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Abstract. SO2 emission controls, combined with modestly
increasing ammonia, have been thought to generate aerosol
with significantly reduced acidity for cases in which sulfate
is partially substituted by nitrate. However, neither expec-
tation agrees with decadal observations in the southeastern
USA, suggesting that a fundamentally different response of
aerosol pH to emissions changes is occurring. We postulate
that this nitrate substitution paradox arises from a positive
bias in aerosol pH in model simulations. This bias can el-
evate pH to a level at which nitrate partitioning is readily
promoted, leading to behavior consistent with nitrate substi-
tution. CMAQ simulations are used to investigate this hy-
pothesis; modeled PM2.5 pH using 2001 emissions compare
favorably with pH inferred from observed species concen-
trations. Using 2011 emissions, however, leads to simulated
pH increases of one unit, which is inconsistent with obser-
vations from that year. Nonvolatile cations (K+, Na+, Ca+2,
and Mg+2) in the fine mode are found to be responsible for
the erroneous predicted increase in aerosol pH of about 1 unit
on average over the USA. Such an increase can induce a ni-
trate bias of 1–2 µg m−3, which may further increase in future
projections, reaffirming an otherwise incorrect expectation
of a significant nitrate substitution. Evaluation of predicted
aerosol pH against thermodynamic analysis of observations
is therefore a critically important, but overlooked, aspect of
model evaluation for a robust emissions policy.

1 Introduction

Aerosol acidity is a driver of many important atmospheric
processes (Guo et al., 2015; Weber et al., 2016), catalyz-
ing the conversion of isoprene oxidation products to form
secondary organic aerosol (SOA) (Xu et al., 2015; Pye et
al., 2013; Surratt et al., 2010; Eddingsaas et al., 2010) and
driving the semivolatile partitioning of key aerosol species
(Guo et al., 2015; Weber et al., 2016). High acidity can also
lead to the solubilization of iron, copper and other trace met-
als in aerosol, which may serve as nutrients for ecosystems
(Meskhidze et al., 2003), but also prove toxic for humans
(Ghio et al., 2012; Fang et al., 2017). Significant reductions
in primary pollutant emissions over the last decades have
greatly improved air quality in the developed world and are
also thought to fundamentally affect aerosol acidity. SO2, an
important aerosol precursor and a major driver of its acidity,
has seen decreases of about 6 % yr−1 over the 2001–2011
period alone in the USA, with a continued anticipated down-
ward trend (Pinder et al., 2007, 2008). Emissions of NOx and
the resulting acidic HNO3, are also declining. In contrast,
ammonia, the primary alkaline fine-mode aerosol precursor,
was either constant or increasing during this period (Pinder
et al., 2007, 2008; Heald et al., 2012), owing to intensified
agricultural activity and livestock farming from the demands
of population growth. These trends have created the expec-
tation that the aerosol has and will become increasingly less
acidic (West et al., 1999; Pinder et al., 2007, 2008; Heald
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et al., 2012; Tsimpidi et al., 2007; Saylor et al., 2015), with
ammonium sulfate being replaced, at least in part, by ammo-
nium nitrate (West et al., 1999; Bauer et al., 2007; Bellouin
et al., 2011; Li et al., 2014; Goto et al., 2016).

