

Supplement of

Formation of highly oxygenated low-volatility products from cresol oxidation

Rebecca H. Schwantes et al.

Correspondence to: Rebecca H. Schwantes (rschwant@caltech.edu, rschwant@ucar.edu)

The copyright of individual parts of the supplement might differ from the CC-BY 3.0 licence.

S1 Further Details on CF₃O⁻ CIMS Analysis

Figure S1. CIMS MS signals of 3-methyl catechol oxidation products (panel a) and MS/MS signals of tetrahydroxy toluene (panel b) for experiment 10. Desorption of compounds from instrument walls was measured by sampling photooxidation products generated in the chamber (yellow) and then immediately switching to purified air (white). *CIMS signal is normalized to time right before lights off.

Compound	Structure	Polarizability	y Dipole Moment	Sensitivity	Notes
		$(\stackrel{\circ}{A}{}^3)^a$	(D) ^b	Factor ^c	
		То	luene Related Comp	pounds	
o-Cresol	OH	11.8	1.42	1	
<i>m</i> -Cresol	OH	13.1	1.53	1.07	

Table S1: Estimated CIMS sensitivity factors

Compound	Structure	Polarizabilit	y Dipole Moment	Sensitivity	Notes		
		$(\stackrel{\circ}{A}{}^3)^{a}$	(D) ^b	Factor ^c			
<i>p</i> -Cresol	OH	13	1.53	1.06			
4-Methylcatechol	ОН	13.7	2.7	1.44			
Methyl hydro- quinone	ОН	13.7	2.05	1.21	Assume same polarizability as 4- methyl catechol		
3-Methylcatechol	он	13.7	2.42	1.34	Assume same polarizability as 4- methyl catechol		
2-Methyl resorci- nol	но он	13.7	2	1.19	Assume same polarizability as 4- methyl catechol		
4-Methyl resorci- nol	ОН	13.7	1.81	1.13	Assume same polarizability as 4- methyl catechol		
5-Methyl resorci- nol	он	13.7	2.1	1.23	Assume same polarizability as 4- methyl catechol		
4-Methyl-2- nitrophenol		16.2	3.49	1.69			
Benzoic acid	он	11.3	1.26	0.92			

Table S1: Estimated CIMS sensitivity factors

Compound	Structure	Polarizabil	ity Dipole Moment	Sensitivity	Notes						
		$(\stackrel{\circ}{A}{}^3)^a$	(D) ^b	Factor ^c							
Benzene Related Compounds											
Phenol	OH	11.1	1.54	1							
Catechol	он он	13.1	2.64	1.37							
Hydroquinone	OH	13.1	1.78	1.08	Assume polarizability same as cate- chol.						
Resorcinol	он	13.1	2.04	1.16	Assume polarizability same as cate- chol.						
1,2,3-Benzene triol	он	11.1	3.17	1.47							
1,3,5-Trihydroxy benzene	OH OH	11.1	2.7	1.32	Assume polarizability same as 1,2,3- benzene triol						
o-Nitrophenol		14	3.12	1.48							
<i>m</i> -Nitrophenol	OH	14	3.89	1.73	Assume polarizability same as o- nitrophenol						
<i>p</i> -Nitrophenol		14	4.9	2.06	Assume polarizability same as <i>o</i> -nitrophenol						

Table S1: Estimated CIMS sensitivity factors

Compound	Structure	Polarizability Dipole Momen		Sensitivity	Notes		
		$(\stackrel{\mathrm{o}}{A}{}^3)^{a}$	(D) ^b	Factor ^c			
Nitrohydroquinone	ОН	14	3.5	1.60	Assume polarizability same as o-		
	0 ₂ N				nitrophenol		
3-Nitrocatechol	OH Or No.	16.5	2.1	1.16	Assume polarity increases by same		
	но				factor as phenol to catechol		
4-Nitrocatechol	ŅO ₂	16.5	4.95	2.07	Assume polarity increases by same		
	но				factor as phenol to catechol		
2-Nitroresorcinol	NO ₂	16.5	2.18	1.19	Assume polarity increases by same		
	но				factor as phenol to catechol		
4-Nitroresorcinol	он	16.5	4.44	1.91	Assume polarity increases by same		
	HO				factor as phenol to catechol		
5-nitroresorcinol	HONO2	16.5	3.9	1.74	Assume polarity increases by same		
	СН				factor as phenol to catechol		

Table S1: Estimated CIMS sensitivity factors

5

^{*a*} Polarizability was estimated using the refractive index of each compound reported in Lide (2001) as done by Dewar and Stewart (1984). ^{*b*} The reported dipole moment is the average of all values reported in McClellan (1974) for experiments using benzene as a solvent and taken between 20-30 °C. ^{*c*} The sensitivity factor equals the ion-molecule collision rate of the compound divided by the ion-molecule collision rate of *o*-cresol for toluene related compounds or phenol for benzene related compounds.

As done by Dewar and Stewart (1984), polarizability was estimated using the refractive index reported in Lide (2001) and the formula: $\bar{P} = (3/4\pi N)(M/d)[(n^2 - 1)/(n^2 + 2)] * 10^{24}$ where \bar{P} is the average polarizability, n is the refractive index, N is Avogadro's number, M is the molecular weight, and d is the density. The dipole moments measured in benzene and reported by McClellan (1974) were used to estimate the CIMS sensitivity. Dipole moments measured in air would be more accurate than those measured in benzene. However, very few dipole moments measured in air are available for the aromatic compounds

Table S2. Water curve correction and sensitivity factors applied to each compound of interest

Compound	Water Curve Correction	Compound on which Sensitivity Factor is Based a
Cresol	o-cresol	Weighted <i>o</i> -, <i>m</i> -, and <i>p</i> -cresol ^{<i>b</i>}
Dihydroxy toluene	3-methyl catechol	3-methyl catechol
Trihydroxy toluene	3-methyl catechol	1,2,3 benzene triol
Tetrahydroxy toluene	3-methyl catechol	1,2,3 benzene triol
Hydroxy methyl benzoquinone	o-cresol	o-cresol
Dihydroxy methyl benzoquinone	3-methyl catechol	3-methyl catechol
Methyl nitrophenol	o-cresol	4-methyl-2-nitrophenol
Dihydroxy nitrotoluene	3-methyl catechol	3-nitrocatechol
Benzoic acid	o-cresol	benzoic acid
Peroxy benzoic acid	o-cresol	benzoic acid
Phenyl hydroperoxide	o-cresol	benzoic acid
Nitrosophenol	o-cresol	o-nitrophenol
Nitrophenol	o-cresol	o-nitrophenol
Dinitrophenol	o-cresol	o-nitrophenol

^{*a*} The sensitivity factors are listed in Table S1. ^{*b*} The photooxidation isomer distribution reported by Klotz et al. (1998) was used to create a generalized cresol sensitivity factor.

of interest. For phenol, the CIMS sensitivity decreases by 7% when using the dipole moment measured in air (Pedersen et al., 1969) versus the dipole moment measured in benzene (McClellan, 1974).

