

Supplement of

Atmospheric radiocarbon measurements to quantify CO_2 emissions in the UK from 2014 to 2015

Angelina Wenger et al.

Correspondence to: Angelina Wenger (aw12579@my.bristol.ac.uk) and Simon O'Doherty (s.odoherty@bristol.ac.uk)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Supplementary material.

Fig. S1: Comparison of TAC CO in situ observations (blue circles) on the CSIRO-98 scale with flask measurements (light green) on the WMO-2014 scale.

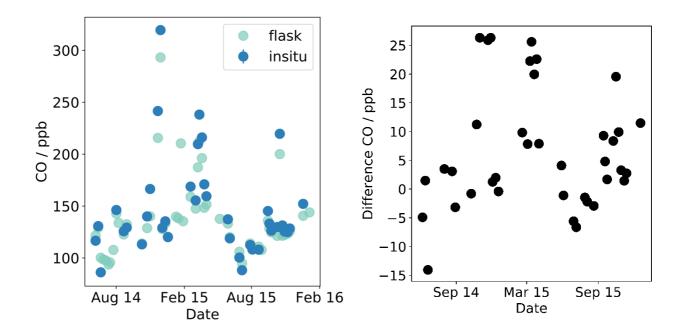
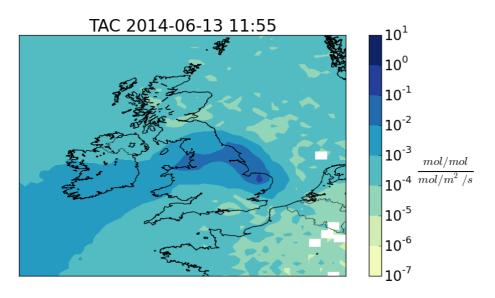



Fig. S2. Example of a back trajectory from the NAME model.

Sect. S1. Descriptions of variables and Equations used to derive Equation 2 and 3 from the Manuscript.

A_{sample}: Conventional activity of ¹⁴C in a sample.

Astandard: Conventional activity of ¹⁴C in the reference standard.

 $\delta^{14}C$: Small delta value for $^{14}C.$

 Δ^{14} C: Big delta value for 14 C.

 δ^{13} C: Small delta value for 13 C.

¹²C_{sample}: Abundance of carbon 12 in sample.

¹³C_{sample}: Abundance of carbon 13 in sample.

¹⁴C_{sample}: Abundance of carbon 14 in sample.

 $^{12}\mathrm{C}_{std}\!\!:$ Abundance of carbon 12 in standard.

 $^{13}\mathrm{C}_{std}\!\!:$ Abundance of carbon 13 in standard.

¹⁴C_{std}: Abundance of carbon 14 in standard.

¹²CO₂: Abundance of carbon 12 CO₂.

¹³CO₂: Abundance of carbon 13 CO₂.

¹⁴CO₂: Abundance of carbon 14 CO₂.

 δ^{13} CO₂: Small delta value of carbon dioxide ¹³C.

 Δ^{14} CO₂: big delta value of carbon dioxide ¹⁴C.

CO₂: Abundance of total carbon CO₂.

CO_{2 bg}: Background abundance of total carbon CO₂.

¹²CO_{2 bg}: Background abundance of carbon 12 CO₂.

¹²CO_{2 i}: Abundance of carbon 12 CO₂ caused by emissions from sector i.

¹³CO_{2 bg}: Background abundance of carbon 13 CO₂.

¹³CO_{2 i}: Abundance of carbon 12 CO₂ caused by emissions from sector i.

¹⁴CO_{2 bg}: Background abundance of carbon 14 CO₂.

 $^{14}\mathrm{CO}_{2\,i}$: Abundance of carbon 12 CO_2 caused by emissions from sector i.

 $^{13}R_{\text{std}}$: Standard ratio $^{13}R_{\text{std}} = {}^{13}C_{\text{std}} / {}^{12}C_{\text{std}}$.

