Supplement of Atmos. Chem. Phys., 16, 5315–5322, 2016 http://www.atmos-chem-phys.net/16/5315/2016/doi:10.5194/acp-16-5315-2016-supplement © Author(s) 2016. CC Attribution 3.0 License.





## Supplement of

## Comparison of eddy covariance and modified Bowen ratio methods for measuring gas fluxes and implications for measuring fluxes of persistent organic pollutants

Damien Johann Bolinius et al.

Correspondence to: Damien Johann Bolinius (damien.bolinius@aces.su.se)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

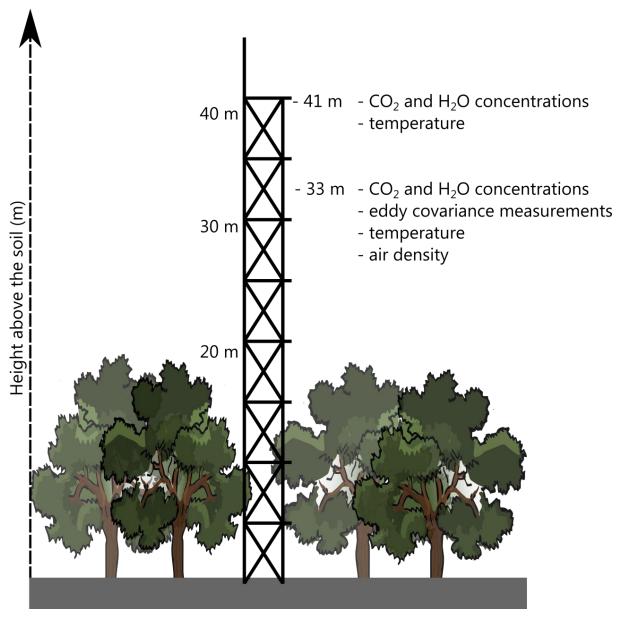



Figure S1: The flux tower and parameters of interest to this study. A more detailed figure can be found on the website of Environment Canada (http://www.ec.gc.ca).

Table S1: Overview of parameters taken from the datasets. The comment "(rot)" is given when coordinates are rotated to correct for the sonic anemometer not being perfectly levelled.

| Parameter                | Units                        |
|--------------------------|------------------------------|
| W'TSonic'(rot)           | K m s <sup>-1</sup>          |
| W'CO <sub>2</sub> *(rot) | PPM m s <sup>-1</sup>        |
| W'H <sub>2</sub> O*(rot) | PPT m s <sup>-1</sup>        |
| CO <sub>2</sub> _25.7m   | PPM                          |
| CO <sub>2</sub> _33.0m   | PPM                          |
| CO <sub>2</sub> _41.5m   | PPM                          |
| H <sub>2</sub> O_25.7m   | mmol mol <sup>-1</sup> (PPT) |
| H <sub>2</sub> O_33.0m   | mmol mol <sup>-1</sup> (PPT) |
| H <sub>2</sub> O_41.5m   | mmol mol <sup>-1</sup> (PPT) |
| AirDensity_33m           | Kg m <sup>-3</sup>           |
| AirTemp_33.3m            | Deg C                        |
| AirTemp_40.7m            | Deg C                        |
| SensHtFlux               | W m <sup>-2</sup>            |

| H | Ю | uı | Ίy | $\Delta$ | C | or | nc |
|---|---|----|----|----------|---|----|----|
|   |   |    |    |          |   |    |    |

| Time points       | T1 | T2 | <br>T24 |
|-------------------|----|----|---------|
| ııts              | M1 | M1 | <br>M1  |
| Flux measurements | M2 | M2 | <br>M2  |
| х                 |    |    | <br>    |
| Flui              | Mn | Mn | <br>Mn  |

## Median hourly ∆Conc

| Time points | T1 | T2 | <br>T24 |  |
|-------------|----|----|---------|--|
| Median flux | М  | М  | <br>М   |  |

Figure S2: Example of how the data was pooled, with  $\Delta$ Conc as the concentration gradient over the 2 heights. For example, fluxes calculated from 1 h simulated sampling times are based on the median of average vertical concentration gradients in 1 h pools measured at the same time each day over the entire 2 month period.