As noted in Table S1 when refractive index was unavailable, the polarizability for the closest related compound was used. The ion-molecule collision rate for each compound was estimated using the polarizabilities and dipole moments reported

5 in Table S1 and the technique described in Su and Chesnavich (1982). The sensitivity is expected to be proportional to the ion-molecule collision rate. The sensitivity factor reported in Table S1 is the ratio of the ion-molecule collision rate for the compound to that of *o*-cresol for toluene related compounds and phenol for benzene related compounds.

As stated in the main text, the *o*-cresol or 3-methyl catechol water curve was used to determine the sensitivity of a compound with a correction for the ion-molecule collision rate. In Table S2, the water curve correction and the sensitivity factor used for

- 10 each compound is reported. In some cases, as specified in Table S2 the polarizability and dipole moments were not available for toluene related compounds, so the benzene counterpart was used instead. Note that depending on the fraction of isomers of dihydroxy toluene that form from *o*-cresol oxidation, dihydroxy toluene may be underestimated. 3-methyl catechol has the highest sensitivity of all the isomers that could form from *o*-cresol oxidation (3-methyl catechol, 2-methyl resorcinol, 4methyl resorcionol, and methyl hydroquinone). Similarly, depending on the exact isomer distribution that forms from dihydroxy
- 15 toluene oxidation, trihydroxy toluene may be underestimated. 1,3,5-trihydroxy benzene has a lower sensitivity factor (1.32) compared to that for 1,2,3 benzene triol (1.47). Polarizability and dipole moment measurements are not available for hydroxy

methyl benzoquinone or dihydroxy methyl benzoquinone. Thus, we assume that hydroxy methyl benzoquinone behaves like *o*-cresol and dihydroxy methyl benzoquinone behaves like 3-methyl catechol.

Figure S2. CIMS measurements (data points) compared to predictions from version 1 of the kinetic model (lines) for benzaldehyde low-NO oxidation (experiment 10) for the following compounds benzaldehyde (black), peroxybenzoic acid (blue), benzoic acid (red), and phenyl hydroperoxide (cyan).

CIMS measurements and kinetic model results for products from low-NO oxidation of benzaldehyde are displayed in Figure S2. As stated in the main text, phenyl hydroperoxide is not detected by the CIMS either because it does not form or is unstable under the ion chemistry of the CF_3O^- CIMS. Benzoic acid is under-predicted by the kinetic model suggesting it is formed in a higher yield from $RO_2 + RO_2$ reactions, $RO_2 + HO_2$ reactions, or both. The low yield measured by the CIMS of peroxybenzoic acid, a product from only $RO_2 + HO_2$ reaction, could be caused by a variety of factors. For example, if the $RO_2 + RO_2$ reaction rate constant used in MCM v3.3.1 is too low, more $RO_2 + HO_2$ reactions would occur in the kinetic model producing an over-prediction of peroxybenzoic acid. Another possibility is that the branching ratio for the $RO_2 + HO_2$ reaction favors formation

10 of benzoic acid more so than recommended by MCM v3.3.1. Because benzoic acid is a product from both $RO_2 + RO_2$ and $RO_2 + HO_2$ reactions further constraint is not possible.

Figure S3. CIMS measurements (data points) compared to predictions from the kinetic model (solid lines version 1 and dotted lines version 3) for benzaldehyde oxidation under high-NO conditions (experiment 11) for the following compounds benzaldehyde (black), nitrophenol (blue), nitrosophenol (cyan), dinitrophenol (red), and maleic anhydride (magenta).

Nitrosophenol is detected from benzaldehyde oxidation under high-NO conditions (Figure S3). Previous studies have detected a product ($C_6H_5O(NO)$) from the reaction of phenoxy with NO (Tao and Li, 1999). The exact isomer that forms has not been experimentally confirmed. Based on theory, nitrosophenol is the most stable isomer (Yu et al., 1995). Two kinetic studies (Berho et al., 1998; Yu et al., 1995) proposed that phenyl nitrite is the dominant isomer given that nitrosophenol, which requires rearrangement, would not form at the timescales of their studies. $C_6H_5O(NO)$ was detected at the fluorine transfer at m/z (-) 142, implying that it is acidic like nitrosophenol. Possibly, nitrosophenol is over-predicted by version 3 of the kinetic model (Figure S3) because two isomers (nitrosophenol and phenyl nitrite) form and the CIMS is only sensitive to nitrosophenol. The reaction rate constant for C_6H_5O + NO measured by Berho et al. (1998) (1.65 x 10⁻¹² cm³ molec⁻¹ s⁻¹) is used in the revised mechanism. The reaction of C_6H_5O + NO has been shown to be reversible, but not at temperatures relevant to this study (Berho et al., 1998; Yu et al., 1995).

m/z (-) 183, assumed to be a fragment of dinitrophenol, is possibly also maleic anhydride (cluster). Maleic anhydride is a decomposition product from dinitrophenol in MCM v3.3.1. However, the predicted amount of maleic anhydride formed in the kinetic mechanism (version 1 and 3) is \sim 0.2 ppb after 18 hours of oxidation (Figure S3). Additionally, all nitro products detected by the CIMS have a corresponding fragment at the the F⁻ transfer minus 20 (hydroxy nitrotoluene, dihydroxy

15 nitrotoluene, and nitrophenol). Thus, the m/z (-) 183 signal is attributed to dinitrophenol.

5

10

Figure S4. CIMS measurements (data points) compared to predictions from version 3 of the kinetic model (lines) for 3-methyl catechol oxidation under low-NO conditions for bicyclic intermediate products from all precursors (black), 3-methyl catechol (blue), trihydroxy toluene (red), tetrahydroxy toluene (magenta), and trihydroxy toluene or tetrahydroxy toluene tracers (cyan).

Figure S4 compares CIMS measurements and kinetic model results for the bicyclic intermediate products. The sum of all bicyclic intermediate products detected by the CIMS and predicted by the kinetic model are shown in black. Given the large approximations outlined in Section 4.2.4 of the main text, the CIMS and kinetic model results are fairly consistent. Also CIMS measurements indicate that bicyclic intermediate products produced from later generation compounds such as trihydroxy toluene and tetrahydroxy toluene (cyan) peak later in the experiment as expected.