 $^{14}R_{\text{std}}$: Standard ratio $^{14}R_{\text{std}} {=}~^{14}C_{\text{std}} {/}^{12}C_{\text{std}}$.

 Δ^{14} CO_{2 i}: Big delta value of carbon dioxide from emission source i.

 $\delta^{13}CO_{2\,i}\colon$ Small delta value of carbon dioxide from emission source i.

The calculations of ¹⁴CO₂

In Stuiver and Polach 1977 on page 361 the small and large delta values for ¹⁴C are defined as:

$$\delta^{14}C = \frac{A_{Sample}}{A_{Standard}} - 1 \tag{ES.1}$$

Where A_{Sample} is the activity per g in the sample material measured by conventional radioactive counting. An $A_{Standard}$ is the activity of the NBS oxalic acid standard. The large delta $\Delta^{14}C$ can be calculated by normalizing the small delta $\delta^{14}C$ from Equation ES.1 it to a ¹³C signature of -25‰. This normalization assumes that the mass dependent fractionation discriminates against ¹⁴C twice as much as for ¹³C. This normalizing to a defined ¹³C value means that the ¹⁴C signature differences observed in $\Delta^{14}C$ is independent of any fractionation occurring due to phase changes or chemical reactions.

$$\Delta^{14}C = \delta^{14}C - 2(\delta^{13}C + 25) \times (1 + \frac{\delta^{14}C}{1000})$$
(ES.2)

For the samples measured in this work, accelerator mass spectrometry (AMS) was used to measure the Δ^{14} C signature of the samples. In AMS, the amount of ¹⁴C vs ¹²C molecules in a sample is measured to get the Δ^{14} C ratio rather than the radioactivity. The activity of a sample A_{Sample} is proportional to the ratio of ¹⁴C atoms to the total amount of carbon atoms in the sample (Donahue 1990).

This means that Equation ES.1 can be rewritten as a ratio of ${}^{14}C$ over the sum of all carbon isotopes as in Equation ES.3.

$$\delta^{14}C = \left[\frac{\frac{{{\binom{14}{C}}_{sample}}}{{\binom{12}{c_{sample}} + {}^{13}c_{sample}} + {}^{14}c_{sample}}{{\binom{14}{c_{std}}}} - 1\right]$$
(ES.3)

The total carbon from S.3 can be replaced by just using ¹²C as an approximation as given in Equation ES.4. Leaving out the ¹⁴C component to the total amount of carbon in a sample does not result in significantly different results, as the ¹⁴C in natural samples ¹²C. However, dismissing the contribution of ¹³C to the total carbon does introduce a small error and it is important to recognize that this is an approximation.

$$\delta^{14}C \approx \left[\frac{\frac{{}^{14}C_{sample}}{{}^{12}C_{sample}}}{{}^{14}C_{std}/{}^{12}C_{std}}} - 1\right]$$
(ES.4)

While the previous equations were expressed as general definitions of isotopic calculations, the following equations will specifically refer to CO₂ instead of C in an aim to clarify the definitions. Furthermore, the standard ratio ${}^{14}R_{std} = {}^{14}C_{std}/{}^{12}C_{std}$ will be used for the standard and the suffix sample will be omitted (e.g. ${}^{14}CO_2$ instead of ${}^{14}C_{sample}$). If we equate $\delta^{14}C$ from the in the calculation of the $\Delta^{14}C$ calculation from Equation S.2 with the approximation of the $\delta^{14}C$ value from Equation ES.4 we get Equation ES.5.

$$\Delta^{14} CO_2 = \left(\frac{\frac{14CO_2}{12} \times \left(1 - 2 \times \frac{25 + \delta^{13} CO_2}{1000}\right)}{\frac{14}{R_{Std}}} - 1\right) \times 1000$$
(ES.5)

We use the mass balance approach from Equation 1 in the paper to model the amount of each of the isotopes in the atmosphere. Equation ES.6-ES.8 are the mass balances for the ¹²CO₂, ¹³CO₂, ¹⁴CO₂ isotope respectively.

