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Abstract. Previous multi-model intercomparisons have
shown that chemistry–climate models exhibit signifi-
cant biases in tropospheric ozone compared with ob-
servations. We investigate annual-mean tropospheric col-
umn ozone in 15 models participating in the SPARC–
IGAC (Stratosphere–troposphere Processes And their Role
in Climate–International Global Atmospheric Chemistry)
Chemistry-Climate Model Initiative (CCMI). These models
exhibit a positive bias, on average, of up to 40 %–50 % in
the Northern Hemisphere compared with observations de-
rived from the Ozone Monitoring Instrument and Microwave
Limb Sounder (OMI/MLS), and a negative bias of up to
∼ 30 % in the Southern Hemisphere. SOCOLv3.0 (version
3 of the Solar-Climate Ozone Links CCM), which partici-
pated in CCMI, simulates global-mean tropospheric ozone
columns of 40.2 DU – approximately 33 % larger than the
CCMI multi-model mean. Here we introduce an updated ver-
sion of SOCOLv3.0, “SOCOLv3.1”, which includes an im-
proved treatment of ozone sink processes, and results in a
reduction in the tropospheric column ozone bias of up to
8 DU, mostly due to the inclusion of N2O5 hydrolysis on tro-
pospheric aerosols. As a result of these developments, tro-
pospheric column ozone amounts simulated by SOCOLv3.1
are comparable with several other CCMI models. We ap-
ply Gaussian process emulation and sensitivity analysis to
understand the remaining ozone bias in SOCOLv3.1. This
shows that ozone precursors (nitrogen oxides (NOx), carbon
monoxide, methane and other volatile organic compounds,
VOCs) are responsible for more than 90 % of the variance in
tropospheric ozone. However, it may not be the emissions
inventories themselves that result in the bias, but how the
emissions are handled in SOCOLv3.1, and we discuss this
in the wider context of the other CCMI models. Given that
the emissions data set to be used for phase 6 of the Cou-
pled Model Intercomparison Project includes approximately
20 % more NOx than the data set used for CCMI, further
work is urgently needed to address the challenges of simulat-
ing sub-grid processes of importance to tropospheric ozone
in the current generation of chemistry–climate models.

1 Introduction

Ozone is a key trace gas in the atmosphere. In the strato-
sphere, it absorbs UV-B (280< λ < 320 nm) radiation and
thus protects life at the surface. However in the troposphere,
where approximately 10 % of the total atmospheric ozone
burden resides, ozone is a greenhouse gas and air pollutant,
with adverse affects on human health and crop yields (Myhre
et al., 2013; Stevenson et al., 2013; Silva et al., 2013, 2017).
Approximately 90 % of tropospheric ozone results from a se-
ries of photochemical reactions which are initiated by the re-
action of NOx (nitrogen oxides, NOx =NO+NO2) and ei-
ther CO (carbon monoxide), CH4 (methane) or an NMVOC

(non-methane volatile organic compound) (Denman et al.,
2007). These ozone precursors are emitted from, amongst
other sources, fossil fuel burning, industrial processes and
agriculture. Ozone can also be transported from the strato-
sphere in stratosphere–troposphere exchange (STE) events.
Greenslade et al. (2017) calculate the mean fraction of to-
tal tropospheric ozone attributable to STE at three sites be-
tween 38 and 69◦ S as 1 %–3 %, and show that during indi-
vidual STE events, over 10 % of tropospheric ozone may be
directly transported from the stratosphere. Due to its global
tropospheric lifetime of ∼ 22 days, ozone is subject to in-
tercontinental transport (Auvray and Bey, 2005), and this is
modulated by decadal climate variability (Lin et al., 2014).
Ozone is lost from the troposphere either by dry deposition
or photochemical destruction.

Most chemistry–climate models (CCMs), which are used
to understand chemistry–climate interactions and project
future atmospheric composition, overestimate tropospheric
ozone in the Northern Hemisphere compared with obser-
vations (Young et al., 2013, 2018; Parrish et al., 2014). In
particular, version 3.0 of the SOCOL (Solar-Climate Ozone
Links) CCM (Sect. 2.2) contains notable positive tropo-
spheric ozone biases. Revell et al. (2015) identified that
ozone concentrations in SOCOLv3.0 are up to 50 % too
high in the Northern Hemisphere mid-troposphere (500 hPa)
compared with observations from the Tropospheric Emission
Spectrometer (TES). The reasons underlying SOCOLv3.0’s
tropospheric ozone bias were not completely clear to Revell
et al. (2015), who noted that, while SOCOLv3.0 could accu-
rately simulate the general geographic distribution of tropo-
spheric ozone, the actual magnitude was wrong and likely to
be “a source issue (that is, emissions), a sink issue (HNO3
washout), or a combination of the two.”

Staehelin et al. (2017) showed that the mean tropospheric
ozone burden in SOCOLv3.0 is 413 Tg, which is approxi-
mately 80 Tg larger than the multi-model mean burdens re-
ported for the ACCENT (Atmospheric Composition Change:
the European Network of Excellence; Stevenson et al., 2006)
and ACCMIP (Atmospheric Chemistry and Climate Model
Intercomparison Project; Young et al., 2013) activities, of
337 and 336 Tg, respectively. Furthermore, SOCOLv3.0
overestimates both the tropospheric ozone production and
destruction rates compared to the multi-model means from
ACCENT and ACCMIP (Staehelin et al., 2017). While SO-
COLv3.0’s production rates are overestimated by 34 % com-
pared to ACCENT and 41 % compared to ACCMIP, the de-
struction rates are overestimated only by 20 % (ACCENT)
and 31 % (ACCMIP).

Recently a newer version of SOCOL has been devel-
oped, “SOCOLv3.1”, which remediates obvious deficiencies
in SOCOLv3.0’s representation of tropospheric processes
(Sect. 2.3). We compare tropospheric column ozone in SO-
COLv3.0 and 3.1 with observations derived from OMI/MLS,
the Ozone Monitoring Instrument/Microwave Limb Sounder
(Sect. 3.1), and use Gaussian process (GP) emulation and
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sensitivity analysis to investigate the remaining ozone bias
in SOCOLv3.1 (Sect. 3.2). Because thousands of simula-
tions are required to perform a sensitivity analysis, and this
would be computationally inefficient with a CCM, we sup-
plement SOCOLv3.1 with a GP emulator. This allows a sen-
sitivity analysis to be performed at low computational cost.
Variance-based sensitivity analysis evaluates a suite of model
input parameters and their relationship to the variable of in-
terest simultaneously.