The concept of nitrate substitution of sulfate has largely
been based on the notion that nitrate is volatile when the
aerosol is acidic, and in turn aerosol is acidic when insuf-
ficient amounts of total ammonia (i.e., gas+aerosol) or dust
nonvolatile cations (NVCs) exist to neutralize aerosol sulfate.
Based on this conceptual model, aerosol ionic molar ratios
have largely been used as proxies of aerosol acidity (pH), so
that when the aerosol ammonium to sulfate molar ratio ap-
proaches 2 (the composition of ammonium sulfate), aerosol
is assumed neutral and only then can nitrate aerosol form
(Fisher et al., 2011; Hennigan et al., 2015; Wang et al., 2016;
Silvern et al., 2017). Modeling studies have corroborated this
view, predicting that nitrate substitution may be prevalent
in the future, including in the southeastern USA (SE USA)
(Heald et al., 2012; Bauer et al., 2007; Bellouin et al., 2011;
Li et al., 2014; Goto et al., 2016; Vayenas et al., 2005; Kary-
dis et al., 2016). A more careful analysis, however (Guo et
al., 2015, 2016; Weber et al., 2016; Hennigan et al., 2015),
reveals that this conceptual model of aerosol acidity and con-
ditions for nitrate substitution fails; thermodynamic analysis
of SE US aerosol observations instead show that fine-mode
aerosol remains strongly acidic, despite a 70 % reduction in
sulfates and more than a sufficient amount of total ammo-
nia to neutralize it. The strong acidity is maintained by the
large difference in volatility between sulfate and ammonia
(Guo et al., 2015; Weber et al., 2016), so large changes in to-
tal ammonia concentrations are required for a notable change
in aerosol acidity, of about 1 order of magnitude increase in
NH3 concentration per unit increase in aerosol pH (Guo et
al., 2015, 2017c). However, ammonia gas deposits relatively
rapidly, limiting its build up except in high-emission regions.
Throughout the decade, the levels of aerosol nitrate have re-
mained relatively constant throughout the USA (Guo et al.,
2015; Weber et al., 2016; Pye et al., 2009). The persistent
strong aerosol acidity in turn explains why nitrate aerosol
has not considerably increased over the last decades and is
unlikely to appear in the immediate future in the SE USA.
These findings constitute a paradox, as the same thermody-
namic models (e.g., ISORROPIA-II, Fountoukis and Nenes,
2007) used to demonstrate the aerosol tendency for strong
acidity in the SE USA (Guo et al., 2015; Weber et al., 2016)
using ambient data are also used in 3-D modeling studies
(Pye et al., 2009; Heald et al., 2012) for the region that pre-
dicts nitrate substitution as a possible aerosol response.

Reconciling the nitrate substitution paradox requires a
careful examination of aerosol thermodynamics and the con-
ditions under which nitrate partitioning to the aerosol is fa-
vored. Meskhidze et al. (2003) and later Guo et al. (2016)
showed that, for aerosol nitrate formation to occur, aerosol
pH needs to exceed a certain characteristic value (depending
on the temperature and the amount of liquid water it ranges

between a pH of 1.5 and 3; Guo et al., 2017b). If aerosol
pH is therefore high enough (typically above a pH of 2.5 to
3), a behavior consistent with nitrate substitution emerges,
because any inorganic nitrate forming from NOx chemistry
mostly resides in the aerosol phase. When pH is low enough
(typically below 1.5 to 2), nitrate remains exclusively in the
gas phase (as HNO3), regardless of the amount produced, and
nitrate substitution is not observed. Between these high and
low pH values, a sensitivity window emerges (of typically
1–1.5 pH units), at which partitioning shifts from nitrate be-
ing predominantly found as a gas to being mostly found as
an aerosol. Therefore, if a model is for any reason biased
in its prediction of aerosol pH, it may be preconditioned to-
wards nitrate prediction biases. The sensitivity to pH biases
is strongest when the aerosol lies in the pH sensitivity win-
dow, which is often the case for atmospheric aerosol (Guo
et al., 2015, 2016, 2017b; Bougiatioti et al., 2016). When
below this pH sensitivity window, aerosol nitrate is almost
nonexistent and relatively insensitive to emissions (and pH
biases); when above the window, almost all nitrate resides
in the aerosol phase and directly responds to NOx emission
controls.

If aerosols were composed only of nonvolatile sulfate,
semivolatile nitrate and ammonium, prediction biases in pH
could result only from errors in RH, and large errors (e.g.,
order of magnitude) of NH3, NOx and SO2 because pH is
relatively insensitive to changes in these aerosol precursors
(Hennigan et al., 2015; Guo et al., 2017c). Acidity, however,
can also be modulated by other soluble inorganic cations
from sea salt and mineral dust, such as K+, Na+, Ca+2