S2 Further Details on Kinetic Model

5

The initial conditions specified in Table 1 of the main text were used as input in the kinetic model. The kinetic model was run with 3 different versions. Version 1, the base case of the kinetic model, included reactions from MCM v3.3.1 for toluene and inorganic gas-phase chemistry and experimentally derived wall loss rates of *o*-cresol and 3-methyl catechol. Version 2 includes

- 10 all reactions in Version 1 and photolysis of hydroxy nitrotoluene and dihydroxy nitrotoluene. Version 3 includes all reactions in Version 2 and oxidation products for 3-methyl catechol and benzaldehyde. The reactions and rate constants are listed in Table S3 and abbreviations are defined in Table S4. These reactions were included to test the chemistry proposed in the main text. Exact branching ratios and reaction rates for these reactions are unknown. Estimates based on known reactions of similar compounds were used.
- 15 Hydrogen abstraction from the hydroxy group of 3-methyl catechol, OH3TOL, and OH4TOL is assumed to form an intermediate that then reacts with NO₂ to from a nitro compound. Under low-NO conditions, there is no loss process for this intermediate in the kinetic model or MCM v3.1.1. In experiments 1 and 2, after all injections were complete, lights on was

delayed for 2.5 h to estimate the wall loss of *o*-cresol. Wall loss of all other compounds is explained in section 4.2.1 in the main text.

Figure S5. Linear fit to natural log of wall deposition rate constant versus natural log of C* used to estimate wall deposition of compounds that cannot be directly measured.

New Reaction	New Reaction Rate ^a	Assumptions						
Version 1 – All reactions in MCM v 3.3.1 and those listed below.								
$CRESOL \rightarrow wall$	9.4 x 10^{-7} s ⁻¹	Measured in this study						
$MCATECHOL \rightarrow wall$	$2.5 \ge 10^{-6} \text{ s}^{-1}$	Measured in this study						
Version 2 – All reactions in Version 1 and those listed below.								
TOL1OHNO2 + hv \rightarrow products	$1.73 \text{ x } 10^{-4} \text{ s}^{-1}$	Assume similar to						
$MNCATECH + hv \rightarrow products$	$1.73 \text{ x } 10^{-4} \text{ s}^{-1}$	6-methyl-2-nitrophenol (Bejan et al., 2007)						
Version 3 –	All reactions in Version 2 an	d those listed below.						
$CRESOL + OH \rightarrow BCRESOL$	$4.65 \ge 10^{-11} \ge 0.2 \ge 0.65$	Assume missing products from						
		Olariu et al. (2002) from bicyclic pathway.						
MCATECHOL + OH \rightarrow MCATEC1O	$2.0 \ge 10^{-10} \ge 0.07$	Assume same as o-cresol						
$MCATECHOL + OH \rightarrow OHMBQN$	$2.0 \ge 10^{-10} \ge 0.07$	oxidation from MCM v3.3.1						
$\text{MCATECHOL} + \text{OH} \rightarrow \text{OH3TOL}$	$2.0 \ge 10^{-10} \ge 0.73$	and (Olariu et al., 2002)						
$MCATECHOL + OH \to BMCATECHOL$	$2.0 \ge 10^{-10} \ge 0.13$							
$OH3TOL + OH \rightarrow OH3TOL1O$	$2.5 \ge 10^{-10} \ge 0.07$	Assume same as <i>o</i> -cresol oxidation						

Table S3: Reactions and reaction rate constants added to chemistry in MCM v3.3.1 to test proposed chemistry.

New Reaction New Reaction Rate^a Assumptions $2.5 \ge 10^{-10} \ge 0.07$ $OH3TOL + OH \rightarrow OH2MBON$ from MCM v3.3.1 and (Olariu et al., 2002, 2000). $OH3TOL + OH \rightarrow OH4TOL$ $2.5 \ge 10^{-10} \ge 0.73$ Increased reaction rate constant due to additional $OH3TOL + OH \rightarrow BOH3TOL$ $2.5 \ge 10^{-10} \ge 0.13$ OH group to hard sphere collision rate limit. $2.5 \ge 10^{-10} \ge 0.07$ $OH4TOL + OH \rightarrow OH4TOL1O$ Assume same as o-cresol oxidation $2.5 \ge 10^{-10} \ge 0.07$ $OH4TOL + OH \rightarrow OH3MBON$ from MCM v3.3.1 and Olariu et al. (2002, 2000). $2.5 \ge 10^{-10} \ge 0.73$ $OH4TOL + OH \rightarrow OH5TOL$ Increased reaction rate constant due to additional $OH4TOL + OH \rightarrow BOH4TOL$ $2.5 \ge 10^{-10} \ge 0.13$ OH group to hard sphere collision rate limit. 5.44 x 10⁻¹¹ BCRESOL + OH \rightarrow products Assume same as 5.44×10^{-11} BMCATECHOL + OH \rightarrow products C5CO14OH from MCM v 3.3.1 $5.44 \ge 10^{-11}$ BOH3TOL + OH \rightarrow products 5.44 x 10⁻¹¹ BOH4TOL + OH \rightarrow products $2.3 \ge 10^{-11}$ OHMBQN + OH \rightarrow products Assume same as OH2MBQN + OH \rightarrow products $2.3 \ge 10^{-11}$ PTLQONE from MCM v 3.3.1 2.08×10^{-12} OH3TOL1O + NO₂ \rightarrow products Assume same as $2.08 \ge 10^{-12}$ $OH4TOL1O + NO_2 \rightarrow products$ MCATEC10 from MCM v3.3.1 $6.13 \times 10^{-5} \text{ s}^{-1}$ HOC6H4NO2 + $hv \rightarrow$ products Based on 2-nitrophenol measured by Bardini (2006) reported by Chen et al. (2011) $1.65 \ge 10^{-12}$ $C6H5O + NO \rightarrow C6H5O(NO)$ Berho et al. (1998) $9.0 \ge 10^{-13}$ $C6H5O(NO) + OH \rightarrow products$ Assume same as $9.0 \ge 10^{-14}$ C6H5O(NO) + NO₃ \rightarrow products HOC6H4NO2 from MCM v3.3.1 $2.1 \ge 10^{-5} \text{ s}^{-1}$ $OH3TOL \rightarrow wall$ Measured in this study $7.9 \text{ x } 10^{-5} \text{ s}^{-1}$ $OH4TOL \rightarrow wall$ Estimated in this study $5.0 \ge 10^{-4} \text{ s}^{-1}$ $OH5TOL \rightarrow wall$ Estimated in this study $9.6 \ge 10^{-6} \text{ s}^{-1}$ $OHMBON \rightarrow wall$ Measured in this study $2.0 \ge 10^{-5} \text{ s}^{-1}$ $OH2MBQN \rightarrow wall$ Measured in this study $1.2 \text{ x } 10^{-4} \text{ s}^{-1}$ $OH3MBON \rightarrow wall$ Estimated in this study

Table S3: Reactions and reaction rate constants added to chemistry in MCM v3.3.1 to test proposed chemistry.

^{*a*} Reaction rate units are cm^3 molec⁻¹ s⁻¹ unless otherwise noted.