Here, we apply GP emulation and variance-based sensi-
tivity analysis to the SOCOLv3.1 tropospheric ozone budget
to understand causes of the bias. In contrast to one-at-a-time
testing, which investigates the model response to varying one
input parameter while holding all others constant, GP emula-
tion allows all parameters to be evaluated simultaneously and
covers more of the parametric uncertainty space than one-at-
a-time testing. GP emulation is computationally efficient and
allows the interacting effects of the uncertainties on different
input parameters to be accounted for. It also generates much
more information than one-at-a-time testing – typically the
same level of information as a Monte Carlo approach, but re-
quiring a fraction of the model simulations (O’Hagan, 2006).
GP emulation has only been used by the global atmospheric
modelling community in the last few years, in applications
such as cloud and aerosol microphysics modelling (Lee et
al., 2011, 2012; Carslaw et al., 2013; Johnson et al., 2015)
and chemical transport modelling (Ryan et al., 2018). This is
the first time the technique has been applied to global tropo-
spheric ozone. Our GP emulator experiments have been de-
signed to focus on recent developments regarding SOCOL’s
tropospheric chemistry scheme; however the methodology
has the potential to be expanded to also include meteorolog-
ical parameters.

SOCOLv3.0 participated in phase 1 of the Chemistry-
Climate Model Initiative (CCMI) (Eyring et al., 2013b;
Morgenstern et al., 2017), which is a joint activity of
SPARC (Stratosphere–troposphere Processes And their Role
in Climate) and IGAC (International Global Atmospheric
Chemistry), and is the successor activity to phase 2 of
the Chemistry-Climate Model Validation activity, CCMVal-
2 (SPARC CCMVal, 2010). Unlike CCMVal-2, which fo-
cussed on stratospheric processes and composition, CCMI
includes many models with comprehensive representations
of the troposphere, and aims to additionally address aspects
of tropospheric chemistry and circulation. Here, we exam-
ine tropospheric column ozone in SOCOLv3.0 and 14 other
CCMI models. This is the first time that global distribu-
tions of tropospheric ozone have been examined in the CCMI
models, and results are presented in Sect. 3.3.

2 Computational and statistical methods

2.1 CCM simulations to compare with observations

We use the ensemble mean of three free-running SOCOLv3.0
simulations of the recent past to compare with observations
(ETH-PMOD, 2015). These simulations were performed for
CCMI, and conform to REF-C1 specifications (Eyring et al.,
2013b). The simulations cover the period 1960–2010, fol-
lowing a 10-year spin-up period. Greenhouse gas concentra-
tions (CH4, CO2 and N2O) follow observations until 2005,
then Representative Concentration Pathway (RCP) 8.5 (Ri-
ahi et al., 2011). Ozone precursor emissions (including NOx ,
CO and NMVOCs) follow a historical emissions inventory
until 2000 (Lamarque et al., 2010), then RCP 6.0 (Masui et
al., 2011). Sea surface temperatures (SSTs) and sea ice con-
centrations were prescribed following HadISST observations
(Rayner et al., 2003). Concentrations of ozone-depleting sub-
stances followed the World Meteorological Organization’s
A1 scenario (WMO, 2011), and stratospheric aerosol surface
area densities and optical parameters were prescribed from
the SAGE-4λ data set (Arfeuille et al., 2013; Luo, 2013).

We also examine annual-mean tropospheric ozone in
REF-C1 simulations performed by models participating in
CCMI, described by Morgenstern et al. (2017) and refer-
ences therein. Using the simulated ozone volume mixing ra-
tio and WMO-defined tropopause height from each model,
tropospheric ozone columns were calculated for the year
2005 by integrating ozone between the surface and WMO-
defined tropopause. The WMO definition of the tropopause
was selected to be consistent with the OMI/MLS tropo-
spheric ozone product (Ziemke et al., 2006). Between 2010
and 2014, the average tropospheric ozone burden derived
from OMI/MLS was 300 Tg, which is very close to the multi-
instrument mean of five satellite products over the same pe-
riod, of 301 Tg (Gaudel et al., 2018).

Where multiple ensemble members (“realizations”) of the
REF-C1 simulation were submitted to the CCMI archive, the
ensemble mean is shown. The exception is NIWA-UKCA,
which submitted three realizations of the REF-C1 simula-
tion; however only the first realization is shown as ozone
precursor emissions were erroneously fixed at 1960 levels
for the other two realizations (Morgenstern et al., 2017).
The EMAC simulations used road traffic emissions which
were updated every year rather than every month. Therefore
when we examine year 2005 tropospheric column ozone in
Sect. 3.3, the EMAC simulations used road traffic emissions
for August 1954. Jöckel et al. (2016) show that this error re-
sults in tropospheric ozone columns that are ∼ 2 DU lower
than if the correct emissions had been used. The UMUKCA-
UCAM simulations used CCMVal-2 REF-B2 emissions for
NOx aircraft emissions and NOx , CO and HCHO surface
emissions.
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2.2 The SOCOLv3.0 chemistry–climate model

The SOCOL CCM was developed in Switzerland at ETH
Zurich and PMOD/WRC (the Physical Meteorological Ob-
servatory Davos/World Radiation Center). Version 3.0 of
SOCOL (Stenke et al., 2013; Revell et al., 2015) con-
sists of the middle atmosphere version of the ECHAM5
(European Centre Hamburg Model) atmosphere-only gen-
eral circulation model (Roeckner et al., 2003) coupled to
the MEZON (Model for Ozone Trends) chemistry transport
model (Egorova et al., 2003). The chemical solver takes into
account 41 chemical species, 140 gas-phase reactions, 46
photolysis reactions and 16 heterogeneous reactions. The
oxidation of isoprene, an important NMVOC for the tro-
pospheric ozone budget, is accounted for with the Mainz
Isoprene Mechanism (MIM-1), which comprises 16 organic
degradation products of isoprene and a further 44 chemical
reactions (Pöschl et al., 2000). Global isoprene emissions
are estimated to range from 440 to 660 Tg(C) yr−1, which is
comparable to the annual amount of CH4 emissions (Guen-
ther et al., 2006). About two-thirds of the annual global emis-
sions of volatile organic compounds (VOCs) are accounted
for in SOCOLv3.0 by isoprene and methane. Apart from iso-
prene and formaldehyde, other NMVOCs are not included
explicitly in the model but their contribution to CO is ac-
counted for via the addition of a certain fraction of NMVOC
emissions to CO. For anthropogenic, biomass burning and
biogenic NMVOC emissions the conversion factors to CO
are 1.0, 0.31 and 0.83, respectively (Ehhalt et al., 2001).