$$CO_{2} = CO_{2 bg} + \sum CO_{2,i}$$
(1)
Whereas $CO_{2}={}^{12}CO_{2}+{}^{13}CO_{2}+{}^{14}CO_{2}$
$${}^{12}CO_{2} = {}^{12}CO_{2bg} + \sum {}^{12}CO_{2i}$$
(ES.6)

$${}^{13}\text{CO}_2 = {}^{13}\text{CO}_{2bg} + \sum {}^{13}\text{CO}_{2i}$$
(ES.7)

$${}^{14}\text{CO}_2 = {}^{14}\text{CO}_{2bg} + \sum {}^{14}\text{CO}_{2i}$$
(ES.8)

So, for the modelling of the $\Delta^{14}CO_2$, we first have to calculate how much ^{14}C each emission sector (i) emits. For this we rearrange Equation ES.5 to solve for $^{14}CO_2$.

$${}^{14}CO_2 = \frac{\left(\frac{\Delta^{14}CO_2}{1000} + 1\right) \times {}^{14}R_{std}}{1 - 2 \times \frac{25 + \delta^{13}CO_2}{1000}} \times {}^{12}CO_2$$
(ES.9)

Using Equation ES.9 together with the mass balance from Equation ES.8 to calculate we can insert the resulting $^{14}CO_2$ in to the definition of the $\Delta^{14}CO_2$ from Equation ES.5 to get Equation 3 from the main text of the Manuscript.

$$\Delta^{14}CO_2 = \begin{pmatrix} \sum \left(\frac{\left(\frac{\Delta^{14}CO_2 i}{1000} + 1 \right) \times^{14} R_{std}}{\frac{1}{1-2 \times \frac{25+\delta^{13}CO_1}{1000}} \times^{12}CO_2 i} \right) \\ \frac{\frac{1}{1^{2}CO_2} \times \left(1-2 \times \frac{25+\delta^{13}CO_2}{1000} \right)}{\frac{1}{1^{2}CO_2}} - 1 \end{pmatrix} \times 1000$$
(3)

The calculations of ¹³CO₂

The definition of the $\delta^{13}CO_2$ according to Coplen 2011 is given in Equation ES.9.

$$\delta^{13}C = \frac{\int_{12C \, sample}^{13} C \, sample}{\int_{12C \, std}^{13} C \, std/_{12C \, std}} - 1 \tag{ES.10}$$

The $\delta^{13}CO_2$ is commonly expressed in permil, while the definition of the delta value as given in ES.10 should not include a factor of 1000 in this work all the $\delta^{13}CO_2$ values are expressed in permil and it was decided that the factor of 1000 will be included in the Equations directly. This is done as it is a common practice in the field, and not including the factor might cause confusion in the calculations. So, for this reason a multiplication of 1000 is added to Equation ES.9 in Equation ES.10. In addition to that ${}^{12}C_{sample}$ will just be referred to as ${}^{12}CO_2$ and ${}^{12}C_{std}$ will be abbreviated to ${}^{13}R_{std}$ where as ${}^{13}R_{std}$ = ${}^{13}C_{std}/{}^{12}C_{std}$. The total CO₂ from the sample was calculated using the mass balance in ES.7.

Equation ES.10 multiplies the

$$\delta^{13} \text{CO}_2 = \left(\frac{\frac{1^3 \text{CO}_2}{1^2 \text{CO}_2}}{\frac{1^3 \text{R}_{\text{std}}}{1^3 \text{R}_{\text{std}}}} - 1\right) \times 1000$$
(ES.11)

Equation ES.11 can be rearranged to solve for the amount of ¹³CO₂ as given in Equation ES.12.

$${}^{13}\text{CO}_2 = \left(\frac{\delta^{13}\text{CO}_2}{1000} + 1\right) \times {}^{12}\text{CO}_2 \times {}^{13}\text{R}_{\text{std}}$$
(ES.12)