Table S4. Abbreviations used in Table S3

_

Abbreviation	Description
BCRESOL	Tracer for products from the bicyclic intermediate pathway from cresol oxidation.
BMCATECHOL	Tracer for products from the bicyclic intermediate pathway from methyl catechol.
BOH3TOL	Tracer for products from the bicyclic intermediate pathway from trihydroxy toluene.
BOH4TOL	Tracer for products from the bicyclic intermediate pathway from tetrahydroxy toluene.
C5CO14OH	Acetyl acrylic acid (one of the bicyclic intermediate pathway products from o-cresol oxidation in MCM).
CRESOL	Cresol
HOC6H4NO2	Nitrophenol
MCATEC10	Product from H-abstraction of OH group of methyl catechol
MCATECHOL	Methyl catechol
MNCATECH	Nitro dihydroxy toluene
OH2MBQN	Dihydroxy methyl benzoquinone
OH3MBQN	Trihydroxy methyl benzoquinone
OH3TOL	Trihydroxy toluene
OH3TOL1O	Product from H-abstraction of OH group of trihydroxy toluene
OH3TOL1O	Product from H-abstraction of OH group of tetrahydroxy toluene
OH4TOL	Tetrahydroxy toluene
OH5TOL	Pentahydroxy toluene
OHMBQN	Hydroxy methyl benzoquinone
PTLQONE	Methyl benzoquinone (one of the bicyclic intermediate pathway products from cresol oxidation in MCM)
TOL10HNO2	Nitro hydroxy toluene

Table S5. Cham	per conditions	based on	kinetic mo	del (Version 1)
----------------	----------------	----------	------------	-----------------

Expt	VOC-OH adduct rxn (%)		o-cres	ol rxn (%)	3-methyl	catechol rxn (%)	RO ₂ Reaction Partner (%)		
#	02	NO ₂	ОН	NO ₃	ОН	H NO ₃		HO ₂	NO
1	94	6	>31	<69	>41	<59	~ 0	<1	>99
2	100	0	100	0	100	0	<12	>88	~ 0
3	94	6	>44	<56	>44	<56	~ 0	<1	>99
4	100	0	100	0	100	0	<6	>94	~ 0
5	>99.9	<0.1	>96	<4	>91	<9	~ 0	<1	>99
6	100	0	100	0	100	0	<1	>99	~ 0
7	>99.9	<0.1	NA	NA	~ 100	${\sim}0$	~ 0	<2	>98
8	100	0	NA	NA	100	0	No R	O ₂ forms i	in MCM
9	100	0	NA	NA	100	0	from	low NO o	xidation
10	100	0	NA	NA	100	0	of	methyl cat	echol.
11	100	0	NA	NA	NA	NA	$\sim 16^a$	${\sim}84~^a$	${\sim}0~^a$
12	97	3	NA	NA	NA	NA	~ 0	<4	>96
13	100	0	100	0	100	0	<18	>82	${\sim}0$
14	90	10	>20	<80	>34	<66	~ 0	<1	>99
15	>99.9	<0.1	>98	<2	>94	<6	~ 0	<1	>99

^a Throughout most of the experiment, the peroxy radical distribution was that stated. However, over the first hour there was exponential convergence to these steady state values from $RO_2 + RO_2 = 100\%$ and $RO_2 + HO_2 = 0\%$.

S3 DART-MS Analysis Details and Product Identification

S3.1 DART-MS Analysis Details

A mass calibrant and an independent quality assurance/quality control (QA/QC) compound were run with each sample set to ensure mass accuracy to within 5 mDa. The mass calibrant used for positive mode was polyethylene glycol (average molecular weight of 600 amu, PEG-600; Acros Organics, Geel, Belgium), which was dissolved in methanol. The independent QA/QC compound used is reserpine, which was purchased from Sigma-Aldrich and diluted in methanol.

Tweezers were used to introduce the samples into the DART gas stream. Before analysis, the tweezers were rinsed with acetone, and were introduced into the gas stream to vaporize any contaminants. A strip (\sim 1 cm) was cut from each sample substrate for testing. The cutting was tested in triplicate, with each sampling being from a different area of the substrate.

10

5

to the PEG-600 in every sample run. Calibration was deemed sufficient if the m/z of reserpine fell within \pm 0.005 Da of the theoretical value (609.281 Da).

The instrument used was a JEOL (Tokyo, Japan) AccuTOF[™] mass spectrometer (JMS-T100LC) coupled with an IonSense (Saugus, MA, USA) DART[®] source. Ultra-pure helium was used as the ionizing gas with a flow rate of 1.75 L min⁻¹. For

all analyses, the DART® source was set to a needle voltage of ±3.5 kV. Electrode 1 and electrode 2 voltages were both set to ±150 V. Mass spectrometer settings include: an orifice 1 voltage of ±20 V, orifice 2 voltage of ±5 V, a ring lens voltage of ±5 V, a peaks voltage of 1500 V, a mass range of 50 – 1500 m/z at 0.5 seconds per scan. A helium gas stream temperature of 325 °C was also employed.

S3.2 DART-MS Product Identification

- 10 Best available knowledge was used to assign the compounds displayed in Tables S6, S7, and S8. The smaller compounds could be fragmentation products. C_xH_yNO and $C_xH_yNO_2$ were assumed to be amines. These products could also be small nitro or nitroso compounds or fragmentation products of nitrates. Products that appeared to be fragmentation products (i.e., reasonable structures could not be drawn) were excluded from the list. The structure of each compound was necessary to estimate the vapor pressure. The most probable dominant isomer was selected in all cases, but there are likely many additional structural isomers
- 15 that form as well. The abundances reported in Tables S6, S7, and S8 are not meant to be used quantitatively due to uncertainties in the vapor pressure estimation methods and centroid fitting algorithm. Often each m/z contained many over-lapping peaks and corrections were not made for isoptope effects.

Table S	56.	DART	-MS	data	from	low-N	O to	luene	oxidation	n (ex	periment	13).
---------	-----	------	-----	------	------	-------	------	-------	-----------	-------	----------	----	----