Clear-sky photolysis rates are calculated using a lookup-
table (LUT) approach, which provides photolysis rates as a
function of overhead ozone and oxygen columns (Rozanov
et al., 1999). Variability of solar irradiance is included in
the LUTs. Cloud impacts on photolysis are accounted for
in the troposphere by the inclusion of a cloud modifica-
tion factor following the parametrization described by Chang
et al. (1987). From a recent intercomparison of photolysis
rates simulated by different CCMI models we learned that
SOCOLv3.0 overestimates tropospheric NO2 photolysis by
roughly a factor of 2 compared to other models (Nicely et
al., 2018). This overestimation is likely related to the treat-
ment of backscattering from clouds in the calculations of the
photolysis LUTs and the missing impact of aerosols. Both
effects cannot be easily corrected by the implemented cloud
modification factor, and so an online photolysis scheme is
planned for future model versions.

Dry deposition velocities of O3, CO, NO, NO2, HNO3
and H2O2 are based on Hauglustaine et al. (1994). This
simplified approach assumes constant dry deposition ve-
locities over land and ocean, without accounting for sea-
sonal or geographical variability. The tropospheric washout
of HNO3 and H2O2 is calculated by using a constant re-
moval rate of 4× 10−6 s−1, irrespective of precipitation oc-
currence. At every chemical time step, i.e. every 2 h, 2.8 % of
tropospheric HNO3 and H2O2 below 160 hPa are removed.

Boundary conditions for the ozone precursor gases NOx , CO
and NMVOCs are implemented as surface emission fluxes.
Methane’s global average surface mixing ratio is prescribed
on the six lowermost model levels. For this study, both SO-
COL configurations were run with 39 vertical levels between
the Earth’s surface and 0.01 hPa (∼ 80 km) and T42 horizon-
tal resolution (grid cells approximately 2.8◦× 2.8◦).

2.3 Upgraded model version SOCOLv3.1

SOCOLv3.1 was developed to address SOCOLv3.0’s repre-
sentation of processes relevant to tropospheric ozone chem-
istry, with the aim of improving the model’s large tropo-
spheric ozone bias as shown by Revell et al. (2015). First,
we implemented heterogeneous hydrolysis of N2O5 on tro-
pospheric aerosol, as this is an important removal process
for atmospheric NOx and was not included in SOCOLv3.0.
As SOCOLv3.0 does not explicitly simulate tropospheric
aerosols, the new scheme makes use of the ECHAM5 in-
ternal tropospheric aerosol climatology considering aerosol
properties of 11 Global Aerosol Data Set types (Köpke et
al., 1997). The reaction probabilities for the different aerosol
types are calculated following the parametrization by Evans
and Jacob (2005).

Second, the simplified treatment of dry deposition was re-
placed by a more sophisticated scheme in SOCOLv3.1 based
on the surface resistance approach for the estimation of dry
deposition velocities proposed by Wesely (1989). This takes
into account actual meteorological conditions, different sur-
face types and trace gas properties like solubility and reac-
tivity. Further details of this scheme are given by Kerkweg et
al. (2006).

Third, we adjusted how methane is prescribed in the
model. In previous versions of SOCOL, methane was pre-
scribed as a global surface average mixing ratio on the six
lowermost model levels (covering approximately 2.5 km).
This was changed to only the surface level in SOCOLv3.1.
While the amount of methane entering the atmosphere is the
same in both configurations, prescribing it on one level in-
stead of six means that methane-induced ozone production
in the mid-troposphere–upper troposphere is reduced. Be-
cause SOCOLv3 has a high OH bias compared to the AC-
CMIP models (Staehelin et al., 2017), ozone production from
methane oxidation is amplified by the continuous resupply
of methane due to the mixing ratio boundary condition when
methane is prescribed on six levels instead of one. An in-
terhemispheric gradient and seasonal cycle in methane have
also been implemented in SOCOLv3.1; however these were
not used in this study and instead methane was prescribed
as a global average surface mixing ratio to test the general
sensitivity of tropospheric ozone to surface methane concen-
trations.

Finally, because the LUTs used in SOCOLv3.0 cause tro-
pospheric NO2 photolysis to be overestimated due to the
treatment of backscattering from clouds (Sect. 2.2), we recal-
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culated LUTs for SOCOLv3.1. While the SOCOLv3.0 LUTs
were calculated assuming 0.5 cloud coverage and a surface
albedo of 0.3, the SOCOLv3.1 LUTs were based on clear-sky
conditions and also used a surface albedo of 0.3.

2.4 SOCOLv3.1 simulations for GP emulator training
and testing

Variance-based global sensitivity analysis quantifies the con-
tribution of a single parameter to the variance of a model’s
output. Because the large number of model simulations re-
quired would make one-at-a-time testing computationally too
expensive, a type of statistical model called a GP emulator
can be used as a surrogate for the input–output relation of a
complex model, such as a CCM (Le Gratiet et al., 2017). For
“training” data on which the GP emulator is built, we know
that the true value of the emulated output should be the same
as the input, so the emulator should return the output with no
uncertainty. For inputs that the emulator is not trained at, the
outputs should have a probability distribution specified by
a mean function and covariance function (O’Hagan, 2006).
Here, we use tropospheric ozone columns from SOCOLv3.1
to train the emulator.

Interacting contributions to the overall uncertainty in tro-
pospheric column ozone can be identified by comparing the
main effect variance (the reduction in the ozone variance
when a particular model forcing is fixed, e.g. NOx emis-
sions), with the total effect variance (the remaining variance
in the tropospheric column ozone when everything except a
particular model forcing is fixed). Various software packages
are available for GP emulation. We used the Gaussian Emu-
lation Machine for Sensitivity Analysis (GEM-SA), available
at http://tonyohagan.co.uk/academic/GEM/index.html (last
access: 11 November 2018), to build an emulator for tropo-
spheric column ozone.

Although many factors influence the tropospheric ozone
budget, we restricted our analysis to nine model forc-
ings/parametrizations (see Table 1 for details of the scalings
applied). These are listed below, followed by a section ratio-
nalizing the inclusion of each variable. We reiterate that this
list above does not constitute a comprehensive list of vari-
ables controlling tropospheric ozone; however by illustrating
the methodology used, we aim to demonstrate its utility.

1. natural and anthropogenic NOx emissions (denoted in
figures as “NOx”).

