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1Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
3Lawrence Berkeley National Laboratory, Berkeley, CA, USA
anow at: the Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA

Correspondence: Scot M. Miller (scot.m.miller@gmail.com)

Received: 31 August 2017 – Discussion started: 18 September 2017
Revised: 11 April 2018 – Accepted: 17 April 2018 – Published: 16 May 2018

Abstract. NASA’s Orbiting Carbon Observatory 2 (OCO-
2) satellite launched in summer of 2014. Its observations
could allow scientists to constrain CO2 fluxes across regions
or continents that were previously difficult to monitor. This
study explores an initial step toward that goal; we evaluate
the extent to which current OCO-2 observations can detect
patterns in biospheric CO2 fluxes and constrain monthly CO2
budgets. Our goal is to guide top-down, inverse modeling
studies and identify areas for future improvement. We find
that uncertainties and biases in the individual OCO-2 obser-
vations are comparable to the atmospheric signal from bio-
spheric fluxes, particularly during Northern Hemisphere win-
ter when biospheric fluxes are small. A series of top-down
experiments indicate how these errors affect our ability to
constrain monthly biospheric CO2 budgets. We are able to
constrain budgets for between two and four global regions
using OCO-2 observations, depending on the month, and we
can constrain CO2 budgets at the regional level (i.e., smaller
than seven global biomes) in only a handful of cases (16 % of
all regions and months). The potential of the OCO-2 obser-
vations, however, is greater than these results might imply.
A set of synthetic data experiments suggests that retrieval er-
rors have a salient effect. Advances in retrieval algorithms
and to a lesser extent atmospheric transport modeling will
improve the results. In the interim, top-down studies that
use current satellite observations are best-equipped to con-
strain the biospheric carbon balance across only continental
or hemispheric regions.

1 Introduction

The Orbiting Carbon Observatory 2 (OCO-2) satellite
launched on 2 July 2014 and is NASA’s first mission dedi-
cated to observing CO2 from space. The satellite measures
the absorption of reflected sunlight within CO2 and molec-
ular oxygen (O2) bands at near-infrared wavelengths. These
measurements are analyzed with remote sensing retrieval al-
gorithms to yield spatially resolved estimates of the column-
averaged CO2 dry air mole fraction, XCO2. The satellite flies
in a sun-synchronous orbit an average of 705 km above the
Earth’s surface, passing each location at approximately 13:30
local time, and it collects roughly 5×105 to 1×106 observa-
tions or soundings per calendar day (e.g., Crisp et al., 2004,
2017; Eldering et al., 2012).

OCO-2 may provide an ideal opportunity for estimating
surface CO2 fluxes. OCO-2 observes in the near-infrared, and
its observations therefore have sensitivity throughout the en-
tire troposphere with highest sensitivity near the surface (e.g.,
Eldering et al., 2017a). This feature contrasts with several ex-
isting satellites that observe in the thermal infrared and have
little sensitivity to near-surface CO2 variations. OCO-2 also
has a smaller footprint and improved spatial coverage rela-
tive to the Greenhouse Gases Observing Satellite (GOSAT).
Each OCO-2 observation has a footprint ∼ 2.25 km in width,
and the satellite can collect eight observations across a sin-
gle swath (Eldering et al., 2017a). Each GOSAT observation,
by contrast, has a footprint∼ 10 km in width, and the satellite
collects a single sounding every 250 km (Yokota et al., 2009).
As a result of these differences, GOSAT provides approxi-
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mately 1000 high-quality observations per day while OCO-2
provides approximately 65 000 (e.g., Eldering et al., 2017b).

Prior to the OCO-2 satellite launch, several studies com-
mented on the possibilities of using XCO2 observations for
estimating CO2 fluxes at the Earth’s surface. For exam-
ple, Chevallier et al. (2007) and Baker et al. (2010) explain
that OCO-2 observations could reduce flux uncertainties by
∼ 20–65 % at the model grid scale (2.5 by 3.75◦ and 2 by 5◦

latitude–longitude, respectively) and at weekly timescales.
Both studies, however, caution that biases or spatially and
temporally correlated errors would cut this uncertainty re-
duction in half. Chevallier et al. (2007) further explain that
biases of a few tenths of a part per million in XCO2 could
bias estimated subcontinental flux totals by several tenths of
a gigaton.

Since launch, a handful of existing studies apply the satel-
lite observations to estimate fluxes for specific problems.
Most examine flux anomalies (e.g., El Niño) or anomalously
large sources (e.g., power plants). For example, Chatterjee
et al. (2017), Patra et al. (2017), Heymann et al. (2017), and
Liu et al. (2017) estimate flux anomalies during the most re-
cent El Niño, and Nassar et al. (2017) estimate emissions
from several large power plants.

A number of studies use GOSAT observations to estimate
surface fluxes, and these studies report numerous successes
and challenges that could apply to OCO-2 (e.g., Takagi et al.,
2011; Basu et al., 2013, 2014; Guerlet et al., 2013; Maksyu-
tov et al., 2013; Parazoo et al., 2013; Saeki et al., 2013;
Deng et al., 2014; Houweling et al., 2015). GOSAT obser-
vations provide new insight into fluxes in regions that are
poorly sampled by in situ observations. These studies also
identify a number of common challenges. For example, ob-
servations are too sparse to reliably estimate fluxes in regions
with frequent cloud cover (e.g., Parazoo et al., 2013). Fur-
thermore, continental CO2 budgets estimated using GOSAT
observations are not consistent with in situ observations in
some regions; these differences may indicate spatially and
temporally correlated errors in GOSAT observations at their
current stage of development (e.g., Houweling et al., 2015).
These challenges may also be a concern for OCO-2.