and Mg+2. The low volatility of these cations allows them
to preferentially neutralize sulfates over NH3, and, even in
small amounts, elevate particle pH to levels that can promote
the partitioning of nitrates to the aerosol phase (Fountoukis
and Nenes, 2007; Guo et al., 2017a). NVCs tend to reside
in the coarse-mode aerosol, with a fraction found in smaller
particles, while sulfate tends to reside in the fine mode (e.g.,
West et al., 1999; Vayenas et al., 2005; Guo et al., 2015); the
degree to which NVCs can affect fine-mode pH therefore lies
in the degree at which the two types of species mix across
different particle sizes. Potential interactions between inor-
ganics and organics can also affect aerosol acidity. However,
recent studies driving thermodynamic models utilizing water
associated with organics find only minimal differences in pH
predictions (Guo et al., 2015; Bougiatioti et al., 2016; M. Liu
et al., 2017; Pye et al., 2018; Song et al., 2018). In the pres-
ence of very high NVCs (for example in sea-spray aerosol),
where the aerosol has much higher pH, the pH can approach
the pKa of organic acids, leading to conditions in which their
dissociation can contribute to aerosol acidity (Laskin et al.,
2012).

Although aerosol models are evaluated in terms of their
ability to predict the concentration of aerosol species (includ-
ing across size), no studies to date focus on their ability to
predict aerosol pH across size, even though it is known to
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potentially vary up to 6 units (Fang et al., 2017; Bougiati-
oti et al., 2016; Li et al., 2017). Evaluation of models in this
context is challenging, since there is no established data set
of aerosol acidity – although that is rapidly changing, with
pH estimates derived from a combination of observations and
models (e.g., Guo et al., 2015, 2017b, c; Bougiatioti et al.,
2016; Y. Liu et al., 2017; Song et al., 2018). Furthermore,
given that most of this pH variability occurs in the PM1 to
PM2.5 range (Fang et al., 2017), it is quite likely that model
assumptions on how aerosol species interact within a mode
(degree of internal mixture) may lead to pH prediction bi-
ases that drive model behavior, especially for particles in the
1–2.5 µm range.

The aim of this study is to address the underlying rea-
sons for the nitrate substitution paradox, and in the process,
provide a conceptual framework for quantifying and under-
standing the importance of aerosol pH biases. The guiding
hypothesis of this work is that aerosol pH prediction bias fun-
damentally changes predicted aerosol behavior and is the un-
derlying cause of the paradox. The approach is demonstrated
with the Community Multiscale Air Quality (CMAQ) model
(Byun and Schere, 2006) and is based on predictions of pH
over the 2001–2011 period in the southeastern and eastern
USA, which is the region in which aerosol pH trends are con-
strained by observations. The role of internally mixed non-
volatile cations in PM2.5 as a source of the pH bias is then
assessed.

2 Methods

Predicting aerosol pH and composition

CMAQ is a three-dimensional, Eulerian, atmospheric chem-
istry and transport model, which simulates the processes that
atmospherically relevant compounds undergo, such as emis-
sion, diffusion, chemical reactions and deposition (Byun and
Schere, 2006). CMAQ version 5.0.2 was used in this study,
and simulations were carried out using a 36 km horizontal
resolution grid, with 13 vertical layers, over the continental
USA (CONUS) for the entirety of 2001 and 2011. Meteoro-
logical data were obtained offline from the Weather Research
Forecasting (WRF) model. The same meteorology was used
for the 2 years to eliminate the effect of differences due to
temperature and relative humidity on pH predictions. Model-
ready emissions for 2011 were obtained using the National
Emissions Inventory 2011 inventory (NEI 2011) for the Car-
bon Bond 05 (CB05) chemical mechanism. To estimate the
2001 emissions, the 2011 emissions for SO2, NOx , NH3, CO,
VOCs and primary PM from anthropogenic sources were
scaled on a per-species basis using the Air Pollutant Emis-
sions Trends Data (2017); emissions for other species were
kept constant. Specifically, anthropogenic CO, NOx , primary
PM and SO2 emissions were increased by 44 %, 45 %, 15 %
and 246 % respectively, while VOC and NH3 emissions were

reduced by 6 % and 14 %. Emissions of biogenic species
were calculated online using the Biogenic Emission Inven-
tory System (BEIS).