2. methane concentrations (“CH4”);

3. CO emissions (natural and anthropogenic) and
NMVOC emissions (anthropogenic, biogenic and
biomass burning) (“CO”);

4. the number of vertical levels NOx and CO+NMVOC
emissions prescribed on in the model (“ELEV”);

5. the number of vertical levels CH4 concentrations pre-
scribed on in the model (“CLEV”);

6. the impact of clouds on photolysis rates, via the cloud
modification factor (“CMF”);

7. the rate of HNO3 washout (“HNO3”);

8. the N2O5 uptake coefficient, which represents the prob-
ability of N2O5 hydrolysis occurring (“N2O5”);

9. the specific reactivities for ozone dry deposition
(“O3DD”), which are used to estimate the dry deposi-
tion velocity.

Variables (1–3) were selected due to their importance as
tropospheric ozone precursors. CO and NMVOC emissions
were varied simultaneously (3) because the only NMVOCs
included explicitly in SOCOL are isoprene and formalde-
hyde; other NMVOCs are represented via additional CO us-
ing a “lumped” approach (Sect. 2.2). For models with a more
complex representation of NMVOCs, we recommend testing
CO and NMVOC emissions separately when constructing a
GP emulator.

The remaining variables were included to investigate the
sensitivity of tropospheric ozone to the model improvements
implemented in SOCOLv3.1. SOCOLv3.0 and its predeces-
sors prescribed methane on the lowermost six model levels.
This was changed to only the surface level in SOCOLv3.1,
and variable (5) was included in our analysis to investigate
the sensitivity of tropospheric ozone to this implementation.
The lowermost level in SOCOL covers approximately 100 m,
and the six lowermost levels combined cover approximately
2.5 km. To explore whether other ozone precursors are sensi-
tive to the number of levels they are prescribed on, variable
(4) was included, even though it is prescribed only as a sur-
face emissions flux in most, if not all, CCMs. By doing so,
we aim to test the exchange of emissions between the bound-
ary layer and free troposphere.

Because ozone production and destruction reactions are
mostly photochemical, i.e. they occur in the presence of sun-
light, we selected variable (6) to test the sensitivity of the
current CMF parametrization, and examine impacts of the
updated LUTs on tropospheric ozone in SOCOLv3.1. HNO3
washout is the main sink for NOx , and therefore affects
the ozone budget. Future SOCOL versions will include an
online wet deposition scheme, and so variable (7) was se-
lected to probe the sensitivity of tropospheric ozone to the
rate of HNO3 loss. Heterogeneous N2O5 hydrolysis is sim-
ilarly important as it leads to HNO3 formation; however it
was not included in SOCOLv3.0. Therefore variable (8) was
included in our analysis to quantify its relevance for tropo-
spheric ozone abundances. Finally, variable (9) was chosen
to test the sensitivity of tropospheric ozone to the newly im-
plemented dry deposition parametrization (Sect. 2.3).

Typically 10n simulations are recommended for training a
GP emulator, where n is the number of variables under inves-
tigation (Loeppky et al., 2009). Hence we performed 90 SO-
COLv3.1 training simulations, and used the resulting annual-
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Table 1. Range of the sensitivity forcings/parametrizations. P and L indicate whether the variable is of relevance to ozone production and/or
loss, respectively.

Minimum Maximum Descriptions

(1) NOx emissions (P) 0 4 The surface NOx emissions field as a function of latitude and longitude
was multiplied by a scaling factor between 0 and 4, to explore the
sensitivity of tropospheric ozone to a range of NOx emissions.

(2) CH4 concentrations (P) 0 4 The global-mean CH4 mixing ratio was multiplied by a scaling factor
between 0 and 4, to explore the sensitivity of tropospheric ozone to a
range of CH4 concentrations.

(3) CO+NMVOC (P) 0 4 As for (1), but the scaling factor was applied to CO and NMVOC
emissions emissions simultaneously.

(4) ELEV for NOx 1 6 Emissions were prescribed on the lowermost six levels (between
and CO+NMVOCs (P) the surface and ∼ 2.5 km), to test whether the number

of levels is important for tropospheric ozone abundances.

(5) CLEV for CH4 (P) 1 6 CH4 concentrations were prescribed on the lowermost six levels
(between the surface and ∼ 2.5 km), similar to (4).

(6) CMF (P+L) 0.25 1 1 implies clear-sky photolysis, whereas 0 would imply no photolysis.
As photolysis rates of 0 do not occur during daytime, we selected a lower
bound of 0.25 to represent cloudy sky conditions.

(7) HNO3 washout (L) 0 0.5 To test the sensitivity of tropospheric ozone to HNO3 removal, we
removed between 0 and 50 % of tropospheric gas-phase HNO3 at each
chemical time step.

(8) N2O5 hydrolysis (L) 0.001 0.3 The probability of N2O5 hydrolysis occurring. Since the default is 0.1, we
explored the sensitivity of tropospheric ozone to a range from 0.001 to 0.3.

(9) O3 dry deposition (L) 0 1 A specific reactivity of 0 stands for a nearly non-reactive gas, while 1
stands for a gas similarly reactive to ozone.

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90
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Figure 1. Experimental design for the 90 SOCOLv3.1 simulations performed to train the GP emulator. Each column of dots indicates the
relative scaling applied to each of the nine variables – see Table 1 for more details. For clarity the inputs have been scaled between 0 and 1.
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mean tropospheric ozone column to construct the GP emula-
tor in several geographical regions (Europe, United States,
Asia, the Southern Ocean and the global mean). For each
of the 90 training simulations, the nine input variables were
scaled simultaneously, with the scaling factors determined
using a “maximin” Latin hypercube design, which generates
a near-random sample of parameter values from a multidi-
mensional distribution and fills the uncertainty space of the
parameters (McKay et al., 1979). The Latin hypercube was
generated using GEM-SA. For the discrete input parameters
(e.g. (4) and (5) in the list above), the scaling factor was
rounded to the nearest whole number. Table 1 summarizes
the minimum and maximum scalings applied to each of the
nine variables. This is discussed further in Sect. 3.2. Figure 1
shows the experimental design for the 90 training simula-
tions.

SOCOLv3.1 training simulations were performed for the
year 2005 (following a common model spin-up period of
10 years, which was discarded from our analysis). The feed-
back between chemistry and radiation was switched off to
keep internal variability as small as possible. Switching off
the chemistry–radiation feedback means that all simulations
have the same meteorology (given that they started from
the same initial conditions and ran with the same dynami-
cal boundary conditions), despite having different chemistry.
Therefore, we can be confident that the differences between
the simulations are caused by differences in chemistry and
not dynamics.

The emulator was constructed using tropospheric ozone
columns calculated between the surface and the WMO-
defined tropopause. Alongside the global mean, we focus on
four regions, namely Europe (37–60◦ N, 0–42◦ E), the United
States (32–52◦ N, 67–124◦W), Asia (6–49◦ N, 70–146◦ E)
and the Southern Ocean (45–60◦ S, all longitudes), where
different chemical regimes may dominate; see e.g. Sillman
et al. (1990).