This Equation ES.11 can then be combined with the Equation from the mass balance approach from ES.7 to calculate ¹³CO₂. When this is reintegrated in to definition of the delta value from equation ES.11 you get Equation 2 from the manuscript.

$$\delta^{13} \text{CO}_2 = \left(\frac{\sum \left(\left(\frac{\delta^{13} \text{CO}_{2\,i}}{1000} + 1 \right) \times {}^{12} \text{CO}_{2\,i} \times {}^{13} \text{R}_{\text{std}} \right) + {}^{13} \text{CO}_{2\,\text{bg}}}{\frac{12}{13} \text{R}_{\text{std}}} - 1 \right) \times 1000$$
(2)

Table S1: Source sectors with sources and associated isotopic $\delta^{13}C$ and $\Delta^{14}C$ signatures with the source of information.

	-12	14	
Sector	δ ¹³ C / ‰	Δ^{14} C / ‰	Comments
Combustion	-28.4	-1000	(Ciais et al., 1995)
manufacturing	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992
EDGAR 2010			
Aviation	-28.4	-1000	(Ciais et al., 1995)
EDGAR 2010	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992
Mineral processes	0	-1000	(Sharp, 2007)
EDGAR 2010	-10 to 10	-1000 to -950	Mostly CaCO ₃ from
			limestone
Fugitive solid	-24.1	-1000	(Ciais et al., 1995)
EDGAR 2010	-27.1 to -21.1	-1000 to -950	Coal
Residential	-44	-1000	(Andres et al., 1994)
EDGAR 2010	-49 to -39	-1000 to -950	Natural gas
Solid Waste	-40	150	(Andres et al., 1994)
EDGAR 2010	-45 to -30	0 to 300	δ^{13} C: flaring, Δ^{14} C: variable
			depends on the mean age
Chemical processes	-28.4	-1000	(Ciais et al., 1995)
EDGAR 2010	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992
Ground Transport	-28.4	-1000	(Ciais et al., 1995)
EDGAR 2010	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992
Non-energy	-28.4	-1000	(Ciais et al., 1995)
transformation	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992
EDGAR 2010			
Oil Production	-28.4	-1000	(Ciais et al., 1995)
EDGAR 2010	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992
Biomass burning	-24	110	(Sharp, 2007)
EDGAR 2010	-29 to -19	110 to 120	δ^{13} C: C3 plants -33 to -23,
			Δ^{14} C: average biomass
Energy industry	-28.4	-1000	(Ciais et al., 1995)
EDGAR 2010	-38.4 to -18.4	-1000 to -950	Mean fossil 1990-1992
Fossil fire	-28.4	-1000	(Ciais et al., 1995)
EDGAR 2010	-33.4 to -23.4	-1000 to -950	Mean fossil 1990-1992
Shipping	-28.4	-1000	(Ciais et al., 1995)
EDGAR 2010	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992

Metal processes	-24.1	-1000	(Andres et al., 1994)
EDGAR 2010	-27.1 to -21.1	-1000 to -950	Coal
Agricultural Soils	-24	110	(Sharp, 2007)
EDGAR 2010	-29 to -19	80 to 140	δ^{13} C: C3 plants -33 to -23
Road transport	-28.4	-1000	(Ciais et al., 1995)
EDGAR 2010	-31.4 to -25.4	-1000 to -950	Mean fossil 1990-1992
Net ecosystem exchange	-24	18	(Sharp, 2007)
NASA-CASA	-27 to -21	15 to 21	Climatology
Net ocean exchange	0	50	(Sharp, 2007), GLODAP
(Takahashi et al., 2002)	-3 to 3	47 to 53	V2 extrapolated
			climatology
Hetrotrophic respiration	-24	110	NASA CASA simulations
NASA-CASA	-27 to -21	107 to 113	available at: https://nacp-
			files.nacarbon.org/nacp-
			kawa-01/