This study evaluates the opportunities and challenges of
using current OCO-2 observations to estimate biospheric
CO2 fluxes. A primary goal of this work is to guide top-
down, inverse modeling studies on the information content
of currently available observations. By contrast, satellite ca-
pabilities for CO2 monitoring will likely change quickly over
the next 10 years – both due to improvements in satellite re-
trieval algorithms and the launch of new satellites (Sect. 4).
This guidance will therefore undoubtedly change and evolve
in the future.

We evaluate current OCO-2 observations using several
approaches. We first compare model and observation er-
rors against the atmospheric signal from biospheric fluxes.
This initial comparison provides context and intuition for the
signal-to-noise ratio. Ultimately, atmospheric inversions use

more complex patterns in the observations to estimate sur-
face fluxes. We therefore construct a series of top-down sim-
ulations using OCO-2 observations to understand what these
errors mean for estimating CO2 fluxes, and we thereby eval-
uate the number of global regions for which we can indepen-
dently constrain CO2 budgets. Lastly, we construct a series
of synthetic data simulations to diagnose the real data results.
The first synthetic simulations do not include any errors – to
evaluate the inherent strengths of the observations. In subse-
quent synthetic simulations, we include simulated modeling
and/or retrieval errors, and evaluate how these errors affect
the CO2 flux constraint.

2 Methods

2.1 OCO-2 data

This study utilizes XCO2 observations from the OCO-2
satellite beginning with the first reported data (6 Septem-
ber 2014) through the end of 2015. We use the level 2 lite
product, version B7.1.01; the lite product only includes good
quality retrievals, unlike the full OCO-2 level 2 product. We
only include nadir and target-mode retrievals in the analy-
sis and exclude glint-mode retrievals. Recent work indicates
biases in the glint retrievals relative to nadir retrievals (e.g.,
Wunch et al., 2017). The Supplement describes model selec-
tion results with glint-mode retrievals included, and the re-
sults are similar to those in the main text without glint-mode
data.

2.2 Simulated model and retrieval errors

The simulated model and retrieval errors provide an intu-
itive feel for the observations and are used as inputs in the
top-down experiments later on in the study. This section de-
scribes these simulated errors – both simulated atmospheric
transport and retrieval errors (Fig. 1). The Supplement de-
scribes these errors in greater detail.

We use estimated CO2 transport errors from Liu et al.
(2011) and Miller et al. (2015) (Fig. 1a–b). The authors of
those studies run an ensemble of global meteorology simula-
tions. CO2 is included as a passive tracer in the model, and all
simulations use the same CO2 flux estimate but have differ-
ent meteorology. The authors estimate CO2 transport errors
by examining the range of CO2 mixing ratios in the ensem-
ble of simulations. We choose one realization at random and
subtract the mean of the ensemble from this realization to
produce a set of residuals. These residuals are used as the
estimated transport errors in this study. The estimated errors
are therefore a realization of plausible transport errors. As a
result, the specific errors used here have the same statistical
properties as the other members of the ensemble but have dif-
ferent values in specific locations or at specific times. For ex-
ample, the transport errors have a negative value across much
of the Arctic in Fig. 1a. Other ensemble members might have
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Figure 1. This figure displays the simulated synthetic data errors (i.e., simulated ε): the simulated atmospheric transport errors (a–b), the
simulated retrieval errors (c–d), and a second, alternative set of retrieval errors (e–f). The left-hand panels display the mean of the errors
within each PCTM grid box across the entire 2014–2015 study period, an indication of the correlation or covariance among the errors. By
contrast, the right-hand panels display the standard deviation of the errors or residuals within each PCTM grid box.

a slight positive bias in that region but will nevertheless have
similar statistical properties as the realization in Fig. 1a.

In addition to these transport errors, we simulate retrieval
errors. We use two different approaches to estimate these er-
rors and report results using both approaches. The true re-
trieval errors are unknown and any effort to estimate these er-
rors will be uncertain; the two approaches used here provide
two contrasting, plausible representations of these errors.

We generate the first set of possible retrieval errors us-
ing the parameters in the OCO-2 retrieval correction. This
approach entails several steps. We first try to reproduce the
OCO-2 observations using a regression. The predictor vari-
ables in this regression include seven different terrestrial bio-
sphere model (TBM) estimates of net biome production and
vegetation indices that have been input into an atmospheric
transport model. We also include anthropogenic, ocean, and
biomass burning flux estimates in the regression. A subse-
quent section (Sect. 2.3) describes this regression in greater

detail. We save the model-data residuals from this regression.
Subsequently, we regress these residuals on the parameters
used in the OCO-2 bias correction. These include aerosol op-
tical depth and albedo, among other parameters (e.g., Wunch
et al., 2011, see Sect. S1.4 in the Supplement). Note that
these retrieval parameters are not run through an atmospheric
transport model, unlike the TBM fluxes. We estimate the re-
trieval errors as the portion of the model-observation residu-
als that are described by these retrieval parameters. The re-
gression considers many different TBMs and vegetation in-
dices, and it should therefore do reasonably well at reproduc-
ing patterns in the OCO-2 observations attributable to bio-
spheric fluxes. Any remaining patterns in the data that map
on to retrieval parameters are likely due to retrieval errors
rather than transport or flux errors.