After constructing the GP emulator, the next step is to
validate it by comparing emulator-predicted ozone with
SOCOL-simulated ozone. This was done by performing a
further 27 (i.e. 3n) SOCOLv3.1 “test” simulations. The set-
up for these simulations was similar to the training simula-
tions, with a new Latin hypercube generated by GEM-SA to
supply the scaling factors.

3 Results

3.1 Tropospheric ozone in SOCOLv3.1

Figure 2 compares annual-mean tropospheric column ozone
as simulated by SOCOLv3.0 and 3.1 with observations de-
rived from OMI/MLS. Although SOCOLv3.0 captures the
spatial distribution of tropospheric ozone fairly well in a
qualitative sense, i.e. elevated ozone in the Northern Hemi-
sphere and a minimum over the tropical Western Pacific

(Fig. 2a), it overestimates tropospheric column ozone be-
tween 60◦ N and 40◦ S by up to 30 DU – approximately
a factor of 2 (Fig. 2c). The improved treatment of ozone
sink processes in SOCOLv3.1 means that tropospheric ozone
columns are reduced regionally by up to 8 DU compared
with SOCOLv3.0 (Fig. 2d–e). Individual sensitivity tests (not
shown) indicate that this is due mostly to the inclusion of het-
erogeneous N2O5 hydrolysis on tropospheric aerosol.

Both SOCOLv3.0 and 3.1 show a small negative bias in
tropospheric ozone over the Southern Ocean. This was also
visible in the SOCOLv3.0 and TES comparison presented
by Revell et al. (2015). Recent work by Luhar et al. (2017)
has indicated that the Wesely (1989) dry deposition scheme
overestimates the observed ozone deposition velocity by a
factor of 2–4 in the Southern Ocean, where SSTs are low and
chemical reactions are slow. Further upgrades to the model’s
deposition scheme may therefore improve comparisons of
simulated and observed tropospheric ozone in cold oceanic
regions.

The global-mean tropospheric ozone column in SO-
COLv3.1 is 36.4 DU (Fig. 2d), which is still at the upper
end of the range of the CCMI models (Fig. 6), but compara-
ble to other models such as ACCESS (36.3 DU), EMAC-L47
(37.3 DU) and MRI-ESMr1 (35.7 DU). Despite the improve-
ments to SOCOLv3.1, a large bias in tropospheric ozone
of approximately 20 DU compared with OMI/MLS remains
(Fig. 2f). The bias maximizes over continental regions in the
Northern Hemisphere, and over Southeast Asia.

3.2 GP emulation and sensitivity analysis in
SOCOLv3.1

To understand the drivers of the remaining tropospheric
ozone bias in SOCOLv3.1, we constructed a GP emulator
from the 90 SOCOLv3.1 training simulations (Sect. 2.4).
Tropospheric ozone predicted by the emulator is compared
with SOCOLv3.1 test simulations in Fig. 3. In all geograph-
ical regions shown, the goodness of fit between emulated
and simulated tropospheric ozone is high (R2

≥ 0.85) and
the points fall mostly along the 1 : 1 line, indicating that
the emulator performs well in these regions. The point with
the largest simulated tropospheric ozone column corresponds
to a simulation in which two ozone loss processes, HNO3
washout and ozone dry deposition, were set to zero and large
scalings (4.00 and 3.54) were applied to the ozone precursors
NOx and CH4, respectively, following the Latin hypercube
design (Fig. 1). The emulator underestimates tropospheric
ozone for this point in all regions examined, indicating that
it may not be well constrained at the extreme ends of the pa-
rameter uncertainty space.

Figure 4 displays the sensitivity of global-mean tropo-
spheric ozone to each parameter, obtained by averaging
over all other parameters, and indicates whether tropospheric
ozone increases or decreases in response to an individ-
ual forcing/parametrization. Greater uncertainty is indicated
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Figure 2. Annual-mean year 2005 tropospheric column for (a) SOCOLv3.0; (b) OMI/MLS observations; (c) the difference between SO-
COLv3.0 and OMI/MLS; (d) SOCOLv3.1; (e) The difference between SOCOLv3.1 and SOCOLv3.0; (f) the difference between SOCOLv3.1
and OMI/MLS. The global-mean tropospheric column ozone amount is indicated in the title for (a), (b) and (d).
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Figure 3. Tropospheric column ozone as predicted by the GP emulator vs. the amount simulated in SOCOLv3.1 test simulations (i.e. the
simulations used to validate the emulator). The error bars indicate the uncertainty (mean± standard deviation) on the GP emulator output, and
the 1 : 1 line and coefficient of determination (R2 value) are also shown. These simulations correspond to running the GP emulator and the
simulator (SOCOLv3.1) at each of the 27 validation inputs, for (a) Europe (37–60◦ N, 0–42◦ E); (b) United States (32–52◦ N, 67–124◦W);
(c) Asia (6–49◦ N, 70–146◦ E), (d) the Southern Ocean (45–60◦ S, all longitudes) and (e) globally.

where the lines diverge (appearing as a thicker line – i.e. the
emulator is less well constrained). Tropospheric ozone ex-
hibits a strong sensitivity to its precursor gases (Fig. 4a–c),
and while the correlation between CH4 and CO+NMVOCs
is approximately linear, for NOx there appears to be a satura-

tion effect for scaling factors greater than 1, likely due to the
“NOx titration effect” (Thornton et al., 2002). In our calcula-
tions a uniform sampling distribution was applied when gen-
erating the Latin hypercube, which means that in 25 % of our
training simulations the NOx (and CH4, CO and NMVOC)

Atmos. Chem. Phys., 18, 16155–16172, 2018 www.atmos-chem-phys.net/18/16155/2018/



L. E. Revell et al.: Tropospheric ozone in CCMI models 16163

Tr
op

. O
3

(D
U

)
Tr

op
. O

3
(D

U
)

Tr
op

. O
3

(D
U

)

115

66

16

115

66

16

115

66

16

115

66

16

115

66

16

115

66

16

115

66

16

115

66

16

115

66

16

0.001     0.16                        0.30              1              2              3              4

0              1              2              3              4

1           2           3           4           5          6

1           2           3           4           5          6

0.25              0.5              0.75                1

0                           0.25                          0.5

0           0.25          0.5           0.75          1

0              1              2              3              4

(a) NOx

(b) CH4

(c) CO

(d) ELEV

(e) CLEV

(f) CMF

(g) HNO3

(h) N2O5

(i) O3DD

Inputs Inputs Inputs .