Fig. S3: $^{14}\mathrm{C}$ signature of different carbon pools before and after the bomb-spike. $\Delta^{14}\mathrm{CO}_2$

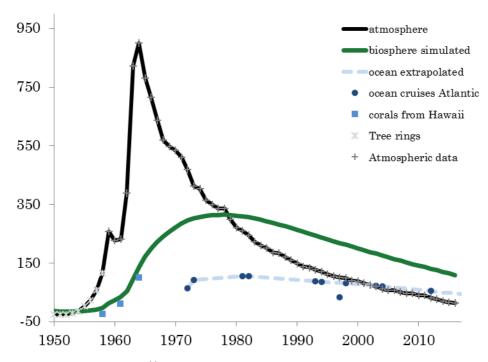


Figure S.5: Time series of Δ^{14} CO₂ signature from before the bomb spike to now. The atmospheric data was compiled from northern hemisphere tree ring data (Stuiver & Quay 1981) and measurements from the University of Heidelberg (Levin & Kromer (2004),Levin et al. (2013)). The oceanic data consists of coral data from Hawaii (Druffel et al. 2001) and ocean surface measurements from the Atlantic (Glodap v2). The Biospheric value was simulated in a 1box model according to (Graven et al. 2012).

Table S2: Emissions from La Hague used for the nuclear correction for each month over the sample collection period. Monthly emissions are shown in Becquerels.

Month	Monthly	Month	Monthly	Month	Monthly
	emission / Bq		emission / Bq		emission / Bq
01/2014	0.548E+12	09/2014	1.207E+12	05/2015	1.989E+12
02/2014	2.386E+12	10/2014	1.300E+12	06/2015	1.318E+12
03/2014	2.389E+12	11/2014	2.204E+12	07/2015	2.063E+12
04/2014	2.600E+12	12/2014	1.248E+12	08/2015	2.056E+12
05/2014	2.739E+12	01/2015	0.984E+12	09/2015	1.67E+12
06/2014	2.048E+12	02/2015	1.197E+12	10/2015	6.55E+11
07/2014	1.401E+12	03/2015	1.527E+12	11/2015	1.73E+12
08/2014	1.882E+12	04/2015	2.069E+12	12/2015	2.14E+12

Fig. S4: Modelled sector specific influence on each isotope sample taken during the experiment. Sectors are details in the key and are as follows, displayed from top to bottom: road transport, agricultural soils, metal processes, shipping, fossil fire, energy industry, biomass burning, oil production, transformation non-energy, ground transport, chemical processes, solid waste, residential, fugitive soils, mineral processes, aviation and combustion manufacturing.

Fig. S5: CO₂ modelled (blue line) and measured (black points) at TAC using the EDGAR emissions inventory in NAME compared to CO₂ calculated using the observed daily means (24h) CO at TAC minus the MHD background CO all divided by the CO factor (4.39 for all data without the November peak derived in Table 2) (green).

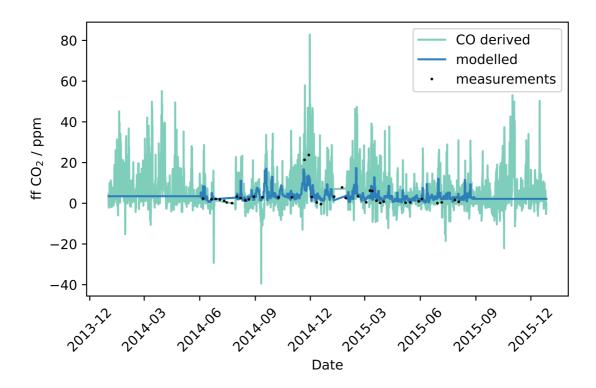
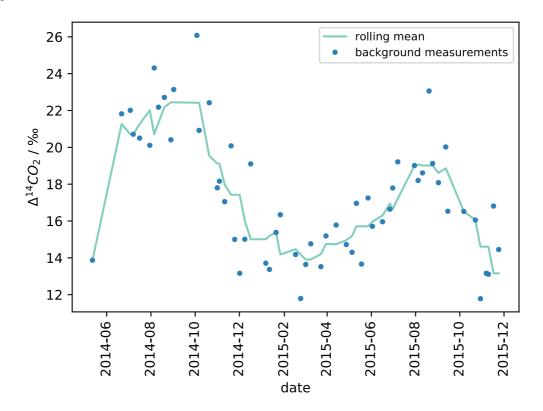



