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S1 Instrumentation

As shown in Fig. S1.
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Figure S1. A schematic diagram of the measurement system and flow rate partitioning to the measurement devices. Indicated by the word

"Switch" is a computer-based system that switched between two filters according to wind directions. The on-line instruments discussed in

this paper are marked with red background. MPSS, APS and CCNc represent Mobility Particle Size Spectrometer, Aerodynamic Particle

Sizer and Cloud Condensation Nuclei counter, respectively.
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S2 Accounting for particle losses

The particle losses related to the transport of aerosol particles within the inlet tube system are determined using the Particle

Loss Calculator (PLC) (von der Weiden et al., 2009). Size-dependent particle losses due to diffusion, sedimentation, turbulent

inertial deposition, inertial deposition in a bend, and inertial deposition in a contraction are accounted for. The result is shown

in Fig. S2, which depicts particle losses in % as a function of particle size.5
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Figure S2. Size-dependent particle loss through the inlet.
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S3 Filter sample information and pre-experiment

Table S1. The information of TROPOS filter samples, including the sample number, start time, start flow, stop time, end flow, duration and

status.

Sample number Start time (UTC) Start flow (L min−1) Stop time (UTC) End flow (L min−1) Duration (h) Status

Sample 01 2017/04/06 07:50:00 10.76 2017/4/09 06:10:00 9.95 23.07 Ocean sector

Sample 02 - - - - - Blind filter

Sample 03 2017/04/07 09:50:00 10.00 2017/4/09 06:10:00 7.92 26.09 Land sector

Sample 04 2017/04/09 07:30:00 10.61 2017/4/14 06:30:00 12.10 23.76 Ocean sector

Sample 05 2017/04/09 07:30:00 9.85 2017/4/10 06:20:00 8.74 22.63 Land sector

Sample 07 2017/04/11 07:00:00 9.73 2017/4/12 06:30:00 8.89 22.00 Land sector

Sample 08 2017/04/12 07:00:00 9.86 2017/4/14 06:30:00 8.68 25.65 Land sector

Sample 09 2017/04/14 07:50:00 9.83 2017/4/18 07:10:00 4.19 20.65 Ocean sector

Sample 10 2017/04/14 07:50:00 9.55 2017/4/15 06:20:00 6.11 21.04 Land sector

Sample 11 2017/04/15 06:40:00 9.80 2017/4/16 06:40:00 8.79 23.73 Land sector

Sample 12 2017/04/16 07:00:00 9.67 2017/4/18 11:00:00 7.74 18.21 Land sector

Sample 13 2017/04/18 07:30:00 9.68 2017/4/21 08:00:00 8.4 20.87 Ocean sector

Sample 14 2017/04/18 11:20:00 9.60 2017/4/19 09:40:00 8.12 18.12 Land sector

Sample 15 2017/04/19 09:50:00 9.49 2017/4/20 09:20:00 9.07 19.83 Land sector

Sample 16 2017/04/20 09:40:00 9.70 2017/4/22 06:30:00 9.34 26.20 Land sector

Sample 17 - - - - - Blind filter

Sample 18 2017/04/22 06:40:00 9.74 2017/4/23 06:20:00 8.28 22.20 Land sector

Sample 19 2017/04/23 06:40:00 9.53 2017/4/24 06:20:00 7.95 23.05 Land sector

Sample 20 2017/04/24 06:40:00 9.65 2017/4/25 06:20:00 8.08 23.61 Land sector

Sample 21 2017/04/25 06:40:00 9.65 2017/4/26 09:40:00 8.71 20.42 Land sector

Sample 22 2017/04/26 09:50:00 9.65 2017/4/27 06:50:00 8.91 20.95 Land sector

Sample 23 2017/04/27 07:00:00 9.67 2017/4/28 06:30:00 8.11 22.95 Land sector

Sample 24 2017/04/28 06:40:00 9.57 2017/4/29 06:20:00 6.67 23.16 Land sector

4



Table S2. The information of KIT filter samples, including the sample number, start time, stop time, flow and duration.

