦× 2.5◦) underestimate
HCHO in the boundary layer and overestimate it in the
free troposphere. With the correct shape factor from CAMS
the OMI-BIRA retrieval has an even lower AMF (0.74), as
shown in Table 3, making it even better in comparison to
GEOS-Chem and to the aircraft data. The shape factor from
ISAF is consistent with that from CAMS (Fig. 1).

Table 3 also gives the AMFs for the other retrievals re-
computed using CAMS shape factors. The differences with
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Figure 6. Air mass factor differences between retrievals. The left panel shows mean scattering weights (w) and shape factors (S) for HCHO
retrievals over the southeast US during the SEAC4RS period, and the right panel shows the product of the two from which the AMF is
derived by vertical integration using Eq. (3). Values are shown for the OMI-SAO, OMI-BIRA, GOME2B-BIRA and OMPS-PCA retrievals.
Mean AMF values are given in the legend. Also shown is the observed HCHO shape factor (black) from the mean CAMS profile in Fig. 1.

the original AMFs are less than 6 % except for OMI-BIRA
(14 %). Although the results for OMI-BIRA illustrate how
sensitive the AMF calculation is to the specification of shape
factor, we find that this is not a significant source of bias in
the other retrievals. This may reflect compensating errors in
the vertical profile, as illustrated in Fig. 6 with the OMI-SAO
shape factors in comparison with CAMS. We also compute
AMFs using GEOS-Chem shape factors for each retrieval
(Fig. S1 in the Supplement), but we find this makes no dif-
ference to the results.

When the AMFs for all retrievals are recomputed with
common CAMS shape factors, as shown in Table 3, the re-
maining differences in AMFs are driven by viewing angles
(as described by AMFG in Table 3), scattering weights and
cloud parameters. Figure 6 shows that scattering weights
are 10–30 % higher in the OMI-SAO retrieval (AMF= 1.02)
than in the OMI-BIRA retrieval (AMF= 0.85). The differ-
ence remains for cloud-free satellite pixels (cloud fraction
< 0.01) and so is not due to different treatments of cloud ef-
fects. Surface reflectivity averages 0.048 in OMI-SAO and
0.037 in OMI-BIRA. Although both use the OMI surface re-
flectance climatology of Kleipool et al. (2008), OMI-SAO
applies monthly mean reflectivities while OMI-BIRA ap-
plies monthly minimum reflectivities. This can explain some
though not all of the difference in scattering weights. De
Smedt et al. (2008) found that the HCHO AMF increases
from 0.4 to 4.0 when the surface albedo changes from 0 to 1.

The background corrections (�o = 0.30–
0.38× 1016 molecules cm−2) in the different retrievals
are all consistent and amount to about 30 % of the mean �
over the southeast US. They agree with background HCHO
columns measured by aircraft over the remote North Pacific
(0.37± 0.09× 1016 molecules cm−2, Table 8 in Singh et al.,
2009).

Previous studies have shown that variability in HCHO
columns seen from space over the southeast US in summer
is mainly driven by the temperature dependence of isoprene
emission (Palmer et al., 2006; Millet et al., 2008; Duncan
et al., 2009; Zhu et al., 2014). Figure 7 shows time series
of daily HCHO columns averaged spatially over the south-
east US for the OMI-SAO and OMI-BIRA retrievals. All re-
trievals have day-to-day temporal coherence consistent with
the temperature dependence of isoprene emission. Tempo-
ral correlation between the daily HCHO column and midday
temperature is 0.52 for GOME2A-BIRA, 0.59 for OMPS-
PCA, 0.59 for OMI-BIRA, 0.69 for GOME2A-BIRA, 0.71
for OMPS-SAO and 0.75 for OMI-SAO. GOME2A-BIRA
shows the lowest correlation with temperature, again likely
due to noise from instrument degradation.

HCHO over the southeast US in summer is mainly from
oxidation of isoprene (Millet et al., 2006, 2008). Satellite re-
trievals validated in this study show consistency in captur-
ing both spatial and daily variations in HCHO columns, as
demonstrated by the indirect validation between SEAC4RS
observations and satellite retrievals. This supports their use
as a quantitative proxy for isoprene emissions. However, the
systematic low bias (20–51 %) in the HCHO retrievals needs
to be corrected. Our results show no indication of a pattern
in the biases, suggesting that these could be removed as a
uniform correction until better understanding is achieved.