Fig S6: MHD ¹⁴C background data (blue points) and the ¹⁴C rolling mean values (green line) that were used as a background.

Date	Time	¹⁴ C _{obs} / ‰ TAC	Uncertainty of ¹⁴ C _{obs} / ‰	Biospheric correction (in ffCO2 equivalent / ppm)	Nuclear correction (in ffCO2 equivalent / ppm)	¹⁴ C Background value rolling mean MHD / ‰	¹² CO ₂ TAC / ppm	¹² C Background value MHD / ppm	Resulting ffCO ₂ / ppm
06/06/2014	10:55:00	16.64	1.80	-0.30	-0.01	21.92	397.33	401.26	2.31
13/06/2014	11:55:00	59.61	2.61	-0.44	-0.02	21.92	391.72	401.26	2.26
20/06/2014	08:35:00	16.84	2.55	-0.33	-0.02	21.92	395.18	391.67	1.55
27/06/2014	09:28:00	19.58	1.83	-0.34	-0.02	21.92	401.61	398.85	1.62
04/07/2014	08:15:00	17.43	2.64	-0.40	-0.02	21.26	400.05	394.40	0.95
11/07/2014	09:50:00	18.90	2.68	-0.47	-0.14	21.26	393.48	397.22	0.67
15/07/2014	12:53:00	20.87	2.61	-0.34	0.00	20.71	391.93	393.91	-0.64
24/07/2014	08:21:00	22.41	2.56	-0.31	-0.28	20.71	388.98	389.95	2.17
01/08/2014	09:01:00	15.52	2.53	-0.40	0.00	20.71	392.01	389.95	2.93
07/08/2014	12:06:00	16.07	2.71	-0.73	-0.15	22.18	388.65	389.10	1.30
15/08/2014	09:40:00	18.24	2.69	-0.30	-0.03	21.34	388.94	390.10	1.89
21/08/2014	08:40:00	17.88	2.51	-0.26	0.00	22.18	392.46	388.70	3.10
29/08/2014	11:20:00	14.56	1.80	-0.23	0.00	22.45	399.39	389.19	2.60
12/09/2014	11:32:00	15.87	1.80	-0.43	-0.61	22.45	403.33	388.55	2.96
09/10/2014	11:47:00	15.17	1.80	-0.17	-0.01	22.78	431.92	392.00	-1.09
23/10/2014	11:43:00	24.22	1.80	-0.30	-0.02	20.92	443.03	395.94	1.65
31/10/2014	11:42:00	15.40	2.06	-0.84	-0.01	18.16	401.89	398.80	2.01
21/11/2014	09:42:00	-31.60	1.80	-0.62	-0.33	17.42	403.55	400.36	0.16
28/11/2014	12:09:00	-35.26	1.80	-0.69	-0.49	15.01	401.79	401.04	-0.71
03/12/2014	11:23:00	9.95	1.80	-0.14	0.00	15.01	406.75	401.04	2.96
11/12/2014	12:03:00	15.33	1.80	-0.16	0.00	15.01	403.52	402.39	7.27
18/12/2014	12:23:00	16.99	1.80	-0.11	0.00	15.01	404.30	400.22	2.66

Table S3: Table showing the ¹⁴C values, sampling information and corrections applied to each measurement.