m/z (+) (Da)	Intensity (A.U.)	С	Н	N	0	Δ (mDa) a	Smiles	Est. VP (atm) ^b	Abundance (R_f)
69.067377	6671.45	5	8	0	0	3.05	C=CC=CC	6.49E-01 (E)	3.42E-12
71.046739	11123.71	4	6	0	1	2.95	CC=CC=O	8.30E-02 (E)	4.46E-11
71.081281	3477.48	5	10	0	0	4.79	C=CCCC	6.49E-01 (E)	1.78E-12
73.064072	4280.44	4	8	0	1	1.27	CCCC=O	1.27E-01 (E)	1.12E-11
75.04371	5382.00	3	6	0	2	0.89	CC(CO)=O	6.92E-03 (E)	2.59E-10
80.048339	155429.63	5	5	1	0	1.69	C1=CC=CC=N1	3.46E-02 (N)	1.50E-09
83.082762	4393.36	6	10	0	0	3.31	C=CCCC=C	2.12E-01 (E)	6.89E-12
85.025484	4539.76	4	4	0	2	3.47	O=CC=CC=O	3.42E-03 (E)	4.41E-10
87.039802	7748.51	4	6	0	2	4.80	O=CCCC=O	6.19E-03 (E)	4.16E-10
97.026419	6180.71	5	4	0	2	2.53	O=CC1=CC=CO1	2.96E-03 (N)	6.95E-10
97.055251	2871.86	6	8	0	1	10.09	CC(C=CC=C)=O	8.87E-03 (E)	1.08E-10
97.101391	2954.88	7	12	0	0	0.33	CC1C=CCCC1	6.93E-02 (E)	1.42E-11
99.043366	9545.71	5	6	0	2	1.24	O=C(C)C=CC=O	1.12E-03 (E)	2.84E-09
99.072496	3758.17	6	10	0	1	8.49	CC(C=CCC)=O	8.87E-03 (E)	1.41E-10
101.057523	4501.87	5	8	0	2	2.73	O=C(C)CCC=O	2.02E-03 (E)	7.40E-10
109.035545	3507.03	6	4	0	2	-6.59	O=C1C=CC(C=C1)=O	2.48E-05 (E)	4.69E-08
109.096678	4467.03	8	12	0	0	5.05	C=CC=CC=CCC	2.27E-02 (E)	6.55E-11
111.043476	6721.86	6	6	0	2	1.13	O=CC1=CC=C(O1)C	1.25E-03 (N)	1.79E-09
111.11751	3129.72	8	14	0	0	-0.13	CCC=CC=CCC	2.27E-02 (E)	4.59E-11
113.019938	3471.30	5	4	0	3	3.93	O=C1C(C)=CC(O1)=O	7.03E-04 (E)	1.64E-09
113.05728	4021.97	6	8	0	2	2.97	O=CCCC=CC=O	4.92E-04 (E)	2.72E-09
115.038947	6483.21	5	6	0	3	0.57	O=C(C)C=CC(O)=O	6.57E-06 (E)	3.28E-07
115.064062	2955.96	6	10	0	2	11.84	O=CCCCCC=O	6.62E-04 (E)	1.49E-09
127.039667	5945.22	6	6	0	3	-0.15	O=C(C)C=CC(C=O)=O	1.64E-04 (E)	1.21E-08
127.112254	4155.67	8	14	0	1	0.04	O=CCCCCC=CC	1.45E-03 (E)	9.55E-10
129.053327	4254.59	6	8	0	3	1.84	O=C(C=CC(O)C=O)C	6.36E-05 (E)	2.22E-08
139.034538	5275.37	7	6	0	3	4.98	CC1=CC(C=C(O)C1=O)=O	5.26E-07 (E)	3.34E-06
141.050361	3122.55	7	8	0	3	4.81	CC1=CC=C(O)C(O)=C1O	5.97E-08 (N)	1.74E-05
155.034837	3399.08	7	6	0	4	-0.40	CC1=CC(C(O)=C(O)C1=O)=O	8.26E-09 (E)	1.37E-04
157.045695	8025.67	7	8	0	4	4.39	CC1=CC(O)=C(O)C(O)=C1O	3.28E-10 (N)	8.13E-03
161.091424	2838.46	11	12	0	1	5.22	0=CC=CC=CC=CC=C	3.32E-05 (E)	2.85E-08
173.044149	3338.73	7	8	0	5	0.85	CC1=C(0)C(0)=C(C(0)=C10)O	1.12E-12 (N)	9.92E-01
203.10019	3898.22	13	14	0	2	7.01	0=CC=CC=CC=CC=CC=CC(C)=0	1.46E-07 (E)	8.87E-06

 a The difference between the measured and proposed compound exact mass. b Est. VP = Estimated vapor pressure. Estimation Method in parenthesis: E = EVAPORATION method and N = Nannoolal method.

 Table S7: DART-MS data from high-NO *o*-cresol oxidation (experiment 15).

m/z (+) (Da)	Intensity ^a	С	Н	N	0	Δ^{b} (mDa)	Smiles	Est. VP (atm) ^c	Abundance (\mathbf{R}_f)
69.06738	4799.51	5	8	0	0	3.05	C=CC=CC	6.49E-01 (E)	1.17E-11
71.04674	7360.97	4	6	0	1	2.95	CC=CC=O	8.30E-02 (E)	1.40E-10
73.06407	3055.72	4	8	0	1	1.27	CCCC=0	1.27E-01 (E)	3.82E-11
75.04371	3495.06	3	6	0	2	0.89	CC(CO)=O	6.92E-03 (E)	7.99E-10
76.0358	2830.61	2	5	1	2	4.06	OCC(N)=O	5.43E-08 (N)	8.25E-05
80.04834	2555.95	5	5	1	0	1.69	C1=CC=CC=N1	3.46E-02 (N)	1.17E-10
81.0676	2116.91	6	8	0	0	2.83	C=CC=CC=C	2.12E-01 (E)	1.58E-11
83.08276	2977.45	6	10	0	0	3.31	C=CCCC=C	2.12E-01 (E)	2.22E-11
85.02548	2862.51	4	4	0	2	3.47	O=CC=CC=O	3.42E-03 (E)	1.32E-09
85.06327	2015.80	5	8	0	1	2.07	CC(C=CC)=O	2.71E-02 (E)	1.17E-10
87.04526	4217.44	4	6	0	2	-0.66	0=CCCC=0	6.19E-03 (E)	1.08E-09
94.06261	2373.32	6	7	1	0	3.06	N1C=CC=CC=C1	2.04E-02 (N)	1.84E-10
95.08159	1934.09	7	10	0	0	4.49	CC1C=CCC=C1	6.93E-02 (E)	4.41E-11
97.02642	4443.40	5	4	0	2	2.53	O=CC1=CC=CO1	2.96E-03 (N)	2.38E-09
97.06102	3408.60	6	8	0	1	4.32	CC(C=CC=C)=O	8.87E-03 (E)	6.08E-10
97.09562	2367.86	7	12	0	0	6.10	CC1C=CCCC1	6.93E-02 (E)	5.40E-11
98.06128	2115.28	5	7	1	1	-0.69	NC(C=CC=C)=O	1.44E-06 (N)	2.33E-06
99.04337	5939.65	5	6	0	2	1.24	O=C(C)C=CC=O	1.12E-03 (E)	8.40E-09
99.07832	3689.73	6	10	0	1	2.67	CC(C=CCC)=O	8.87E-03 (E)	6.58E-10
100.0362	2821.45	4	5	1	2	3.65	O=CC=CC(N)=O	2.02E-07 (N)	2.21E-05
101.0222	2194.10	4	4	0	3	1.65	0=CC=CC(0)=0	2.01E-05 (E)	1.73E-07
101.0575	3823.68	5	8	0	2	2.73	O=C(C)CCC=O	2.02E-03 (E)	2.99E-09
102.0545	2971.25	4	7	1	2	1.54	NCC=CC(0)=O	2.92E-05 (N)	1.61E-07
104.0332	5611.42	3	5	1	3	1.60	CC=CON(=O)=O	2.60E-02 (E)	3.42E-10
109.1028	3360.34	8	12	0	0	-1.07	C=CC=CC=CCC	2.27E-02 (E)	2.34E-10
111.0435	4461.87	6	6	0	2	1.13	O=CC1=CC=C(O1)C	1.25E-03 (N)	5.64E-09
111.1175	2507.94	8	14	0	0	-0.13	CCC=CC=CCC	2.27E-02 (E)	1.75E-10
113.0262	1862.29	5	4	0	3	-2.29	O=C1C(C)=CC(O1)=O	7.03E-04 (E)	4.19E-09
113.0573	3145.91	6	8	0	2	2.97	0=CCCC=CC=0	4.92E-04 (E)	1.01E-08
114.0553	2382.57	5	7	1	2	0.17	C=C(C=CC(O)=O)N	1.45E-05 (N)	2.59E-07
115.0389	3284.56	5	6	0	3	0.57	O=C(C)C=CC(O)=O	6.57E-06 (E)	7.90E-07
115.0703	2005.33	6	10	0	2	5.56	0=CCCCCC=0	6.62E-04 (E)	4.79E-09
118.0469	2527.17	4	7	1	3	3.51	CCC=CON(=O)=O	8.50E-03 (E)	4.71E-10
120.0524	3185.49	4	9	1	3	13.66	CCCCON(=O)=O	8.50E-03 (E)	5.93E-10
126.0519	1896.52	6	7	1	2	3.58	OC1=CN=C(C)C(O)=C1	1.36E-05 (N)	2.20E-07