The aerosol thermodynamic model ISORROPIA-II (Foun-
toukis and Nenes, 2007) was used online in CMAQ to drive
the semivolatile partitioning of inorganic species and of-
fline to analyze the predicted PM2.5 pH, nitrate partitioning
tendency and sensitivities thereof to nonvolatile cations. It
should be noted that ISORROPIA and CMAQ only account
for thermodynamic interactions between inorganic species
and do not treat organics. Offline calculations were con-
ducted using the hourly gas and particle phase concentra-
tion output from CMAQ for the 2001 and 2011 simula-
tions, which includes NVCs, and using them as input to
ISORROPIA-II (subversion 2.3 – dated 2012). The thermo-
dynamic calculations online and offline were carried out in
the forward mode, meaning that the temperature, relative hu-
midity, as well as all aerosol and gas phase concentrations
were known and used as input, while at the same time it
was assumed that the aerosol is in a metastable state, for
which only one aqueous phase is allowed to exist (Foun-
toukis and Nenes, 2007). This assumption is not always nec-
essarily true, especially under conditions of low relative hu-
midity (RH < 30 %) at which the aerosol can crystalize or
exist in glassy, amorphous state (in this case thermodynamic
equilibrium is not reached), observational data of liquid wa-
ter content shows that it is most often a valid assumption
(Guo et al., 2015; Bougiatioti et al., 2016), and other studies
suggest that the phase state may not strongly affect predicted
pH (Song et al., 2018). We run the model under a variety of
conditions to determine the impact of NVCs from dust and
sea salt (Ca, Mg, K, Na) on pH and its seasonal variability,
as well as the effect of pH and temperature on nitrate parti-
tioning.

3 Results and discussion

3.1 Predicted sulfate, ammonium and nitrate

For the main inorganic aerosol species (SO−2
4 , NO−3 and

NH+4 ), CMAQ captures the observed trends, as seen in the
literature (Park et al., 2006; Hand et al., 2012; Blanchard et
al., 2013a, b; Kim et al., 2015; Saylor et al., 2015) over the
CONUS throughout decade (Fig. S1 in the Supplement). As
expected, sulfate over the entire USA drops significantly be-
tween 2001 and 2011 (∼ 30 %), with major decreases in the
eastern USA (∼ 2 µg m−3). Areas impacted the most by these
reductions are places of significant industrial activity or coal-
fired electricity generating units (EGUs), such as the Ohio
River Valley, Baton Rouge in Louisiana and South Carolina.
Ammonium levels only experience small reductions, which
are consistent with a buffered response to the decrease in sul-
fate levels, and minimal changes in emissions. Local reduc-
tions (∼ 20 %) in ammonia are seen over North Carolina and
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Figure 1. Annual averaged PM2.5 pH over CONUS for (a) 2001 and (b) 2011, calculated offline using ISORROPIA II and the annual
averaged CMAQ concentration fields. The white outline specifies the eastern US domain used for further analysis.

Louisiana. Aerosol nitrate concentrations remain constant on
average over the domain, with small increases over the east-
ern USA. The highest levels of ammonium are observed in
areas with significant livestock, such as North Carolina and
the Midwest; sulfate concentrations are the highest around
the Ohio River Valley due to SOx emissions and so is nitrate
due to significant NOx and ammonia emissions.

3.2 Predicted annual and seasonal pH

Figure 1 depicts the annual average pH fields over the USA
for 2001 and 2011, calculated using the annual average
PM2.5 concentrations, with the study domain of the outlined
eastern USA. Simulations show that there are noticeable dif-
ferences between the two years, localized mainly in desert
regions along the US–Mexico border, southern Texas and the
eastern USA. The sulfate reductions in the eastern USA ap-
pear to have a major impact on model results, leading to sig-
nificant increases in aerosol pH in the area. For 2001, the
average yearly pH for the eastern USA is 1.6, consistent with
recent literature and observations from the WINTER cam-
paign (Guo et al., 2015, 2016; Weber et al., 2016) (Fig. 1a).
For 2011, however, predicted pH increases to about 2.5 – al-
most a unit higher (Fig. 1b).