We use a second approach to create an alternative set of
simulated retrieval errors. Specifically, we model XCO2 us-
ing fluxes from four different TBMs (Sect. 2.3) and com-
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pute the model-data residuals for each set of simulations. We
identify the grid cells in which all four sets of residuals have
the same sign (i.e., generated using four different TBMs) and
identify all of the model grid cells in which the residuals have
variable sign. In the former case, we take the median of all
four residuals as the estimated retrieval error and, in the lat-
ter case, assign a retrieval error of zero. This approach likely
produces a conservative estimate of the retrievals errors (i.e.,
a possible underestimate); there is likely some amount of re-
trieval error at locations where we assign a retrieval error of
zero.

2.3 Overview of the top-down experiments

We employ a top-down framework to evaluate the detectabil-
ity of biospheric CO2 fluxes using current OCO-2 observa-
tions. Overall, we divide the globe into different hemispheres
and biomes and determine whether we can detect flux pat-
terns within each hemisphere or biome and each month. The
term “patterns” here refers to flux patterns that manifest at
the resolution of an atmospheric model. We begin the analy-
sis with very large hemispheric regions and then decrease the
size of those regions until we are no longer able to detect any
flux patterns beyond a mean CO2 flux. That limit or end point
is the smallest scale at which OCO-2 observations currently
provide a constraint on CO2 budgets. OCO-2 observations
must be sufficient to detect more than a mean flux across a
region and month if future inverse modeling studies are to
estimate biospheric CO2 budgets at scales smaller than that
region. Consequently, inverse modeling studies would gener-
ally be unable to obtain reliable information about the fluxes
across smaller regions. This result bounds the type of infor-
mation one can expect from the OCO-2 retrievals in their
current stage of development. The remainder of this section
explains this top-down analysis in greater detail.

We approach this problem using a regression framework.
The regression attempts to reproduce OCO-2 observations
of XCO2 using predictor variables. These variables are the
XCO2 estimated by an atmospheric model; each model out-
put estimates the XCO2 enhancement due to fluxes in a
particular region and a particular month, and we generate
many model outputs using many different flux models (see
Sect. 2.6). The regression has the following form:

z= h(X)β + b+ ε, (1)

where z are the OCO-2 observations (dimensions n× 1). The
matrix X (m×p) has p columns, and each column is a differ-
ent CO2 flux estimate for a specific geographic region and a
specific month. Each column of X contains grid-scale fluxes
for a specific region and month and zeros for all other re-
gions and months. The function h() is an atmospheric trans-
port model (Sect. 2.6), and the model outputs, h(X), have
dimensions n×p. The vector b (n× 1) is the model spin-up
or estimated XCO2 at the beginning of the study time period,

and ε (n× 1) are the regression residuals. Lastly, β (p× 1)
are the coefficients estimated as part of the regression.

The regression provides a means to evaluate the detectabil-
ity of biospheric CO2 fluxes. At least some of the model
outputs, h(X), should describe substantial variability in the
OCO-2 observations (z). Let us say that modeled XCO2 us-
ing a particular flux model in a particular region and month
help reproduce patterns in the OCO-2 observations. This re-
sult implies that OCO-2 observations are able to detect or
constrain variability in CO2 fluxes from that region and that
month. By contrast, let us say that no model outputs sub-
stantially improve the regression fit. This result implies one
of three things. First, the OCO-2 observations may not be
sensitive to biospheric fluxes from that particular region and
month. Second, there may be errors in current OCO-2 re-
trievals or in the atmospheric model that obscure surface
fluxes from that region and month. Finally, all of the flux es-
timates used in X may be unskilled and may not match real-
world conditions. We offer up a large number of flux models
as possible predictor variables in X, and at least some of these
products should be expected to correlate with real-world CO2
fluxes. In this case, it is unlikely that there is a shortage of
reasonable CO2 flux models to choose from. Rather, that re-
sult more likely reflects the sensitivity of the observations to
surface fluxes, the maturity of current OCO-2 retrievals, or
the accuracy of the atmospheric model. Hence, this approach
provides a means to evaluate when and where current OCO-
2 observations can constrain variability in biospheric CO2
fluxes.

We utilize a model selection framework to determine
which model outputs (i.e., columns of h(X)) describe sub-
stantial variability in current OCO-2 observations. Model se-
lection is a statistical approach common in regression model-
ing (e.g., Ramsey and Schafer, 2012, chap. 12). It will iden-
tify the set of predictor variables with the greatest power to
describe the data. It also ensures that the regression does not
overfit the data. The inclusion of more predictor variables in
a regression will always improve model-data fit; a regression
with n independent predictor variables will always be able
to describe n data points perfectly. However, a model with
n independent predictor variables would overfit the data. For
more on the dangers of overfitting, refer to Zucchini (2000).
To this end, one can use model selection to prevent overfitting
and only include predictor variables that describe substantial
variability in the observations.

We implement model selection based on the Bayesian in-
formation criterion (BIC) (Schwarz, 1978). We calculate a
BIC score for many different combinations of predictor vari-
ables, and each combination has a different set of columns
(X). The best combination has the lowest BIC score:

BIC= L+p ln(n∗), (2)

where L is the log likelihood of a particular combination
of predictor variables (i.e., a particular configuration of X).
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The log-likelihood equation rewards combinations that im-
prove model-data fit, and the second term in the equation
(p lnn∗) penalizes combinations with a greater number of
predictor variables (i.e., columns in X). This penalty also
scales with the effective number of independent observations
from OCO-2 (n∗, described in the Supplement), and it en-
sures that the selected model is not an overfit.