Table S7: DART-MS data from high-NO o-cresol oxidation (experiment 15).

m/z (+) (Da)	Intensity ^a	С	Н	Ν	0	Δ^{b} (mDa)	Smiles	Est. VP (atm) ^c	Abundance (R_f)
127.0397	3814.74	6	6	0	3	-0.15	O=C(C)C=CC(C=O)=O	1.64E-04 (E)	3.68E-08
127.0661	2199.51	7	10	0	2	9.84	O=C(C)CC=CCC=O	2.16E-04 (E)	1.61E-08
127.1123	3306.85	8	14	0	1	0.04	O=CCCCCC=CC	1.45E-03 (E)	3.61E-09
128.071	1864.39	6	9	1	2	0.14	O=C(C=CC=CCN)O	3.46E-06 (N)	8.52E-07
129.0533	2463.10	6	8	0	3	1.84	O=C(C=CC(O)C=O)C	6.36E-05 (E)	6.12E-08
130.0527	1871.23	5	7	1	3	-2.32	O=N(OC=CC=CC)=O	2.78E-03 (E)	1.07E-09
139.0414	2114.31	7	6	0	3	-1.92	CC1=CC(C=C(0)C1=O)=O	5.26E-07 (E)	6.36E-06
142.0463	2154.17	6	7	1	3	4.15	C=CC=CC(ON(=O)=O)=C	9.08E-04 (E)	3.75E-09
154.0524	1956.21	7	7	1	3	-2.01	OC1=C(N(=O)=O)C=CC	1.77E-05 (N)	1.75E-07
							=C1C		
155.0348	3607.35	7	6	0	4	-0.40	CC1=CC(C(0)=C(0)C1=O)	8.26E-09 (E)	6.91E-04
							=0		
157.0457	1941.16	7	8	0	4	4.39	CC1=CC(0)=C(0)C(0)	3.28E-10 (N)	9.36E-03
							=C1O		
267.1658	2870.33	15	22	0	4	-6.13	OC(OC1=C(O)C(O)	4.59E-12 (N)	9.90E-01
							=CC=C1C)CCCCC=CC ^c		

^{*a*} (A.U.) ^{*b*} The difference between the measured and proposed compound exact mass. ^{*c*} Est. VP = Estimated vapor pressure. Estimation Method in parenthesis: E = EVAPORATION method, and N = Nannoolal method. ^{*c*} Smiles in table is that of the structure predicted to form. Vapor pressure method could not estimate the vapor pressure of this structure so a very similar structure was used instead (OC(C(O)=CC=C1C)=C1OCC(O)CCCC=CC).

Table S8: DART-MS data from high-NO toluene oxidation (experiment 14).

m/z (+) (Da)	Intensity ^a	С	Н	Ν	0	Δ^{b} (mDa)	Smiles	Est. VP (atm) ^c	Abundance (\mathbf{R}_f)
61.026497	5540.57	2	4	0	2	2.46	CC(0)=0	4.49E-03 (E)	7.02E-10
69.067377	1410.70	5	8	0	0	3.05	C=CC=CC	6.49E-01 (E)	1.24E-12
76.035796	3623.11	2	5	1	2	4.06	OCC(N)=O	5.43E-08 (N)	3.80E-05
80.048339	1641.73	5	5	1	0	1.69	C1=CC=CC=N1	3.46E-02 (N)	2.71E-11
83.082762	1684.25	6	10	0	0	3.31	C=CCCC=C	2.12E-01 (E)	4.52E-12
85.025484	2836.08	4	4	0	2	3.47	0=CC=CC=0	3.42E-03 (E)	4.72E-10
87.007038	2179.84	3	2	0	3	1.18	O=CC(C=O)=O	7.03E-02 (E)	1.77E-11
87.039802	6440.08	4	6	0	2	4.80	O=CCCC=O	6.19E-03 (E)	5.93E-10
90.013837	2080.44	2	3	1	3	5.28	C=CON(=O)=O	7.95E-02 (E)	1.49E-11
90.047162	1148.22	3	7	1	2	8.34	OC(C)C(N)=O	2.13E-07 (N)	3.07E-06
94.06261	7800.17	6	7	1	0	3.06	N1C=CC=CC=C1	2.04E-02 (N)	2.18E-10

 Table S8: DART-MS data from high-NO toluene oxidation (experiment 14).