Seasonal pH trends are also positive over the eastern USA,
with the summertime (Fig. S2f) experiencing stronger in-
creases than in the winter (Fig. S2c), being 0.5–1.5 for win-
ter and 0.5–2 for summer. Much of the seasonal variabil-
ity is driven by changes in temperature and relative humid-
ity: increased relative humidity (RH) leads to less acidic
aerosol, since liquid water content and pH are inversely re-
lated (Guo et al., 2015, 2016), while increased tempera-
tures promote low RH nitrate partitioning and therefore more
acidic aerosol. The desert areas of the western USA, south-
ern Texas, Florida, SW Alabama and Mississippi are the
most sensitive in the wintertime (Fig. S2a, b), while the cen-
tral USA is mostly unaffected. During the summer, the en-
tire central USA is much more strongly impacted, while the

wintertime sensitive areas exhibit only minor pH increases
(Fig. S2d, e).

3.3 Model evaluation of pH

Model results for both simulation years were compared to
thermodynamic analysis of measurements from three ur-
ban sites in Atlanta, Georgia (Jefferson Street, JST; Georgia
Tech, GT; Atlanta Road-Side, RS) and two rural (Yorkville,
Georgia – YRK; and Centerville, Alabama – CTR) SEARCH
network sites. Measurements for the urban sites and the YRK
site were taken between May and December 2012 for the
SCAPE study, while measurements from the CTR site were
for the SOAS campaign period (1 June to 15 July 2013)
(Guo et al., 2015; Xu et al., 2015). The three urban sites are
contained within the same CMAQ grid cell. All urban sites
(Fig. 2a, b, c, d) exhibit an early morning/late night pH max-
imum and an afternoon minimum throughout the year (Guo
et al., 2015). This a combination of two factors: RH being
highest during the early morning/late night, which increases
water uptake and hence decreases acidity (Guo et al., 2015)
(Fig. S3), and the presence of crustal elements in significant
quantities during that time (Fig. S4). The model pH closely
tracks the diurnal profile of predicted cations (Fig. S4), indi-
cating that they have an important impact on predicted pH,
which, however, is not seen in the measurements (Fig. 2),
since they make up a much smaller percentage of observed
PM2.5. Despite the presence of NVCs, the pH remains low
for both simulation years but it tends to be higher in 2011,
because of sulfate levels that are approximately half of those
in 2001 across all sites, leading to the increased relative effect
of NVCs (Weber et al., 2016). Removal of all NVCs from the
thermodynamic calculations (Fig. S5), significantly reduces
the pH differences between 2001 and 2011 while removing
some of the increased variability introduced by NVCs. At the
same time, a negative bias is introduced to the simulated pH,
which is more prominent for the urban sites, even after the
sulfate reductions.
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Figure 2. pH diurnal profiles for May (a), August (b), September (c) and November (d) at JST/RS/GT, July (e) and December (f) at YRK
and for the SOAS campaign period (g). Blue and red lines are the offline ISORROPIA simulated pH using CMAQ concentrations for 2001
and 2011 respectively, while the shaded areas are 1 model standard deviation. The green line represents the pH calculated through the
thermodynamic analysis of the measurements (found in Guo et al., 2015) and the shaded area is the standard error.

The increase in pH is not proportional to the reduction in
sulfate, since aerosol responds nonlinearly to such reductions
through the volatilization of ammonia (Weber et al., 2016).
Depending on location, sulfate reductions range from 38 %
to 55 %, while the corresponding pH increase is much lower,
pointing to the fact that cations, although small in amount,
tend to have a disproportionately strong impact on acidity.
For the SOAS campaign period (Fig. 2g), pH is underes-
timated, especially for 2001. The biases follow the pattern
of NVCs present, by being negatively biased until noon and
positively biased for the rest of the day (Figs. 2 and S4).
The bias is particularly evident in the early morning hours,
when NVC concentrations reach a maximum (Fig. S4). For
the YRK site (Fig. 2b, e), pH is underestimated overall dur-
ing the winter and overestimated during the summer. Simi-
larly to the urban sites, the predicted RH agrees well with the
measurements (Fig. S3), albeit with a positive afternoon bias
during the summer. The diurnal profile of pH closely tracks
the one of cations, further suggesting they may be directly
related to the bias.