5 Conclusions

We have used SEAC4RS aircraft observations of HCHO
from two redundant in situ instruments over the south-
east US for 5 August–25 September 2013, together with
a GEOS-Chem chemical transport model simulation at
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Figure 7. Daily variability of HCHO vertical column densities over the southeast US during SEAC4RS. The top panel shows daily HCHO
columns averaged over the southeast US (box in Fig. 5) for the OMI-SAO and OMI-BIRA retrievals. GEOS-Chem columns (black) are
sampled following the OMI viewing geometry with filtering by OMI-SAO quality flags and cloud conditions, and scaled up by 10 % on
the basis of comparison with CAMS aircraft columns. The bottom panel shows the local midday (12:00–13:00 LT) surface air temperature
over the southeast US domain from the GEOS-FP assimilated meteorological data. Also shown for each data set is the temporal correlation
coefficient (r) with temperature.

0.25◦× 0.3125◦ horizontal resolution, to validate and inter-
compare six HCHO retrievals from four different satellite in-
struments operational during that period. The combination of
aircraft data and GEOS-Chem model fields provides strong
constraints on the mean HCHO columns and their variabil-
ity over the southeast US, where high column amounts are
driven by biogenic isoprene emission.

We find that the different retrievals show a large degree
of consistency in their simulation of spatial and temporal
variability. All retrievals capture the HCHO maximum over
Arkansas and Louisiana seen in the aircraft data and in
GEOS-Chem, and corresponding to the region of highest
isoprene emission. Spatial correlation coefficients between
retrievals are moderate to relatively high (0.4–0.8) even on
a 0.5◦× 0.5◦ grid. All retrievals are also consistent in their
simulation of day-to-day variability correlated with tempera-
ture. This supports the use of HCHO columns observed from
space as a proxy for isoprene emission. GOME2A-BIRA
(launched in 2006) is noisier than other retrievals. We at-
tribute this to instrument degradation.

Despite this success and consistency in observing HCHO
variability from space, we find that all satellite retrievals are
biased low in the mean, by 20 to 51 % depending on the re-
trieval. This would cause a corresponding bias in estimates
of isoprene emission made from the satellite data. The bias
is smallest for OMI-BIRA and could be further reduced by
correcting the assumed HCHO vertical profiles (shape fac-
tors) assumed in the AMF calculation. Other retrievals have
larger biases that appear to reflect a combination of (1) spec-
tral fitting affecting the corrected slant columns and (2) scat-

tering weights in the radiative transfer model affecting the
AMF. Aside from OMI-BIRA, the shape factors used in the
retrievals are not a significant source of error in determining
the AMF.

Our work points to the need for improvement in satellite
HCHO retrievals to correct the mean low bias. We find no
evident spatial or temporal pattern in the bias, at least for the
southeast US in summer, that would compromise the inter-
pretation of the satellite data to estimate patterns of isoprene
emission. The biases may be removed by applying uniform
correction factors until better understanding is achieved.

6 Data availability

SEAC4RS data are available at http://www-air.larc.nasa.gov/
missions/seac4rs/ (doi:10.5067/Aircraft/SEAC4RS/Aerosol-
TraceGas-Cloud). OMI-SAO data were downloaded from
http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/
omhcho_v003.shtml. GOME2A-BIRA and GOME2B-
BIRA data were downloaded from http://h2co.aeronomie.be.
Other satellite data were courtesy of the retrieval groups.
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Appendix A

Abbreviations and acronyms

AMF Air mass factor
BIRA Belgian Institute for Space Aeronomy
CAMS Compact Atmospheric Multispecies Spectrometer
CTM Chemical transport model
EUMETSAT European Organisation for the Exploitation of Meteorological Satellites
GEOS-FP Goddard Earth Observing System–Forward Processing
GMAO Global Modeling and Assimilation Office
GMI Global Modeling Initiative
GOME2 Global Ozone Monitoring Experiment-2
IMAGES Intermediate Model of Global Evolution of Species
ISAF In Situ Airborne Formaldehyde
MEGAN Model of Emissions of Gases and Aerosols from Nature
OMI Ozone Monitoring Instrument
OMPS Ozone Mapping and Profiler Suite
PCA Principal component analysis
RMA Reduced major axis
SAO (Harvard) Smithsonian Astrophysical Observatory
SCD Slant column density
SCIAMACHY Scanning Imaging Absorption spectroMeter for Atmospheric Chartography
SEAC4RS Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys
VCD Vertical column density
VOCs Volatile organic compounds
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The Supplement related to this article is available online
at doi:10.5194/acp-16-13477-2016-supplement.
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