m/z (+) (Da)	Intensity ^a	С	Н	N	0	Δ^{b} (mDa)	Smiles	Est. VP (atm) ^c	Abundance (\mathbf{R}_f)
95.053048	1261.49	6	6	0	1	-3.36	OC1=CC=CC=C1	1.44E-03 (N)	4.98E-10
95.081585	1364.08	7	10	0	0	4.49	CC1C=CCC=C1	6.93E-02 (E)	1.12E-11
97.026419	6227.32	5	4	0	2	2.53	O=CC1=CC=CO1	2.96E-03 (N)	1.20E-09
97.061018	4637.55	6	8	0	1	4.32	CC(C=CC=C)=O	8.87E-03 (E)	2.98E-10
98.06128	1349.16	5	7	1	1	-0.69	NC(C=CC=C)=O	1.44E-06 (N)	5.35E-07
99.043366	11466.81	5	6	0	2	1.24	O=C(C)C=CC=O	1.12E-03 (E)	5.84E-09
99.089977	2449.13	6	10	0	1	-8.99	CC(C=CCC)=O	8.87E-03 (E)	1.57E-10
100.042055	2453.04	4	5	1	2	-2.20	O=CC=CC(N)=O	2.02E-07 (N)	6.91E-06
100.071332	1379.97	5	9	1	1	4.91	NC(C=CCC)=O	2.52E-06 (N)	3.12E-07
101.022218	2932.23	4	4	0	3	1.65	O=CC=CC(O)=O	2.01E-05 (E)	8.30E-08
101.051638	1499.95	5	8	0	2	8.62	O=C(C)CCC=O	2.02E-03 (E)	4.22E-10
102.054463	1439.00	4	7	1	2	1.54	NCC=CC(O)=O	2.92E-05 (N)	2.81E-08
102.089947	2487.60	5	11	1	1	1.94	NC(CCCC)=O	3.50E-06 (N)	4.05E-07
103.03847	1574.86	4	6	0	3	1.05	CC(C(C=O)O)=O	2.00E-03 (E)	4.48E-10
104.033168	2667.65	3	5	1	3	1.60	CC=CON(=O)=O	2.60E-02 (E)	5.85E-11
105.014648	2141.85	3	4	0	4	4.14	O=C(O)C(CO)=O	2.22E-06 (E)	5.49E-07
109.096678	3357.59	8	12	0	0	5.05	C=CC=CC=CCC	2.27E-02 (E)	8.44E-11
110.058713	1424.19	6	7	1	1	1.88	OC1=CC=CN=C1C	1.53E-03 (N)	5.29E-10
111.043476	4684.00	6	6	0	2	1.13	O=CC1=CC=C(O1)C	1.25E-03 (N)	2.13E-09
112.038821	2037.51	5	5	1	2	1.03	OC1=CC(O)=CN=C1	5.32E-05 (N)	2.18E-08
113.026161	2657.15	5	4	0	3	-2.29	O=C1C(C)=CC(O1)=O	7.03E-04 (E)	2.15E-09
113.05728	3740.34	6	8	0	2	2.97	0=CCCC=CC=0	4.92E-04 (E)	4.33E-09
114.055338	2438.47	5	7	1	2	0.17	C=C(C=CC(O)=O)N	1.45E-05 (N)	9.56E-08
115.038947	7677.84	5	6	0	3	0.57	O=C(C)C=CC(O)=O	6.57E-06 (E)	6.65E-07
116.033084	1330.37	4	5	1	3	1.68	C=CC=CON(=O)=O	8.50E-03 (E)	8.92E-11
116.064614	1348.08	5	9	1	2	6.54	CC(N)C=CC(O)=O	1.87E-05 (N)	4.12E-08
117.050497	2483.76	5	8	0	3	4.67	O=C(C)CCC(O)=O	1.00E-05 (E)	1.41E-07
118.046909	1887.46	4	7	1	3	3.51	CCC=CON(=O)=O	8.50E-03 (E)	1.27E-10
123.046863	1686.79	7	6	0	2	-2.26	CC1=CC(C=CC1=O)=O	8.12E-06 (E)	1.18E-07
125.06148	1442.25	7	8	0	2	-1.23	CC1=CC=CC(0)=C10	6.77E-06 (N)	1.21E-07
126.051919	2178.90	6	7	1	2	3.58	OC1=CN=C(C)C(O)=C1	1.36E-05 (N)	9.10E-08
127.039667	4187.31	6	6	0	3	-0.15	O=C(C)C=CC(C=O)=O	1.64E-04 (E)	1.46E-08
127.112254	3174.50	8	14	0	1	0.04	O=CCCCCC=CC	1.45E-03 (E)	1.25E-09
128.03127	2068.51	5	5	1	3	3.50	O=N(C1=CC=C(C)O1)=O	1.93E-03 (N)	6.09E-10
129.053327	3905.59	6	8	0	3	1.84	O=C(C=CC(O)C=O)C	6.36E-05 (E)	3.50E-08

Table S8: DART-MS data from high-NO toluene oxidation (experiment 14).

m/z (+) (Da)	Intensity ^a	С	Н	Ν	0	Δ^{b} (mDa)	Smiles	Est. VP (atm) c	Abundance (R_f)
130.052743	1472.64	5	7	1	3	-2.32	O=N(OC=CC=CC)=O	2.78E-03 (E)	3.02E-10
131.035911	1919.85	5	6	0	4	-1.48	OC(C(O)=C(C=O)C)=O	1.09E-07 (E)	1.00E-05
131.062715	1156.33	6	10	0	3	8.10	O=C(C)CCC(C=O)O	4.99E-05 (E)	1.32E-08
133.047111	1311.02	5	8	0	4	2.97	OC(C(C(C)C=O)O)=O	1.22E-01 (E)	6.13E-12
138.049261	2335.43	7	7	1	2	6.24	CC1=C(N(=O)=O)C=CC=C1	2.18E-04 (N)	6.12E-09
139.034538	2994.57	7	6	0	3	4.98	CC1=CC(C=C(0)C1=O)=O	5.26E-07 (E)	3.24E-06
140.030245	2170.62	6	5	1	3	4.52	OC1=CC=CC=C1N(=O)=O	8.71E-05 (N)	1.42E-08
141.050361	5078.50	7	8	0	3	4.81	CC1=CC=C(0)C(0)=C10	5.97E-08 (N)	4.85E-05
142.046271	3022.13	6	7	1	3	4.15	C=CC=CC(ON(=O)=O)=C	9.08E-04 (E)	1.90E-09
143.031682	2933.82	6	6	0	4	2.75	O=C(C)C=CC(C(O)=O)=O	5.77E-07 (E)	2.90E-06
145.047972	2291.30	6	8	0	4	2.11	O=C(C=CC(O)C(O)=O)C	3.56E-08 (E)	3.66E-05
152.068107	1146.80	8	9	1	2	3.05	NC(C=CC=CC=O)=O	4.05E-09 (N)	1.61E-04
154.045164	2966.87	7	7	1	3	5.25	OC1=C(N(=O)=O)C=CC=C1C	1.77E-05 (N)	9.55E-08
155.034837	3800.38	7	6	0	4	-0.40	CC1=CC(C(0)=C(0)C1=0)=0	8.26E-09 (E)	2.62E-04
156.06424	1417.63	7	9	1	3	1.83	CC=CC=CC=CON(=O)=O	2.97E-04 (E)	2.72E-09
157.045695	5036.75	7	8	0	4	4.39	CC1=CC(0)=C(0)C(0)=C10	3.28E-10 (N)	8.74E-03
158.044945	1517.74	6	7	1	4	0.39	O=N(OC=CC(CC=C)=O)=O	3.80E-05 (E)	2.27E-08
159.062128	1321.64	7	10	0	4	3.61	CC(C=CC(C(O)C=O)O)=O	3.41E-07 (E)	2.21E-06
161.046849	1846.47	6	8	0	5	-1.85	O=C(CO)C=CC(C(O)=O)O	1.79E-10 (E)	5.89E-03
170.046401	1573.59	7	7	1	4	-1.07	OC1=C(O)C(N(=O)=O)	2.01E-07 (N)	4.46E-06
							=CC=C1C		
173.044149	1855.62	7	8	0	5	0.85	CC1=C(0)C(0)	1.12E-12 (N)	9.44E-01
							=C(C(O)=C1O)O		
174.069813	1324.07	7	11	1	4	6.82	O=N(OC=CCCCCC=O)=O	1.90E-05 (E)	3.98E-08
175.059781	1319.16	7	10	0	5	0.87	O=C(C)C=CC(O)C(O)	1.33E-10 (E)	5.64E-03
							C(O)=O		
177.157199	1399.51	9	20	0	3	-8.13	CCCCC(0)C(0)CCC0	2.29E-09 (E)	3.49E-04
178.069959	2175.62	6	11	1	5	1.59	O=N(OCCCCC(0)=0)=0	2.20E-07 (E)	5.63E-06
223.064145	2037.80	11	10	0	5	-3.50	O=C(O)C=CC=CC=CC	3.35E-11 (E)	3.46E-02
							=CC(C(O)=O)=O		