A number of existing top-down studies of CO2 use model
selection (e.g., Gourdji et al., 2008, 2012; Shiga et al., 2014;
Fang et al., 2014; Fang and Michalak, 2015; ASCENDS Ad
Hoc Science Definition Team, 2015). Several utilize the ap-
proach to determine a set of environmental variables to in-
clude in a geostatistical inverse model (e.g., Gourdji et al.,
2008, 2012). Other studies use model selection to determine
whether existing CO2 observations can constrain flux pat-
terns from the biosphere (Fang et al., 2014) and from fossil
fuel emissions (Shiga et al., 2014; ASCENDS Ad Hoc Sci-
ence Definition Team, 2015). One study uses model selection
to assess the capabilities of a proposed satellite mission (AS-
CENDS Ad Hoc Science Definition Team, 2015).

Model selection provides a convenient way to evaluate the
information content of OCO-2 observations in their current
state of development. One could also estimate CO2 budgets
in a Bayesian inverse model. The accuracy or uncertainty in
those budgets would be indicative of the information con-
tent of the satellite observations. This approach can require
a number of complex choices. In a Bayesian inverse model,
one must choose a prior flux estimate, and there are many
to choose from (e.g., Huntzinger et al., 2013; Peylin et al.,
2013). An unskilled (or skilled) prior flux estimate will have
large (or small) prior uncertainties, and the posterior uncer-
tainties will also be larger (or smaller) as a result. One could
alias this effect for the capabilities of the observation net-
work. A modeler must further differentiate between prior er-
rors and errors in the retrieval and atmospheric model. Both
can have complex, non-stationary structures (e.g., Liu et al.,
2011). Inverse modeling with satellite observations also can
be computationally intensive – both in terms of the number
of atmospheric model simulations required and the computa-
tional requirements of the statistical inverse model. By con-
trast, the regression framework used here provides a simple
metric to evaluate the information content of the observa-
tions. The statistical model implemented here does not re-
quire differentiating between different error types. Further-
more, we estimate the covariances locally (Sect. S1.3), mak-
ing it easier and more computationally tractable to account
for complex error structures.

2.4 Implementation of the top-down experiments

This section describes how the regression and model selec-
tion are implemented in the present study.

The regression begins with an intercept. The intercept is
always included in the regression (in X), and model selec-
tion can further add flux models to X to help reproduce the

OCO-2 observations (z). This intercept is a constant column
of ones in X. In the particular setup here, we include a dif-
ferent intercept for each region of the globe and each month.
In other words, the intercept consists of multiple columns –
one column for each region and month of the study period.
This intercept is equivalent to a spatially and temporally con-
stant flux in each region and month. Additional atmospheric
model outputs will not be selected unless they explain sub-
stantially more variability in the OCO-2 observations than
this intercept or constant flux. The intercept plays an impor-
tant role in the regression; it ensures that the regression will
always be unbiased when averaged across the globe. Model
selection could produce non-intuitive results if there were no
intercept. Furthermore, intercepts are standard in regression
modeling, and top-down, CO2 studies that utilize model se-
lection also include an intercept (e.g., Gourdji et al., 2008,
2012; Fang et al., 2014).

We subsequently run the regression with model selection
three times to evaluate three different cases. In the first case,
we divide the flux models into two large hemispheric re-
gions, and we select different flux models for each hemi-
spheric region and each month. The second and third ex-
periments divide the fluxes into four continental regions and
seven biomes, respectively (Fig. 2). The last experiment is
more challenging than the first.

Note that we consider the model selection results from
2014 part of an initial model spin-up period and only report
the results from 2015.

2.5 Synthetic data simulations

We subsequently utilize synthetic data simulations in this
study to analyze the effects of different model or retrieval
errors on the detectability of biospheric CO2 fluxes. In these
simulations, we create synthetic XCO2 observations using an
atmospheric transport model (Sect. 2.6) and the SiBCASA
flux model. We then run model selection using these syn-
thetic observations in place of real OCO-2 observations (z).
These model selection runs have the same setup as the real
data simulations, except that the observations are synthetic
instead of real. Furthermore, we only analyze the seven-
biome case in the synthetic data experiments. This case is
more demanding of the observations than the two- and four-
region cases; it is more difficult to obtain a robust constraint
for seven regions than for two or four larger global regions.
The seven-biome case is also an important goal from a eco-
logical perspective. For example, one might want to estimate
how CO2 fluxes differ in different tropical forests or in dif-
ferent temperate forests (e.g., on different continents or in
different climate zones).

These synthetic simulations help to isolate the effect of
different errors on the detectability of biospheric CO2 fluxes.
We first run the regression and model selection with no er-
rors in the atmospheric model or in the retrievals (ε ≈ 0). We
then successively add simulated error to the synthetic obser-
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Figure 2. The two hemispheric regions (a), four continental regions
(b), and seven biomes (c) used in this study. The biomes are based
on a world biome map by Olson et al. (2001). The two and four
region maps are amalgamated versions of the biomes.

vations and evaluate how the model selection results change
as the errors increase (Fig. 1). We include three different
types of errors: flux errors, transport errors, and retrieval er-
rors. The simulations with all errors included should produce
model selection results similar to the real data experiments.