When evaluating the predicted pH trend for CTR, the
model results exhibit a clear, increasing trend of 0.6 pH units
per decade (Fig. 3). This trend is inconsistent with recent
thermodynamic analysis of observations, suggesting a slight
decrease in pH over the same time period for the SE USA
(Guo et al., 2015, 2016; Weber et al., 2016). If this bias in
predicted pH trend continues, it can have profound implica-
tions for future regulatory modeling, since the increased pH
can lead to elevated levels of model nitrate, reproducing ni-
trate substitution (Bauer et al., 2007; Bellouin et al., 2011; Li

et al., 2014; Goto et al., 2016). Possible reasons behind this
pH bias could be overestimated ammonia emissions, under-
estimated sulfate or the presence of NVCs in PM2.5. The first
two possibilities are unlikely, given the agreement of pre-
dicted ammonium and sulfate with previous studies (Park et
al., 2006; Hand et al., 2012; Blanchard et al., 2013a, b; Kim
et al., 2015; Saylor et al., 2015), and the relative insensitivity
of pH to ammonia and sulfate (Weber et al., 2016; Silvern
et al., 2017). However, NVCs, if inappropriately distributed
in PM2.5, can exert significant biases on pH (Meskhidze et
al., 2003; Karydis et al., 2016; Guo et al., 2017b). Indeed,
offline calculations of aerosol pH excluding the influence
of NVCs mitigates most of the predicted positive trend of
0.6 pH units per decade when all the aerosol species are con-
sidered (Fig. 3), while also reducing the standard error. The
remaining bias may arise from errors in model RH, given that
it controls water uptake and drives much of the diurnal vari-
ability in pH (Guo et al., 2015). Usage of observed (instead of
predicted) RH in the thermodynamic calculations did not im-
pact the predicted pH more than 0.1 units (Fig. S6). A more
thorough evaluation of the remainder of the pH bias, as well
as the impact of NVCs when included in appropriate quanti-
ties, requires a far more extensive analysis of the emissions
profiles – especially regarding its diurnal variability – and
observational data set than the one available for this study
(Henneman et al., 2017; Guo et al., 2017c).

The pH bias becomes negative for most of the CMAQ
eastern USA when removing all NVCs from the calculations
(Fig. S5). This, combined with the considerable model skill
for sulfate, nitrate and ammonium when compared to the lit-
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Figure 3. Decadal pH trends from the thermodynamic analysis
of the measurements from Weber et al. (2016) (blue line), default
CMAQ (black line) and CMAQ results at the Centreville grid cell
without crustal elements (green line). Also shown is the pH for the
SOAS campaign and the CMAQ-predicted pH for 1 June–15 July
2001 and 2011. CMAQ exhibits a clear positive trend, with pH in-
creasing throughout the decade, both due to sulfate reductions and
the increasingly important role of NVCs. Standard error is also plot-
ted for all data points.

erature (Henneman et al., 2017), implies that pH biases are
not related to errors in the major inorganic ions or biases in
meteorological parameters (humidity and temperature), but
rather in the NVCs, which are minor contributors to PM2.5
and hence poorly constrained. For the SEARCH sites, NVCs
comprise 5 % to 10 % of the total inorganic PM2.5 (Guo et al.,
2015), which is significantly less than the model-predicted
values that are a factor of 4 higher than the measurements.
The most important result, therefore, is that NVCs are a
considerable source of pH prediction uncertainty when not
accounted for correctly (Supplement: The role of NVCs in
PM2.5 pH). It should be noted that, for the summertime at the
CTR location, the ammonium and sulfate values are biased
low in CMAQ by a factor of 3 using the Weber et al. (2016)
data. These biases, however, are consistent with literature and
typical of CTMs (Henneman et al., 2017).

The SEARCH sites have been thoroughly studied in the
previous literature (Guo et al, 2015, 2017a; Xu et al., 2015;
Weber et al., 2016) and given the high concentrations of or-
ganic mass observed throughout the year, they present an ex-
cellent case study for the potential impact of organics on pH.
Recent studies indicate that organic aerosol can have a sec-
ondary, but still quantifiable impact on aerosol pH, especially
when allowed to interact with inorganics (Pye et al., 2018).
Most 3-D models do not account for potential, nonideal inter-

Figure 4. CMAQ-derived nitrate partitioning ratio for the eastern
USA and select months of 2001. The black squares denote the av-
erage pH values for each month. Note the insensitivity of nitrate
partitioning to pH biases in the summer for pH values of less than 1(