Sample number Start time (UTC) Stop time (UTC) Flow (L min−1) Duration (h)

Sample01 2017/04/02 13:00:00 2017/04/02 17:00:00 15 4.00

Sample02 2017/04/03 07:08:00 2017/04/03 15:13:00 15 8.08

Sample04 2017/04/04 07:29:00 2017/04/04 15:17:00 15 7.80

Sample06 2017/04/05 07:34:00 2017/04/05 15:36:00 15 8.03

Sample08 2017/04/06 08:06:00 2017/04/06 13:58:00 15 5.87

Sample10 2017/04/07 07:31:00 2017/04/07 15:40:00 15 8.15

Sample11 2017/04/08 08:20:00 2017/04/08 16:20:00 15 8.00

Sample12 2017/04/09 09:35:00 2017/04/09 17:35:00 15 8.00

Sample13 2017/04/10 07:30:00 2017/04/10 15:30:00 15 8.00

Sample14 2017/04/11 08:30:00 2017/04/11 16:30:00 15 8.00

Sample15 2017/04/12 07:35:00 2017/04/12 15:35:00 15 8.00

Sample16 2017/04/13 07:35:00 2017/04/13 15:35:00 15 8.00

Sample17 2017/04/14 07:35:00 2017/04/14 15:35:00 15 8.00

Sample18 2017/04/15 07:35:00 2017/04/15 15:35:00 15 8.00

Sample19 2017/04/16 07:35:00 2017/04/16 15:35:00 15 8.00

Sample20 2017/04/17 07:43:00 2017/04/17 15:43:00 15 8.00

Sample21 2017/04/18 07:43:00 2017/04/18 15:43:00 15 8.00

Sample22 2017/04/19 07:43:00 2017/04/19 15:43:00 15 8.00

Sample23 2017/04/20 07:43:00 2017/04/20 15:43:00 15 8.00

Sample24 2017/04/21 07:43:00 2017/04/21 15:43:00 15 8.00

Sample25 2017/04/22 06:55:00 2017/04/22 14:20:00 15 7.42

Sample27 2017/04/23 07:15:00 2017/04/23 15:15:00 15 8.00

Sample28 2017/04/24 06:42:00 2017/04/24 14:42:00 15 8.00

Sample30 2017/04/25 07:26:00 2017/04/25 15:26:00 15 8.00

Sample32 2017/04/26 07:32:00 2017/04/26 15:32:00 15 8.00

5



When data evaluation was started for this set of samples, tests were made (as these were the first atmospheric samples on

polycarbonate for which we did an analysis). A set of measurements was done in which filters were washed off with 1 mL of

ultrapure water, first. This was done by shaking the centrifuge tube in which filter and water were situated. From this, 0.1 mL

was used for a first analysis, directly taken from the tube in which the shaking had been done. Then 9.1 mL were added to the

tube and the sample was shaken again, followed by a second analysis. The results from both dilutions can be seen in Fig. S3,5

and data in the overlapping temperature region are well in agreement. Based on this, we decided to use only 1 mL for washing,

as this allows us to retrieve INP concentrations already at higher temperatures.
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Figure S3. NINP measured by LINA as a function of temperature. The solid triangles and hollow circles show NINP from the samples washed

with 1 mL and 10 mL ultrapure water, respectively.
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S4 Wind speed and direction
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Figure S4. Wind rose based on 10 minutes mean of wind speed and direction measured at the station for whole campaign.
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S5 Correlation of NOx and Ntotal

Fig. S5 shows the scatter plot of Ntotal against NOx. A good correlation (R2=0.62) was found between extremely high con-

centrations of NOx and Ntotal (upper panel in Fig. S5). No correlation was observed at lower concentrations of NOx and Ntotal

(lower panel in Fig. S5).
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Figure S5. Scatter plot of Ntotal versus NOx. R2 and fitting function are given in the panels.

S6 Identification of pollution periods5

Fig. S6 shows the measured super-micron PNSDs as contour plot, together with NOx information from 06:00 UTC 16 to 00:00

UTC 18 April. Pollution events were identified based on the PNSDs. The criteria are, first of all, the appearance of a distinct

ultrafine particle mode with a dN/dlogDp value large than 3000 cm−3 at 15 nm. Secondly, the ultrafine particle mode featured

similar PNSDs, without any sign of growth.

The resulting PNSDs during the pollution events featured a pronounced mode with a maximum at about 15 nm (median10

dN/dlogDp value larger than 104 cm−3). Three pollution periods were observed in the example shown here, i.e., from 18:10

8



to 22:20 UTC 16 Apr, 04:50 to 05:10 UCT, 17:30 to 20:50 UTC 17 Apr. During the pollution periods, high concentrations of

NOx were also observed.