Section 2.2 and the Supplement describe the simulated
transport and retrieval errors. The flux errors further account
for plausible inaccuracies in the predictor variables within X.
No TBM or vegetation index has a distribution that perfectly
matches real-world CO2 fluxes. These errors affect our abil-
ity to detect biospheric fluxes using the OCO-2 observations,
and we therefore account for these flux errors in the synthetic
data simulations. To this end, we remove SiBCASA as an op-
tion in the X matrix and choose among the other remaining
flux models. This procedure simulates the plausible effects
of imperfect flux models or predictor variables.

2.6 Atmospheric model simulations

We employ the Parameterized Chemistry Transport Model
(PCTM) to model XCO2 using a variety of surface flux mod-
els (Kawa et al., 2004). A number of existing studies use this
model to simulate atmospheric CO2 mixing ratios (e.g., Law
et al., 2008; Gurney et al., 2009; Baker et al., 2010; Schuh
et al., 2010; Shiga et al., 2013; ASCENDS Ad Hoc Science
Definition Team, 2015; Hammerling et al., 2015). Several of
these studies specifically use PCTM to model CO2 in the
context of satellite missions (e.g., Baker et al., 2010; AS-
CENDS Ad Hoc Science Definition Team, 2015; Hammer-
ling et al., 2015). The PCTM configuration in this study has
global coverage, a spatial resolution of 1◦ latitude by 1.25◦

longitude, and 56 vertical levels. We both input the fluxes and
estimate atmospheric mixing ratios at a 3 h time resolution,
and the model transports fluxes through the atmosphere us-
ing winds from NASA’s Modern-Era Retrospective Analysis
for Research and Applications (MERRA) (Rienecker et al.,
2011). Section S1.1 includes more detail on the model initial
condition and spin-up period.

We subsequently model XCO2 using several different ter-
restrial biosphere models and vegetation indices, and these
model outputs are incorporated into model selection, h(X).
We include four TBMs with contrasting spatial features from
MsTMIP, the Multi-scale Synthesis and Terrestrial Model In-
tercomparison Project (Huntzinger et al., 2013; Fisher et al.,
2016a, b). Section S1.2 describes MsTMIP and the TBMs
in greater detail. We also include SIF (solar-induced fluo-
rescence) from the Global Ozone Monitoring Experiment 2
(GOME-2, Joiner et al., 2013) as well as EVI (enhanced
vegetation index) and NDVI (normalized difference vegeta-
tion index) from the Moderate-Resolution Imaging Spectro-
radiometer (MODIS; e.g., Huete et al., 2002). Note that we
directly input these vegetation indices into PCTM as a sur-
face flux. The regression will adjust the magnitude of the
transport model outputs to reproduce the OCO-2 observa-
tions, so the absolute magnitude of the vegetation indices
is not important. Rather, we are interested in whether the
patterns in these vegetation indices help reproduce patterns
in the OCO-2 observations, potentially in combination with
other indices or TBMs.
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We also consider non-biospheric fluxes for use in X. We
include anthropogenic emissions from EDGAR v4.2 FT2010
(European Commission, Joint Research Centre , JRC; Olivier
et al., 2014), climatological ocean fluxes from Takahashi
et al. (2016), and biomass burning fluxes from the Global
Fire Emissions Database (GFED) version 4.1 (van der Werf
et al., 2010; Giglio et al., 2013). We are not interested in an-
thropogenic or marine fluxes per se. Rather, we want to ac-
count for these fluxes in the modeling framework and do not
want any omissions to affect inferences related to biospheric
fluxes. As a result, we do not separate these non-biospheric
fluxes by region or month because these sources are not the
focus of this study; each of these sources is assigned a single
column in X. Furthermore, we do not include these variables
by default within X, unlike the constant flux base model.
Rather, they are included as candidate variables within the
model selection framework.

Note that in the seven-biome region case, X has a mini-
mum of 112 columns and a maximum of 899 columns. A
total of 112 columns associated with the intercept and are al-
ways included in X (i.e., 16 months × 7 biomes per month).
A total of 784 columns associated with biospheric fluxes (7
flux models× 16 months× 7 biomes), and three columns as-
sociated with fossil fuel, ocean, and biomass burning fluxes.
These columns may or may not be included in X, depending
upon the results of model selection.

3 Results and discussion

3.1 The biospheric CO2 signal versus model and
retrieval errors

We compare simulated model and retrieval errors against the
atmospheric signal from biospheric fluxes (Fig. 3). The com-
parison provides an intuition of the errors and the CO2 signal
given current modeling and observation capabilities. Prior
to the OCO-2 satellite launch, several studies modeled the
XCO2 signal from surface fluxes (e.g., Olsen and Randerson,
2004) and the measurement precision required for space-
based constraints on CO2 fluxes (e.g., Rayner and O’Brien,
2001). It is now possible to make this evaluation with real
instead of synthetic observations. Also note that the XCO2
signal and estimated errors will vary depending on the aver-
aging time period. We report monthly averages of the bio-
spheric signal and the errors. Many top-down, inverse mod-
eling studies report monthly flux totals, so all of the analysis
presented here is aggregated to 1-month averages.

The atmospheric CO2 signal from biospheric fluxes is
marked, even when averaged across a total vertical column
(Fig. 3) – a global mean absolute value of 0.5 ppm in Febru-
ary and 1.3 ppm in July. The 10th and 90th percentiles are
0.04 and 1.4 ppm in February and 0.06 and 3.8 ppm in July.
In July, the largest enhancements are in the Northern Hemi-
sphere mid- and high latitudes while the largest enhance-

ments during winter months are in the tropics and Southern
Hemisphere.