∂εNO3
∂pH ∼ 0

)
, which is not the case for colder months.

actions between the two, in addition to not including organics
in thermodynamic calculations, which, if the above statement
is true, can lead to significant predictive pH errors. To inves-
tigate the role of organics on pH we used the E-AIM model
(Wexler and Clegg, 2002; Friese and Ebel, 2010; Clegg et
al., 1992) (http://www.aim.env.uea.ac.uk/aim/aim.php, last
access: 1 April 2018) on our model results for the SEARCH
sites to calculate partitioning with the considered organic–
inorganic interactions. We tested a variety of organic com-
pounds under different scenarios to determine the potential
of organics to influence pH (see Supplement: Organic acids
and pH).

We find that the addition of organic compounds to the
model did not have a significant impact on acidity (≤ 2 % pH
deviation from the baseline value) compared to the baseline
run, apart from the cases in which RH was higher than 80 %
and the mole fraction of organic acids in the aqueous phase is
greater than 25 % (Supplement: Organic acids and pH). We
conclude that the maximum impact of organics on aerosol pH
can likely result from the effects of liquid–liquid phase sep-
aration (Pye et al., 2018) but are of insufficient magnitude to
sustain a positive aerosol pH trend as observed in our base
case simulation.

3.4 The impact of pH biases on nitrate partitioning and
sulfate–nitrate substitution

To understand the importance of pH biases on nitrate par-
titioning and the potential for predicting a behavior consis-
tent with nitrate substitution, we express the CMAQ output
in each grid cell in terms of the nitrate partitioning ratio,
εNO3 =

[NO3
−]

[HNO3]+[NO3
−] . It can be shown that εNO3 follows a

simple sigmoidal curve (Meskhidze et al., 2003; Guo et al.,
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Figure 5. Increase in aerosol nitrate corresponding to a one-unit positive change in pH for (a) January and (b) July. Emissions for 2011 are
assumed, but to account for pH prediction biases from NVCs, they are removed from the thermodynamic calculations. Plots are on different
scales due to the large differences in predicted nitrate increases.

2016), εNO3 = 1− [H+]
[H+]+L·T ·9

, where L is the liquid water

content, T is ambient temperature, [H+] is the concentration

of H+ in the aerosol aqueous phase, and 9 =
R·
[
HNO3

]
1000·P0

is
a fitting parameter that depends on the universal gas con-
stant (R), the effective Henry’s law constant for nitric acid
in the aerosol aqueous phase (HNO3 ) and the standard pres-
sure (P0). Depending on the value of pH, nitrate partitioning
in CMAQ can either be insensitive

(
∂εNO3
∂pH ∼ 0

)
or sensitive(

∂εNO3
∂pH ∼ 0.5

)
to pH biases, depending on the month of the

year considered (Fig. 4). We generally find that nitrate parti-
tioning is insensitive

(
∂εNO3
∂pH ∼ 0

)
and heavily shifted to the

gas phase (εNO3 ∼ 0) during the summer and spring (Fig. 4),

while it becomes quite sensitive to pH errors
(

∂εNO3
∂pH ∼ 0.5

)
in the winter and fall. For the latter case, this means that small
pH perturbations in either direction can strongly affect the
amount of nitrate that partitions in the aerosol phase; if the
weather is sufficiently cold and NOx emissions and pH pre-
dictions are biased sufficiently high, εNO3 ∼ 1, meaning that
all nitrates are partitioned to the aerosol phase and the emer-
gence of nitrate substitution behavior.

To exemplify the above, we determine the amount of ex-
cess nitrate from pH prediction biases as follows. Perturbing
the acidity by 1pH from the monthly mean value along the
εNO3 curves (Fig. 4) gives the corresponding change in the
partitioning ratio (1εNO3 ). Multiplying 1εNO3 with the to-
tal nitrate (HNO3(g)+NO3) predicted in CMAQ in each grid
cell gives the total nitrate response (1NO3) to 1pH. Apply-
ing the eastern USA to 1pH=+1 (the average pH impact
of including NVCs in the PM2.5 calculations over the entire
eastern USA) gives the 1NO3 distributions shown in Fig. 5