Figure 4. Sensitivity of annual global-mean tropospheric column ozone in 2005 to each of the nine sensitivity forcings/parametrizations
listed in Table 1, averaging over the other inputs. The horizontal axis shows the range of scaling factors applied to each variable. Plots for
individual regions (Europe, the United States, Asia and the Southern Ocean) are in the Supplement.

scaling factors are less than 1, while in the other 75 % of
simulations they are larger than 1.

To test whether the emulator may be biased due to the
sampling distribution used, we calculated tropospheric col-
umn ozone as a function of NOx and CO+NMVOCs using
the gradients in Fig. 4a and c. Assuming a uniform sam-
pling distribution between 0 and 4, as per the Latin hyper-
cube design used here, the sensitivity indices for NOx and
CO+NMVOCs are 0.68 and 0.32, respectively. If we assume
a piecewise uniform distribution, so that 50 % of the points
are between 0 and 1, and 50 % are between 1 and 4, the sensi-
tivity indices are 0.72 for NOx and 0.28 for CO+NMVOCs.
That is, the differences are negligible, implying that the type
of sampling distribution used does not bias the result. How-
ever, given the NOx saturation effect above 1 (Fig. 4a), if we
assume a uniform distribution between 0 and 2 instead of 0
and 4, the NOx sensitivity index increases to 0.86, while the
CO index decreases to 0.14. This shows the importance of
selecting an appropriate range for the parameter uncertainty
space. However, the conclusions of our emulator analysis –
that ozone precursors are the dominant driver of tropospheric
ozone variability – remain unchanged.

Figure 5 shows the percentage of variance that each pa-
rameter contributes to in each geographic region, either
jointly or alone. In all regions examined, ozone precursors

– CH4, NOx , CO and NMVOCs – account for more than
90 % of the variance in tropospheric column ozone. In other
words, changing these ozone source input parameters has
a far larger impact on tropospheric ozone abundances than
changing ozone sink parameters does, and this applies to
both polluted regions (Europe, the United States and Asia)
and relatively pristine environments (the Southern Ocean).
NOx emissions are generally the dominant driver of variabil-
ity (in the European region they are approximately equal to
the contribution from CH4; Fig. 5a). Over Asia, where CO
emissions are larger than over Europe and the United States,
the ratio of NOx : CO is also lower than it is over Europe and
the United States (Revell et al., 2015). NOx emissions there-
fore become more important as a driver of ozone variability
over Asia (Fig. 5c). In all regions, joint interactions between
NOx , CH4 and CO+NMVOCs play a relatively minor role
compared with the individual influences of these species.

Although updating SOCOLv3.1 with regards to N2O5 hy-
drolysis, HNO3 washout, LUTs and ozone dry deposition re-
sults in a reduction in tropospheric ozone of up to 8 DU re-
gionally (Fig. 2e), as drivers of tropospheric ozone variability
in SOCOLv3.1 they are insignificant compared with ozone
precursors. However, we cannot discount the possibility that
it is not the ozone precursor emissions themselves that are re-
sponsible for SOCOLv3’s tropospheric ozone bias, but rather
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Figure 5. Contributions to variance from the sensitivity forcings/parametrizations applied (Table 1), for the same regions shown in Fig. 3.
For clarity only those which contribute at least 1 % to the variance are shown. NOx is the NOx emissions; CH4 is the CH4 concentrations;
CO is the CO+NMVOC emissions; ELEV is the number of vertical model levels that NOx , CO and NMVOC emissions are prescribed on.
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at least 1 % to the variance.

the way in which the emissions are handled by the model;
this is considered further in the Discussion and conclusions.

3.3 Tropospheric ozone in the CCMI models

We now consider SOCOL’s tropospheric ozone bias in the
context of the CCMI models. Figure 6 illustrates the diversity
in simulated tropospheric ozone amongst the CCMI mod-
els. Despite most of the models using ozone precursor emis-
sions following the REF-C1 recommendations (Sect. 2.1),
they simulate vastly different representations of tropospheric
ozone. A few of the models are closely related, as discussed
by Morgenstern et al. (2017); for example the CESM1 mod-
els, WACCM and CAM4-chem, are essentially the same
model in terms of tropospheric ozone. They differ only in
the height of the model lid, which is 140 km for WACCM
and 40 km for CAM4-Chem.

ACCESS and NIWA-UKCA can also be considered the
same model for the REF-C1 experiment; although a coupled
ocean was used for most of NIWA-UKCA’s CCMI simula-
tions, for the REF-C1 experiment they used the same pre-
scribed sea surface conditions (temperature and ice cover-
age) as ACCESS. Differences between ACCESS and NIWA-
UKCA in the REF-C1 simulation, therefore, are likely re-
lated to issues with the different compilers used which may

induce small differences in stochastic physics and tropo-
spheric age of air (Dietmüller et al., 2018).

The EMAC L47 and L90 models are also very similar;
both have a model lid at 0.01 hPa (∼ 80 km), but they differ in
the number of model levels between the surface and 0.01 hPa
(47 and 90, respectively). They also use different time steps.

Figure 7 shows the difference in tropospheric ozone be-
tween each of the CCMI models and OMI/MLS, and the
root-mean-square error (RMSE) for the model–OMI/MLS
difference. Alongside Fig. 6, Fig. 7 indicates clear out-
lying models in terms of tropospheric ozone. UMUKCA-
UCAM simulates the smallest amount of tropospheric ozone
(14.9 DU in the global mean Fig. 6o); however it only
contains one NMVOC (formaldehyde) and does not lump
NMVOCs together in the way that many other CCMs do.
This means that additional NMVOC source gases are not
considered by substituting with represented species, such as
in SOCOLv3, whereby additional NMVOCs are included
in the form of CO. Of the CCMI models, SOCOLv3.0
simulates the largest global-mean tropospheric ozone col-
umn, of 40.2 DU (Fig. 6a). In ULAQ-CCM, the zonal bands
of large ozone abundances at northern and southern mid-
latitudes are related to the model’s coarse horizontal reso-
lution (5.6◦× 5.6◦), which affects surface fluxes and tropo-
spheric transport (Orbe et al., 2018).
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Figure 6. Annual-mean year 2005 tropospheric ozone columns in REF-C1 simulations from CCMI models (calculated relative to the WMO-
defined tropopause pressure for each model). The global-mean tropospheric column ozone amount for each model is indicated in the title.
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Figure 7. Difference between annual-mean year 2005 tropospheric column ozone in CCMI models compared with OMI/MLS, i.e. model
minus OMI/MLS. The root-mean-square error for each model compared with OMI/MLS is indicated in the title.