By contrast, the simulated model and retrieval errors are
comparable to this XCO2 signal from biospheric fluxes.
These errors have a mean absolute value of 0.6 ppm in both
February and July. The 10th and 90th percentiles are 0.08 and
1.35 ppm in February and 0.08 and 1.25 ppm in July. Using
the alternative retrieval estimate, the errors and percentiles
are 0.8, 0.02, and 2.1 ppm in February and 1.4, 0.05, and
3.7 ppm in July. Phrased differently, these errors, averaged
across all nadir and target data, equate to 115–122 % of the
mean biospheric CO2 signal in February and 43–107 % in
July, depending upon the retrieval error estimate.

It is important to note that the distribution of these ob-
servations is heterogeneous across the globe (Fig. 3), even
though the total number of observations is large (e.g.,
268 671 and 343 053 nadir and target observations in Febru-
ary and July, respectively, in the lite data file). For example,
the data are concentrated in tropical and temperate regions
and are sparse at high latitudes and regions with frequent
cloud cover (e.g., the Amazon).

These errors are not inconsistent with those estimated by
existing studies. Wunch et al. (2017) compare OCO-2 ob-
servations against TCCON (Total Carbon Column Observ-
ing Network) observations and report an average site bias of
0.22 ppm when using land nadir retrievals and a root mean
squared error of 1.31 ppm. Furthermore, Worden et al. (2017)
estimate a precision and accuracy, respectively, of 0.75 and
0.65 ppm for land nadir observations. These studies are not
necessarily directly comparable because each uses differ-
ent metrics and observations. Furthermore, several compare
OCO-2 to TCCON, the same observations used to bias cor-
rect OCO-2. With that said, the overall numbers reported by
different studies are not inconsistent with one another and
with Fig. 3.

The relative magnitude of the errors provides an infor-
mative measure of the observations, but it does not tell the
complete story. A number of other considerations affect sci-
entists’ ability to estimate surface fluxes using these obser-
vations. First, inverse models leverage more than the point-
wise signal to estimate surface fluxes; these models leverage
complex spatial and temporal patterns in the data to estimate
surface fluxes. Second, the absolute magnitude or variance of
the errors is only one consideration. Another important fac-
tor is the spatial and temporal correlations or covariances in
these errors. These covariances reduce the independent infor-
mation in the data and can obscure patterns in XCO2 that are
due to surface fluxes. As a result, we construct real and syn-
thetic data experiments to understand what these errors mean
for estimating surface fluxes.

3.2 Real data experiments

The model selection experiments using real data indicate the
number or size of regions for which we can reliably constrain
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Figure 3. This figure compares the total column CO2 or XCO2 signal from biospheric fluxes against simulated model and observation errors.
Panels (a) and (b) display the monthlong mean XCO2 signal from biospheric CO2 fluxes for February and July, respectively. We estimate
this signal using the SiBCASA flux model and PCTM. Also note that the XCO2 signal for February and July includes CO2 fluxes from the
months of February and July, respectively, and no fluxes from previous or subsequent months. Panels (c) and (d) represent the sum of both
simulated observation and atmospheric transport errors (monthlong mean, Sect. 2.2). Panels (e) and (f) show the sum of these errors using
an alternate estimate for the retrieval errors.

biospheric CO2 budgets using current OCO-2 observations.
We start the real data simulations with large hemispheric re-
gions and reduce the size of the regions until we are no longer
able to detect any CO2 flux patterns or information beyond a
mean monthly flux in each region and each month. We would
need to detect more than a mean flux from a given region if
we are to reliably constrain fluxes across smaller regions.

The first real data experiment indicates whether the obser-
vations are sufficient to detect flux patterns within two large
hemispheric regions (Fig. 2). Figure 4a displays the number
of months in which at least one model output (i.e., column
of X, Eq. 1) is chosen, broken down by region. The results in
Fig. 4a are grouped by season for convenience.

Model selection identifies flux patterns in about half of all
months. This outcome suggests that OCO-2 and the PCTM
model can be used to identify broad, hemispheric flux pat-

terns. One important exception is the extratropics (e.g., the
temperate, boreal, and Arctic region), in both spring and fall.
Biospheric uptake in these seasons is less than the summer
maximum, in both the Northern and Southern Hemisphere.
As a result, flux patterns in these areas are not as hetero-
geneous and not readily detectable using the satellite obser-
vations. This result also indicates that the OCO-2 observa-
tions can be used to reliably constrain CO2 budgets at scales
smaller than hemispheric in about half of all cases. With that
said, we do not select a single flux pattern in three of four
seasons for one hemisphere.

In a second experiment, we try to identify flux patterns
within four smaller regions using OCO-2 observations and
model selection (Fig. 4b). At least one flux pattern is selected
in 29 % of all regions and months, and this result suggests
that inverse modeling studies would be able to constrain CO2
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Figure 4. The results of the model selection experiments using real
data. The different colors indicate the number of months in which
at least one flux pattern is selected for a given region, and dark col-
ors suggest excellent detectability while light colors suggest limited
detection abilities. Flux patterns are selected for a greater fraction
of regions and months in the two-region case (a) than in the four- or
seven-region cases (b–c).

budgets at more-detailed spatial scales in about one third of
all regions and months. This experiment is more demanding
than the first, and it is therefore unsurprising that fewer flux
patterns are selected. Flux patterns within these four conti-
nental regions are often less heterogeneous than across the
two large hemispheric regions in the first experiment.