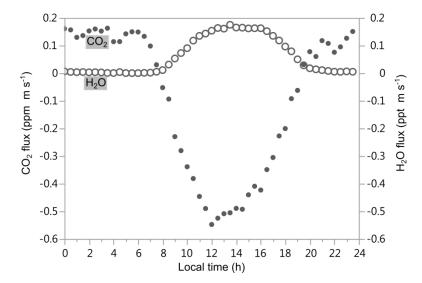



Figure S3: Comparison of daily averaged fluxes for  $CO_2$  and  $H_2O$  in summer. Note the difference in scale between the two compounds.

6

1

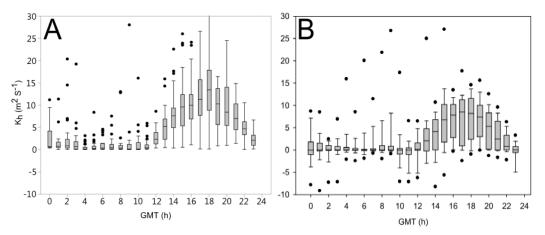



Figure S4: Comparison of  $K_{heat}$  for the Borden forest during days 126 to 153 in 2009 (A) and 2003 (B) respectively. Data from 2003 was taken from Choi et al.(S.-D. Choi et al., 2008). Values in the left plot represent the geometric mean for every half hour across the entire period.

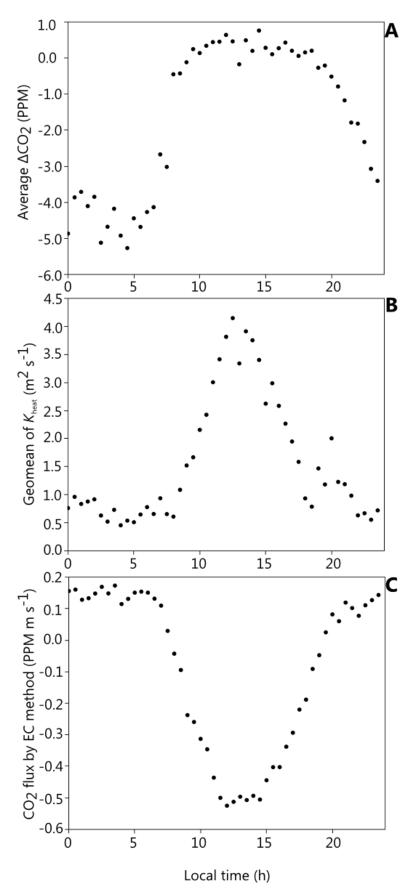



Figure S5: Plots of the  $CO_2$  gradient (A), the the eddy diffusivity of heat ( $K_{heat}$ , B) and the EC measurements for  $CO_2$  during the summer period (July and August).

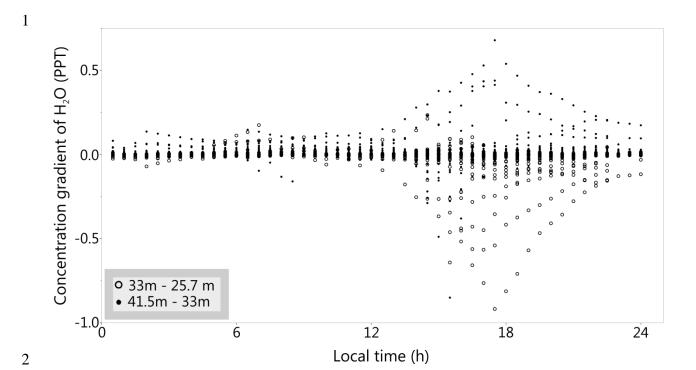



Figure S6: Plot showing the discrepancy between the concentration gradient of  $H_2O$  measured over 2 different height intervals in the winter.