Interestingly, EMAC-L90 simulates a better representation
of tropospheric column ozone than EMAC-L47, despite the
fact that EMAC-L90 has three fewer model levels between
the surface and 300 hPa than EMAC-L47 and a longer time
step. The difference in tropospheric column ozone between
the two models likely results from the increased vertical res-
olution around the tropopause in EMAC-L90, which has 11
levels between 300 and 100 hPa compared with 7 in EMAC-
L47, meaning that EMAC-L90 better simulates stratosphere–
troposphere exchange.

Figure 8 shows multi-model means (MMMs) and standard
deviations. The MMM in Fig. 8a was calculated for all mod-
els, while the MMM in Fig. 8d was calculated only for mod-
els with a RMSE less than 10 DU, as indicated in Fig. 7 –
i.e. all models except SOCOLv3.0, ACCESS CCM, EMAC-
L47, ULAQ-CCM and UMUKCA-UCAM. The CCMI mod-
els simulate a global-mean tropospheric ozone abundance
of 31.1 DU (Fig. 8a) and 30.2 DU (Fig. 8d), depending on
the MMM definition applied. Both global-mean MMMs are
close to the OMI/MLS global mean of 28.6 DU (Fig. 2b);
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Figure 8. Annual-mean year 2005 tropospheric column ozone. (a) The multi-model mean (MMM) of all CCMI models; (b) multi-model
standard deviation for the models shown in (a); (c) percent difference between the MMM in (a) and OMI/MLS (MMM minus OMI/MLS);
(d) MMM for a subset of CCMI models – those with a root-mean-square error (RMSE) less than 10 DU when compared with OMI (see
Fig. 7); (e) multi-model standard deviation for the models shown in (d); (f) percent difference between the MMM in (d) and OMI/MLS
(MMM minus OMI/MLS).

however the MMMs differ markedly from OMI/MLS in
terms of the global tropospheric ozone distribution.

Compared to OMI/MLS, the models overestimate tropo-
spheric column ozone almost everywhere between 60◦ N and
60◦ S (the region where OMI/MLS data are available), re-
gardless of the MMM definition. The exception is at southern
mid-latitudes, where the models underestimate tropospheric
ozone compared to OMI/MLS. When the MMM is calcu-
lated for all models, the positive bias is up to 50 %, and the
negative bias reaches up to −33 % (Fig. 8c). When models
with an RMSE> 10 DU are discarded from the MMM, the
negative bias is largely unchanged at −32 %, but the positive
bias is reduced, and reaches up to 40 % (Fig. 8f).

These results broadly agree with models evaluated as part
of ACCMIP (Young et al., 2013), and phase 5 of the Cou-
pled Model Intercomparison Project (CMIP5) (Eyring et al.,
2013a), which used the same ozone precursor emissions as
for CCMI. The ACCMIP models simulated, on average, up
to 30 % more tropospheric column ozone compared with
OMI/MLS at northern mid-latitudes (Young et al., 2013).
The global-annual-mean tropospheric ozone column sim-
ulated by these models was 30.8 DU, calculated from 15
models. For the 18 CHEM models participating in CMIP5
(those models with interactive chemistry, i.e. ozone was
calculated online and not prescribed from a climatology),
the climatological-mean annual-mean MMM averaged over
2000–2005 was 30.5 DU (Eyring et al., 2013a), which is sim-
ilar to the MMMs calculated here. The CMIP5 and ACCMIP

MMMs also show a stronger interhemispheric gradient than
OMI/MLS observations do, consistent with our findings.

The standard deviation on the MMM is up to 11.3 DU
when calculated for all models (Fig. 8b), and reduces to a
maximum of 9.5 DU when calculated for only the models
with RMSE< 10 DU (Fig. 8e). The variability between mod-
els is largest at northern mid-latitudes and in the continental
outflow region off the west coast of Africa.

4 Discussion and conclusions

Despite using the ozone precursor emissions recommended
for CCMI, SOCOLv3.0 simulates the largest global-mean
tropospheric ozone abundance of all the CCMI models
(Fig. 6), and exhibits a bias of ∼ 30 DU regionally com-
pared with OMI/MLS observations (Fig. 2c). The CCMI
MMM is biased high in the Northern Hemisphere and
low in the Southern Hemisphere compared with OMI/MLS
(Fig. 8c and f), consistent with previous studies (ACCMIP
and CMIP5). Although ACCMIP, CMIP5 and CCMI all used
the same emissions inventories, it is nevertheless interest-
ing that they all produced very similar global-mean tropo-
spheric ozone abundances (approximately 30 DU), given the
different foci of the different model intercomparison activ-
ities; CCMI focussed on models coupling the stratosphere
and troposphere, while CMIP5 focussed on coupling the at-
mosphere and ocean.
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We have developed a new model version, SOCOLv3.1,
which includes an upgraded treatment of tropospheric ozone
sink processes. This results in a reduction in tropospheric
ozone of up to 8 DU (Fig. 2e), which is mostly due to the
inclusion of N2O5 hydrolysis on tropospheric aerosol. SO-
COLv3.1 still exhibits a positive bias in tropospheric column
relative to OMI/MLS (particularly in the Northern Hemi-
sphere), but simulates tropospheric column ozone amounts
that are much more comparable with the other CCMI models.
Reducing SOCOL’s tropospheric ozone bias is expected to
lead to improvements in the simulated abundance of species
which are oxidized by the hydroxyl radical, such as CO and
CH4, since ozone is the primary source of OH. Revell et
al. (2015) showed that CO in SOCOLv3 was up to 40 ppbv
too low in the Northern Hemisphere compared with observa-
tions from TES, due to the tropospheric ozone bias. In SO-
COLv3.1, the Northern Hemisphere CO bias is reduced by
approximately a factor of 2 (not shown).

We have quantified the contribution to tropospheric
ozone variance in SOCOLv3.1 from nine model forc-
ings/parametrizations using GP emulation and sensitivity
analysis. By switching off the coupling between chemistry
and radiation in the emulator experiments, we aimed to limit
dynamical and meteorological variability. We did not con-
sider stratosphere–troposphere exchange in our emulator ex-
periments. Staehelin et al. (2017) showed that SOCOLv3.0’s
ozone burden due to stratospheric influx, when calculated
from ozone origin tracers as described by Garny et al. (2011)
and Revell et al. (2015), is close to the multi-model mean val-
ues from the ACCMIP and ACCENT ensembles. Therefore,
STE is unlikely to be a major driver of SOCOLv3’s tropo-
spheric ozone bias. To the best of our knowledge, this is the
first time that GP emulation has been applied to global tro-
pospheric ozone modelling. By selecting a relatively small
number of model forcings/parametrizations and focussing
largely on tropospheric ozone chemistry we aim to demon-
strate the utility of the methodology; however it could also
be extended to explore the variability in tropospheric ozone
due to meteorological parameters.