The third and final experiment includes seven biomes, and
relatively few flux patterns are selected in this final exper-
iment (16 % of all possible regions and months, Fig. 4c).

This result suggests a limited ability to detect biospheric
flux patterns within each of the seven global biomes. Inverse
modeling studies would thus be able to uniquely constrain
CO2 budgets across smaller regions in only a small hand-
ful of cases (e.g., 16 % of all possible regions and months).
These results appear similar to a recent study using current
GOSAT retrievals. Houweling et al. (2015) compare an en-
semble of inverse modeling flux estimate using GOSAT. Es-
timates show good agreement across very large regions (e.g.,
within 20 % for global, annual CO2 budgets) but disagree
by over 100 % over subcontinental-sized TransCom regions
(e.g., Gurney et al., 2002).

As part of model selection, we also evaluate the effective
number of independent OCO-2 observations (n∗, Sect. S1.3),
and we estimate one independent observation per ∼ 1200
OCO-2 lite retrievals. Correlations or covariances in trans-
port and retrieval errors will reduce the value of n∗. The es-
timate is similar among all of the real data experiments and
is approximately 4000 (4060 for the two-region case, 3600
for the four-region case, and 3540 for the seven-region case).
By comparison, the total number of OCO-2 observations dur-
ing the study period (n) is 5.08× 106. Note that the value of
n∗ decreases as the number of regions increases. Fewer and
fewer model outputs are selected as the number of regions
increases. As a result, there are more residual, unexplained
flux patterns in the seven-region case than in the two-region
case. The regression residuals have larger covariances in the
seven-region case, and the observations become less inde-
pendent.

These results are broadly consistent with the OCO-2 sci-
ence team’s ongoing flux inter-comparison study (Crowell ,
2017). Several research groups are developing inverse mod-
els to estimate CO2 fluxes using OCO-2 observations, and a
comparison of these estimates provides insight into the ro-
bustness of the flux estimates. To date, these comparisons
often show relatively good agreement for total hemispheric
terrestrial budgets, but the ensemble of estimates diverges
for smaller regions. Other, newly published inverse model-
ing studies use OCO-2 observations to estimate regional bud-
gets (e.g., Liu et al., 2017). These studies primarily focus
on questions about carbon cycle science, and many employ
frameworks that are not necessarily intended to exhaustively
sample all plausible sources of uncertainty.

3.3 Synthetic data experiments

The goal of the synthetic data simulations is to understand the
challenges that influence the real data results. If future efforts
can mitigate these challenges, then inverse modeling studies
would be able to reliably constrain flux patterns and CO2
budgets across individual biomes or even smaller regions.

We first construct an idealized synthetic data study with-
out any errors (Fig. 5a). This case study indicates that the
OCO-2 observations are not inherently insensitive to bio-
spheric fluxes at the surface, a result consistent with previ-
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ous studies (e.g., Olsen and Randerson, 2004). In this ideal-
ized case, a flux pattern is selected for every biome in every
month using model selection.

Subsequent model selection experiments include at least
one error type, and flux patterns are selected in fewer regions
and months in all of these cases (Fig. 5b–d). Of the three dif-
ferent error types, retrieval errors have the largest impact on
the model selection results (Fig. 5d). Note that the retrieval
errors used to generate Fig. 5d are those simulated in Fig. 1c–
d. Section S2.2 describes the model selection experiments us-
ing an alternative set of retrieval errors (Fig. 1e–f), and these
results are similar to those presented in the main text (Fig. 5).

Notably, the addition of any error, large or small, appears
to hinder flux pattern detection in marginal biomes – biomes
with small fluxes and/or small spatial and temporal variabil-
ity (e.g., tundra and deserts). Arguably, this result is un-
surprising. OCO-2 observations are sparse in many cloudy,
high-latitude regions, and CO2 fluxes are weak at high lat-
itudes and in deserts. Fluxes from these regions are quickly
obscured by even modest errors in the model or observations.
Future CO2 remote sensing efforts would have difficulty de-
tecting biospheric patterns within these areas. Other regions,
like forests and grasslands, have larger and/or more hetero-
geneous fluxes, and these patterns should be easier to detect
with satellite observations.

One of the experiments specifically accounts for errors in
existing flux estimates (Fig. 5b). We find that these errors
do have an effect on the results, but that effect is not nearly
as large as that due to retrieval errors. We argue that current
OCO-2 observations can detect patterns in CO2 fluxes if at
least one model output helps explain substantial variability in
those observations. We offer up a number of different model
outputs using several different flux models, but there is al-
ways a possibility that none of these flux models adequately
approximates real-world fluxes. The experiment in Fig. 5b
evaluates how these flux errors could affect the result. Fur-
thermore, if there are large, unresolved patterns in anthro-
pogenic or marine fluxes, these unresolved patterns could
also influence the results for biospheric fluxes. Note that this
set of issues also affects Bayesian inverse models and there-
fore has implications beyond the methodology used in this
study. Specifically, the availability and skill of the prior flux
estimate affects the robustness and uncertainty of the inverse
modeling estimate.

Subsequent experiments (Fig. 5e–g) include two different
error types, and flux patterns are selected in fewer months
and regions relative to the previous cases. The experiment
with transport and flux errors (but not retrieval errors, Fig. 5e)
still shows good detectability during the summer months
and in temperate and tropical forest and grassland biomes.
By contrast, the experiments that include retrieval errors
(Fig. 5f–g) show limited detectability in all biomes and sea-
sons.