for the winter (Fig. 5a) and the summer (Fig. 5b). The pre-
dicted wintertime nitrate bias tends to be higher than in the
summer, owing to the lower temperatures and higher aerosol
pH levels present (which shift εNO3 towards higher values;
Fig. 4) and the higher values of total available nitrate in the
wintertime. The combination of both factors (available ni-
trate and high pH) is necessary for appreciable quantities of
nitrate to partition, but in general the locations with a pH of
between 0.5 and 1 are the most susceptible to positive pH bi-
ases, since a unit increase places nitrate partitioning into the
ascending part of the S-curve (Fig. 4), rapidly increasing the
amount of aerosol nitrate that can form. During both seasons,
areas rich in total nitrate, and a pH between 0.5 and 1.5, such
as the Ohio River Valley, New York, New Jersey and South
Louisiana (Figs. 1, S1e, f), exhibit the largest increases in
aerosol nitrate. Other locations that have low pH and low to-
tal nitrate such as West Virginia see minimal changes. A no-
table exception is North Carolina which has a higher pH than
the aforementioned locations – mainly due to the high NH3
emissions from livestock – which pushes the partitioning be-
yond the sensitive regime, where increases in pH do not drive
additional nitrate in the particle phase.

To investigate the potential of NVCs and sulfate reduc-
tions to induce nitrate substitution, the sensitivity of the ni-
trate increase, 1NO3, to the corresponding sulfate reduc-
tion, 1SO4, was quantified for the eastern USA, both when
NVCs are included in the calculations and when they were
not (Fig. 6). Over the decade, nitrate has seen increases in
the eastern USA (Fig. S11) ranging from 0.5 to 2.5 µg m−3,
and NVCs can have a profound impact on how these in-
creases are distributed across the domain (Fig. S11a, b). In
the presence of NVCs (Fig. 6a), there is a 1 µg m−3 increase
in nitrate for a sulfate reduction of the same value over the
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Figure 6. CMAQ predicted nitrate substitution
(

NO2011
3 −NO2001

3
SO2001

4 −SO2011
4

)
over the decade, when NVCs are accounted for (a), and when they are

removed from the thermodynamic calculations (b).

eastern USA. For this case, substitution is predicted across
the entire eastern USA, with only a few grid cells in south-
ern Georgia, Mississippi and North Carolina exhibiting the
opposite trend (nitrate reduction), attributed to the forma-
tion of insoluble CaSO4, which reduces the availability of
aerosol water, and in turn inhibits the formation of NO3
with the co-condensation of NH3. When NVCs are removed
(Fig. 6b), the corresponding nitrate increase is much less (0–
0.2 µg m−3 per 1 µg m−3 of sulfate), especially in the east-
ern USA, while substitution is still predicted in the northern
parts of the domain, such as Ohio, Indiana and Michigan. The
aforementioned areas tend to have higher seasonal pH values
than the SE USA (Fig. 1), and the removal of NVCs reduces
the pH to values at which nitrate partitioning is more sensi-
tive to small pH perturbations (Fig. 4), leading to a higher
predicted sensitivity to sulfate reductions. This analysis sug-
gests that nitrate substitution is of a much smaller magnitude
than expected (West et al., 1999; Heald et al., 2012; Bauer et
al., 2007; Bellouin et al., 2011; Li et al., 2014; Goto et al.,
2016; Vayenas et al., 2005; Karydis et al., 2016) and heavily
impacted by pH biases introduced by NVCs.

Given the importance of aerosol acidity for almost any
aerosol-related process and impact, it is imperative that
aerosol studies evaluate acidity inferred from thermody-
namic analysis of ambient data as presented here. We demon-
strate that, in the case of nitrate substitution, the distribu-
tion of nonvolatile cations over particle size can have a pro-
found impact on model behavior and requires better con-
straints from emissions to observations (or at least appro-
priate sensitivity studies, such as those carried out here, to
unravel the potential impact of nonvolatile cations). Under-

standing aerosol pH and the drivers thereof is a powerful tool
for evaluating model performance that has never been used
before. Usage of molar ratios, ion balances and other concep-
tual models of aerosol acidity (Hennigan et al., 2015; Wang
et al., 2016; Silvern et al., 2017) provide limited insights into
aerosol pH and should be strongly avoided to limit incorrect
conclusions.
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