Once we identified all the pollution periods. We made the wind rose plot for all the pollution periods, as shown in Fig. S7.
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Figure S6. Contour plots for PNSDs from 06:00 UTC 16 to 00:00 UTC 18 April. Black line shows time series of NOx concentration.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.05 0.1 0.15 0.2 0.25 0.3

0

30

60

90

120

150

180

210

240

270

300

330

Wind Speed [m s
-1

]
0 - 0.5 
0.5 - 1 
1 - 1.5 
1.5 - 2 
2 - 2.5 
2.5 - 3 
3+ 

Relative Frequency

Figure S7. Wind rose based on 10 minutes average of wind speed and direction measured at the station for pollution periods.
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S7 Filter background and measurement uncertainty

As shown in Fig. S8, the background of LINA and INSEKT measurement is tested. The ultrapure water droplets started to

freeze at −20 ◦C. Compared to the ultrapure water, the frozen fraction (fice) curve from blind filters washed with ultrapure

water is shifted approx 1 ◦C towards higher temperatures. The fice curves determined for atmospheric filter samples are clearly

above those obtained for the blind filters, while the fice of 225- and 3375-fold dilutions of the filter washing water is close to5

that of ultrapure water.

For the subtraction of background, we used the same method as proposed by Umo et al. (2015). Thereto, the cumulative

concentration of INP per air volume determined for the blind filters (KTblind) was subtracted from that for filter samples

(KTfilter):

NINP =KTfilter −KTblind (1)10

Based on Agresti and Coull (1998), the confidence interval of fice can be calculated by:(
fice +

z2α/2

2n
± zα/2

√
[fice(1− fice)+ z2α/2/(4n)]/n

)
/

(
1+

z2α/2

n

)
(2)

where z2α/2 is the standard score at a confidence level α/2, which for a 95% confidence interval is 1.96. n is the droplet number

of each experiment.

The uncertainty of NINP is calculated based on the uncertainty of the fice as we outlined above. The error bar in Fig. S915

represents 95% confidence interval for NINP.
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Figure S8. The fice of washed filter samples, together with background signals of ultrapure water and ultrapure water washed blind filter

samples of LINA (a) and INSEKT (b) measurement results. For INSEKT, only a subset of all samples is shown exemplarily, to enable seeing

curves for the same sample from different dilutions.
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S8 INSEKT measured NINP against the ratio of time sampling from the ocean sector
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Figure S10. Scatter plot of NINP (measured by INSEKT) versus the ratio of time sampling from the ocean sector at −15, −18 and −20 ◦C.

S9 Log-normal distribution of NINP test

Here we used two methods to test ourNINP frequency distributions. The quantile-quantile plot was originally proposed by Wilk

and Gnanadesikan (1968) to compare two distributions by plotting quantiles of one versus quantiles of the other. Here, we plot

logarithmic NINP at −18 ◦C versus a standard normal distribution, as shown in Fig. S11. The measured NINP is close to the5

reference line, indicating that the NINP follows the log-normal distribution. Note that the quantile-quantile plot provides only a

rough measure how similar the compared distributions are.

Table S3. Lillifors test results.

Temperature LINA INSEKT

h p h p

−15 ◦C 0 0.3455 0 0.4461

−18 ◦C 0 0.1810 0 0.1400

−20 ◦C 0 0.0355 0 0.5000

Furthermore, we used the Lilliefors test (Lilliefors, 1967) to determine if the observed NINP frequency distributions follow a

log-normal distribution. In statistics, the Lilliefors test is a normality test based on the Kolmogorov-Smirnov test (Sachs, 2012).

It is used to test the null hypothesis of the data following a normal distribution, with the null hypothesis not including the actual10
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Figure S11. The quantile-quantile plot of logarithmic NINP measured by LINA and INSEKT at −18 ◦C with a random normal distribution.

parameters (mean and standard deviation) of the normal distribution. Results (h-value and p-value) of the carried out Lilliefors

tests are shown in Tab. S3. A return value of h = 0 indicates that the logarithmicNINP (measured by LINA and INSEKT) follow

normal distributions at −15, −18 and −20 ◦C. As log-normally distributedNINP are indicative for the observed INP population

having undergone a series of random dilutions while being transported (Welti et al., 2018), the performed Lilliefors tests yield

additional prove for the INP sampled during our measurements originating from long-range transport rather than local sources.5

S10 Correlation of NINP with particle number/surface area concentration

Table S4. Coefficient of determination (R2) of LINA and INSEKT measured NINP with N>500nm.

Temperature LINA INSEKT

−15 ◦C 0.0877 0.0277

−18 ◦C 0.2369 0.0602

−20 ◦C 0.0950 0.0006
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Table S5. R2 of LINA and INSEKT measured NINP with particle surface area concentration.

Temperature LINA INSEKT

Sall S1 S2 Sall S1 S2

−15 ◦C 0.0009 0.0011 0.0319 0.0016 0.0153 0.0055

−18 ◦C 0.0002 0.0905 0.1945 0.0059 0.0079 0.0521

−20 ◦C 0.0001 0.0852 0.1255 0.0395 0.0362 0.0057
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