Table S2: Cumulative fluxes for 8 h periods representing day and night across the 2 month periods representing spring, summer, fall and winter. Fluxes measured by the MBR method that are in the opposite direction than those measured by the EC method are marked with "!". Positive fluxes are defined as fluxes moving upwards from the canopy. The ratio of MBR results over EC results is based on the geometric mean of the MBR results divided by the EC result. The MBR fluxes for the 1-week sampling period were left out in the calculation of the geometric mean during the day in winter for  $CO_2$  and during the night in fall for  $H_2O$ . This table shows fluxes calculated with an hourly-resolved value for  $K_{heat}$ .

| CO2<br>( PPM m)          |         | spring     |       | summer |       | fall  |       | winter     |       |
|--------------------------|---------|------------|-------|--------|-------|-------|-------|------------|-------|
|                          |         | Day        | Night | Day    | Night | Day   | Night | Day        | Night |
| eddy covariance          |         | -0.332     | 0.295 | -3.360 | 1.071 | 0.074 | 0.227 | 0.189      | 0.112 |
| 0                        | 1/h     | 0.245 (!)  | 0.470 | -1.223 | 1.599 | 0.027 | 0.388 | 0.148      | 0.218 |
| ratio                    | 1/2h    | 0.29 (!)   | 0.480 | -1.133 | 1.789 | 0.061 | 0.417 | 0.162      | 0.189 |
| wen<br>K <sub>heat</sub> | 1/4h    | 0.306 (!)  | 0.473 | -1.079 | 1.694 | 0.050 | 0.395 | 0.141      | 0.194 |
| & ≥                      | 1/8h    | 0.265 (!)  | 0.522 | -1.069 | 1.889 | 0.098 | 0.416 | 0.173      | 0.157 |
| dified                   | 1/day   | 0.374 (!)  | 0.552 | -1.137 | 2.897 | 0.152 | 0.559 | 0.191      | 0.182 |
| ipo                      | 1/3days | 0.355 (!)  | 0.778 | -1.060 | 2.514 | 0.145 | 0.656 | 0.105      | 0.182 |
| E                        | 1/week  | 0.432 (!)  | 0.543 | -1.191 | 2.868 | 0.143 | 0.659 | -0.020 (!) | 0.031 |
| MBR/E                    | method  | -0.959 (!) | 1.820 | 0.335  | 1.978 | 1.116 | 2.137 | 0.796      | 1.289 |

| H2O<br>( PPT m)          |         | spring |       | summer |       | fall  |            | winter     |            |
|--------------------------|---------|--------|-------|--------|-------|-------|------------|------------|------------|
|                          |         | Day    | Night | Day    | Night | Day   | Night      | Day        | Night      |
| eddy covariance          |         | 0.420  | 0.016 | 1.118  | 0.038 | 0.180 | 0.005      | 0.049      | 0.001      |
| 0                        | 1/h     | 0.052  | 0.007 | 0.266  | 0.036 | 0.013 | -0.001 (!) | -0.005 (!) | -0.009 (!) |
| ratio                    | 1/2h    | 0.057  | 0.007 | 0.256  | 0.038 | 0.009 | -0.001 (!) | -0.004 (!) | -0.009 (!) |
| wen<br>K <sub>heat</sub> | 1/4h    | 0.042  | 0.009 | 0.278  | 0.040 | 0.007 | -0.000 (!) | -0.005 (!) | -0.007 (!) |
| r 8g                     | 1/8h    | 0.035  | 0.011 | 0.259  | 0.036 | 0.008 | -0.001 (!) | -0.009 (!) | -0.008 (!) |
| dified                   | 1/day   | 0.030  | 0.011 | 0.292  | 0.052 | 0.008 | -0.001 (!) | -0.004 (!) | -0.011 (!) |
| ipo                      | 1/3days | 0.049  | 0.014 | 0.361  | 0.059 | 0.011 | -0.004 (!) | -0.016 (!) | -0.015 (!) |
| E                        | 1/week  | 0.065  | 0.009 | 0.351  | 0.044 | 0.016 | -0.001 (!) | -0.009 (!) | -0.014 (!) |
| MBR/EC method            |         | 0.109  | 0.570 | 0.261  | 1.117 | 0.055 | -0.156 (!) | -0.132 (!) | -9.554 (!) |