The last experiment (Fig. 5h) includes all error types, and
we obtain positive results in fewer regions in fewer months

relative to other cases. These results are broadly consistent
with the real data experiments; a similar number of regions
and seasons are selected in both this experiment and the
real data experiment (Fig. 5h). This consistency indicates
that the synthetic simulations likely mirror real-world con-
ditions. Note that the estimate for n∗ in this final synthetic
experiment is about half that of n∗ in the real data experi-
ments (n∗ = 1630). These synthetic experiments may there-
fore slightly overestimate the error correlations or covari-
ances and underestimate the variance or white noise portion
of the errors.

Overall, the synthetic simulations suggest that retrieval er-
rors play a salient role relative to other error types (e.g., trans-
port errors or flux errors, Fig. 5). Spatial and temporal error
covariances and biases may be at least partly to blame. The
estimated transport errors are spatially and temporally corre-
lated on synoptic timescales (e.g., Liu et al., 2011; Miller
et al., 2015). These scales are generally smaller than the
biomes and hemispheres examined in this study. As a result,
these errors will average down over time and space, and this
averaging will mitigate the impact of these errors on the re-
sults. This statement, of course, only holds if there are no
large-scale biases in the meteorology. The simulated retrieval
errors, by comparison, covary across longer spatial and tem-
poral scales. These errors correlate with retrieval parame-
ters like aerosol optical depth or albedo that often change
at broader seasonal or regional scales. The greater these er-
ror correlations, the less these errors average down across
space and time, and the greater impact these errors have on
the utility of XCO2 observations. A reduction in the spatial
and temporal coherence of these errors would improve the
model selection results.

4 Conclusions

The OCO-2 satellite offers a new, global window into atmo-
spheric CO2 and CO2 fluxes at the Earth’s surface. This study
explores a first step in realizing these capabilities; we evalu-
ate the extent to which current OCO-2 observations can de-
tect patterns in biospheric CO2 fluxes and constrain monthly
CO2 budgets.

We find that OCO-2 observations, in their current state of
development, often provide a reliable constraint on CO2 bud-
gets across continental or hemispheric regions. By contrast,
we find that current observations can provide a unique CO2
estimate across smaller regions in only a handful of cases. As
a result, inverse modeling studies are unlikely to constrain
regional fluxes at fine spatial and temporal scales given the
current maturity of the observations. Regional CO2 budgets
estimated using these observations would be highly uncertain
and prone to biases.

These results do not reflect any inherent limitation in the
sensitivity of the OCO-2 satellite. Rather, a set of synthetic
data simulations indicates that these limitations are likely the
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Figure 5. Model selection results for the synthetic data experiments. The first column (a) shows an experiment with no errors in the synthetic
observations. The results of that experiment are ideal, and at least one flux pattern is selected in every month and every region using model
selection. Subsequent panels (b–h) show the results with one, two, and three types of errors included. Fewer regions and seasons are selected
in these experiments. The plot signals that retrieval errors likely play a key role.

result of large errors: retrieval errors and to a lesser extent
atmospheric transport errors (Fig. 5). Hence, the value or po-
tential of the OCO-2 observations is greater than these re-
sults might otherwise imply. For example, the retrieval errors
simulated in this study often covary across large regions and
across a month or more. Future improvements to retrieval al-
gorithms could reduce both the variance and covariance of
these errors, enabling confident CO2 flux constraints across
smaller regions.

Even with these limitations, current OCO-2 observations
provide new information on CO2 fluxes for many regions
of the globe. On one hand, in situ data appear to provide a
stronger constraint on CO2 fluxes in some well-instrumented
regions of the world, like North America (e.g., Fang et al.,
2014). Results using seven global biomes show only a limited
ability of current OCO-2 observations to differentiate among
regions. On the other hand, in situ observations are sparse in
many regions of the world, including in most of the tropics,
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Africa, South America, and Asia (e.g., NOAA Global Mon-
itoring Division, 2017). Current OCO-2 observations bring
new monitoring capabilities to these regions that are unlikely
to be matched by in situ observations within the near future.

Furthermore, a number of new satellite missions will
launch in the next 5 years. Multiple sets of observations, in
tandem, will provide a more-detailed, robust constraint on
CO2 fluxes. For example, the GOSAT-2 satellite will moni-
tor atmospheric CO2 with better accuracy relative to the orig-
inal GOSAT satellite (Japan Aerospace Exploration Agency,
2017). This improvement in both the quality and overall
quantity of CO2 observations will enable more-detailed es-
timates of CO2 fluxes. In addition to GOSAT-2, the OCO-3
mission will observe CO2 from the International Space Sta-
tion at a different locations and times of day relative to OCO-
2 (NASA Jet Propulsion Laboratory, 2017). This feature will
provide a stronger constraint on spatial and temporal varia-
tions in CO2 fluxes. However, retrieval errors appear to be a
key factor in our results and will likely be a challenge for
these future missions. Work on the OCO-2 retrieval algo-
rithm will inform these upcoming missions, so improvements
to the OCO-2 retrievals will likely improve the data capabil-
ities of future missions as well. Further improvements to the
satellite retrieval and atmospheric transport modeling could
enable OCO-2 and future missions to provide detailed CO2
budgets for much finer regions.
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