^a (A.U.) ^b The difference between the measured and proposed compound exact mass. ^b Est. VP = Estimated vapor pressure.

Estimation Method in parenthesis: E = EVAPORATION method, and N = Nannoolal method.

Other studies have reported structural isomers of the compounds listed in Table S6, S7, and S8 in the gas-phase and particlephase from toluene SOA (Jang and Kamens, 2001; Sato et al., 2007). Peaks for $C_7H_8O_4$ and $C_7H_8O_5$ had the largest intensity in

Figure S6. Epoxide pathway oxidation mechanism under both low- and high-NO conditions as recommended by MCM v3.3.1

the particle-phase measurements in the study by Sato et al. (2007), but it should be noted that only 1% of the SOA constituents were quantified in that study. Both of these prior studies (Jang and Kamens, 2001; Sato et al., 2007) suggest that the compounds are ring-opening products not produced from the cresol pathway. Given the new evidence from the CF_3O^- CIMS in this study, it is clear that these compounds are produced from the cresol pathway.

⁵ Products detected in the particle-phase by the DART-MS under *o*-cresol high NO conditions are shown in Figure S7. An oligomer product, $C_{15}H_{22}O_4$, is detected as one of the dominant products in *o*-cresol oxidation under high-NO conditions (Figure S7). It is possible this product forms from oligomerization of trihydroxy toluene and $C_8H_{14}O$ to form a hemiacetal.

Figure S7. Products detected by DART-MS in the particle phase during oxidation of *o*-cresol under high NO conditions (experiment 15) with boxes identifying the following types of compounds: polyols (black), methyl benzoquinone type compounds (magenta), decomposition products from the bicyclic intermediate pathway (cyan), products with more than 7 carbons (gold), and nitro compounds (green).

References

Bardini, P.: Atmospheric chemistry of dimethylphenols and nitrophenols, Ph.D. Thesis, University College Cork, Thesis, 2006.

- Bejan, I., Barnes, I., Olariu, R., Zhou, S., Wiesen, P., and Benter, T.: Investigations on the gas-phase photolysis and OH radical kinetics of methyl-2-nitrophenols, Phys. Chem. Chem. Phys., 9, 5686–5692, 2007.
- 5 Berho, F., Caralp, F., Rayez, M. T., Lesclaux, R., and Ratajczak, E.: Kinetics and thermochemistry of the reversible combination reaction of the phenoxy radical with NO, J. Phys. Chem. A., 102, 1–8, 1998.
 - Chen, J., Wenger, J. C., and Venables, D. S.: Near-ultraviolet absorption cross sections of nitrophenols and their potential influence on tropospheric oxidation capacity, J. Phys. Chem. A., 115, 12 235–12 242, 2011.
 - Dewar, M. J. S. and Stewart, J. J. P.: A new procedure for calculating molecular polarizabilities; Applications using MNDO., Chem. Phys.

- Jang, M. and Kamens, R. M.: Characterization of secondary aerosol from the photooxiation of toluene in the presense of NO_x and 1-propene, Environ. Sci. Technol., 35, 3626–3639, 2001.
- Klotz, B., Sorensen, S., Barnes, I., Becker, K. H., Etzkorn, T., Volkamer, R., Platt, U., Wirtz, K., and Martin-Reviejo, M.: Atmospheric oxidation of toluene in a large-volume outdoor photoreactor: in situ determination of ring-retaining product yields, J. Phys. Chem. A., 102, 1000
- 15 102, 1998.

Lide, D. R.: CRC Handbook of Chemistry and Physics, vol. 82, CRC Press LLC, Boca Raton, Florida, 2001.

McClellan, A. L.: Table of Experimental Dipole Moments, vol. 2, Rahara Enterprises, El Cerrito, Ca, 1974.

- Olariu, R. I., Barnes, I., Becker, K. H., and Klotz, B.: Rate coefficients for the gas-phase reaction of OH radicals with selected dihydroxybenzenes and benzoquinones, Int. J. Chem. Kinet., 32, 696–702, 2000.
- 20 Olariu, R. I., Klotz, B., Barnes, I., Becker, K. H., and Mocanu, R.: FT-IR study of the ring-retaining products from the reaction of OH radicals with phenol, *o*-, *m*-, and *p*-cresol, Atmos. Environ., 36, 3685–3697, 2002.
 - Pedersen, T., Larsen, N. W., and Nygaard, L.: Microwave spectra of the six monodeuteriophenols. Molecular structure, dipole moment, and barrier to internal rotation of phenol., J. Mol. Structure, 4, 59–77, 1969.

Sato, K., Hatakeyama, S., and Imamura, T.: Secondary organic aerosol formation during the photooxidation of toluene: NO_x dependence of

- 25 chemical composition, J. Phys. Chem. A., 111, 9796–9808, 2007.
 - Su, T. and Chesnavich, W. J.: Parametrization of the ion-polar molecule collision rate constant by trajectory calculations, J. Chem. Phys., 76, 5183–5185, 1982.
 - Tao, Z. and Li, Z.: A kinetics study on reactions of C₆H₅O with C₆H₅O and O₃ at 298 k, Int. J. Chem. Kinet., 31, 65–72, 1999.

Yu, T., Mebel, A. M., and Lin, M. C.: Reaction of phenoxy radical with nitric oxide, J. Phys. Org. Chem., 8, 47-53, 1995.

¹⁰ Lett., 111, 416–420, 1984.