09/01/2015	09:32:00	7.39	1.80	-0.11	0.00	14.55	407.18	403.74	3.11
22/01/2015	11:52:00	-3.28	1.80	-0.32	-0.37	14.55	405.38	404.98	0.56
28/01/2015	13:52:00	7.96	1.80	-0.11	0.00	14.55	409.50	403.60	5.68
17/02/2015	15:58:00	6.42	1.80	-0.20	0.00	13.91	414.98	405.55	6.53
03/03/2015	13:06:00	12.95	2.07	-0.17	-0.01	13.91	410.18	405.24	0.97
09/03/2015	13:01:00	0.13	1.80	-0.18	0.00	13.64	404.98	404.67	0.28
13/03/2015	10:25:00	-0.35	1.98	-0.32	-0.32	13.64	406.88	415.64	0.69
20/03/2015	09:46:00	12.15	2.02	-0.42	-0.09	14.20	401.12	405.67	-0.12
26/03/2015	14:50:00	14.03	2.15	-0.11	0.00	14.20	403.52	405.67	-0.05
01/04/2015	10:46:00	13.08	2.01	-0.13	0.00	14.76	398.21	405.88	0.98
07/05/2015	13:46:00	16.56	2.03	-0.36	-0.07	14.72	396.52	405.08	2.63
15/05/2015	10:26:00	14.93	2.04	-0.16	-0.01	14.72	395.52	405.00	0.06
29/05/2015	08:50:00	13.94	2.11	-0.30	0.00	15.71	392.18	403.32	0.33
03/06/2015	13:30:00	11.06	2.02	-0.36	-0.05	15.96	393.30	404.11	0.74
29/06/2015	09:30:00	17.22	2.05	-0.38	0.00	17.22	403.45	398.68	0.58
06/07/2015	10:42:00	16.67	2.06	-0.26	0.00	17.22	399.22	398.08	2.31
28/07/2015	12:40:00	17.41	2.01	-0.30	-0.01	18.81	394.02	393.54	2.26
03/08/2015	13:52:00	17.67	2.05	-0.20	-0.01	19.01	408.36	393.09	1.55

All the MHD and TAC flask data can also be found on the NOAA data server: https://www.esrl.noaa.gov/gmd/dv/data/

References:

S.3 Equations.

Stuiver, M. and Polach, H.A., 1977. Discussion reporting of 14 C data. Radiocarbon, 19(3), pp.355-363.

Donahue, D.J., Linick, T.W. and Jull, A.T., 1990. Isotope-ratio and background corrections for accelerator mass spectrometry radiocarbon measurements. Radiocarbon, 32(2), pp.135-142.

Coplen, T.B., 2011. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid communications in mass spectrometry, 25(17), pp.2538-2560.

S.5 Bomb spike.

Stuiver, M. and Quay, P.D., 1981. Atmospheric14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth and Planetary Science Letters, 53(3), pp.349-362.

Levin, I. and Kromer, B., 2004. The tropospheric 14 CO 2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon, 46(3), pp.1261-1272.

Levin, I., Kromer, B.E.R.N.D. and Hammer, S.A.M.U.E.L., 2013. Atmospheric $\Delta 14CO2$ trend in Western European background air from 2000 to 2012. Tellus B: Chemical and Physical Meteorology, 65(1), p.20092.

Druffel, E.R., Griffin, S., Guilderson, T.P., Kashgarian, M., Southon, J. and Schrag, D.P., 2001. Changes of subtropical North Pacific radiocarbon and correlation with climate variability. Radiocarbon, 43(1), pp.15-25.

Graven, H.D., Guilderson, T.P. and Keeling, R.F., 2012. Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: Analysis of spatial gradients and seasonal cycles. Journal of Geophysical Research: Atmospheres, 117(D2).

Olsen, A., Key, R.M., van Heuven, S., Lauvset, S.K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M. and Jutterström, S., 2016. The Global Ocean Data Analysis Project version 2 (GLODAPv2)–an internally consistent data product for the world ocean. Earth System Science Data (Online), 8(2).