Our GP emulation experiments and sensitivity analysis
illustrate that the ozone precursors NOx , CH4, CO and
NMVOCs are responsible for more than 90 % of the variance
in tropospheric column ozone in the improved model version,
SOCOLv3.1. While CH4 is prescribed as a surface mixing ra-
tio, the other ozone precursors are specified from emissions
inventories. Collating emissions inventories is challenging
as they are typically compiled using a bottom-up approach.
Anthropogenic emissions must rely on accurate reporting,
while for biogenic emissions there are no reporting require-
ments. Furthermore, emissions are generally prescribed in
global models as monthly means, and thus do not reflect di-
urnal or weekly variability (Young et al., 2018). Hassler et al.
(2016) identified that current global emissions inventories do
not capture trends in the NOx/CO ratio, and previous multi-
model studies have also identified potential deficiencies with

the inventories (Young et al., 2013; Parrish et al., 2014). Jena
et al. (2015) and Zhong et al. (2016) showed that different
NOx emissions inventories can significantly alter simulated
tropospheric ozone.

However, it may not be the emissions used for CCMI
themselves that are incorrect, but rather problems in how they
are handled in global models. Given the coarse grid sizes
necessary to run a global model and still retain computa-
tional efficiency, resolution – horizontal, vertical and tem-
poral – is likely important for simulating tropospheric ozone,
especially in polluted regions where very large emissions in
an urban environment may be spread over a model grid cell
spanning thousands of square kilometres. In global models,
polluted air coming from a point source is considered to be
well mixed throughout a large grid cell, which would gen-
erally lead to more efficient ozone production (Young et al.,
2018). Horizontal and vertical resolution are difficult to test
in an emulator sensitivity study as presented here; however
by examining the CCMI models collectively (Morgenstern
et al., 2017), we can derive some insights. For example, we
note that GEOSCCM, HadGEM3-ES and the CESM1 mod-
els (CAM4Chem and WACCM), which simulate the small-
est RMSEs relative to OMI/MLS (Fig. 7d, e, j, k), have fairly
high horizontal resolution relative to other CCMs, of 2◦× 2◦,
1.875◦× 1.25◦ and 1.9◦× 2.5◦, respectively. Of the models
analysed in this study, HadGEM3-ES also has the largest
number of levels in the troposphere (48). Similarly, tropo-
spheric ozone in the EMAC model with 90 levels (EMAC-
L90) compares better with observations than the 47-level
version (EMAC-L47) (Fig. 7h, i), which may be due to a
more realistic simulation of the ozone gradient across the
tropopause (Sect. 3.3).

SOCOLv3.0 uses T42 horizontal resolution (approx.
2.8◦× 2.8◦), which is also used by CCSRNIES MIROC 3.2
and EMAC. With 16 vertical levels, SOCOLv3.0 has the
smallest number of vertical levels in the troposphere out of
all the models analysed here, except CCSRNIES MIROC3.2,
which has 15. CCSRNIES-MIROC3.2, CNRM-CM5-3 and
CMAM do not include any NMVOCs, while SOCOLv3.0
includes only two NMVOCs – isoprene and formaldehyde.
Models with complex NMVOC schemes tend to simulate
tropospheric ozone favourably compared to OMI/MLS, such
as the CESM1 models, with 19 NMVOCs, and GEOSCCM,
with 13 explicit NMVOCs.

Another respect in which SOCOLv3.0 is an outlier
amongst the CCMI models is its chemical time step of 2 h.
The other models analysed in this study have chemical time
steps ranging from 6 min (CCSRNIES-MIROC3.2) to 1 h
(the models based on the UK Met Office Unified Model, i.e.
HadGEM3-ES, NIWA-UKCA, ACCESS and UMUKCA-
UCAM). In a sensitivity test, SOCOLv3.0’s chemical time
step was reduced to 15 min, which reduced the ozone burden
in polluted urban areas by approximately 5 DU (not shown).
To test how SOCOL responds to prescribing a surface mix-
ing ratio of NOx rather than an emissions flux, we performed
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a further sensitivity simulation in which surface NO2 mix-
ing ratios from the CESM1 WACCM REF-C1 simulation
were prescribed instead of NOx emissions. This also re-
sulted in a reduction of tropospheric ozone of up to 5 DU.
In reality there is likely no single solution for reducing SO-
COLv3.0’s excessive tropospheric ozone bias; however as-
suming that the prescribed emissions are correct, then in-
creasing the model’s spatial and temporal resolution within
the bounds of computational efficiency will likely reduce the
bias.

We have shown the importance of ozone precursor emis-
sions for simulating the tropospheric ozone budget with SO-
COLv3.1. This is in line with the findings of Revell et al.
(2015), who analysed three SOCOLv3.0 simulations for the
period 1960–2100: REF-C2 (based on RCP 6.0), SEN-C2-
fEmis (NOx , CO and NMVOC emissions fixed at constant
1960 levels) and SEN-C2-fEmis-fCH4 (similar to SEN-C2-
fEmis but with surface methane concentrations also fixed at
constant 1960 levels). They showed that future global ozone
abundances are governed largely by changes in methane
and NOx , with methane causing an increase in tropospheric
ozone that is approximately one-third of that caused by
NOx . Future work should investigate how tropospheric ozone
evolves in future under the various CCMI sensitivity scenar-
ios in all CCMI models.

Finally, phase 6 of the Coupled Model Intercomparison
Project (CMIP6) will use the emissions data set described by
Hoesly et al. (2018). In this data set, year 2000 NOx emis-
sions are ∼ 20 % larger than the emissions used for CCMI
(Lamarque et al., 2010). Therefore, simulated ozone biases
by the current generation of CCMs will likely be amplified
in CMIP6.

Given the results of our multi-model intercomparison as
well as previous multi-model studies, our results highlight
the need for careful validation of emissions inventories used
by global models. However, the way in which emissions are
handled by the models also appears to result in biased ozone
abundances, and further work is needed to address the chal-
lenges of simulating sub-grid processes of importance to tro-
pospheric ozone, in SOCOLv3 as well as in other CCMs.
GP emulation may prove a useful tool for such studies, and
we have demonstrated its usefulness for understanding tro-
pospheric ozone biases. GP emulation is a powerful tool, and
should be considered for use by those wanting to perform
detailed sensitivity analyses at low computational cost.
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