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SI Methods 1 

SI Methods: Model Version 2 

We use the Global Atmosphere 4 (GA 4.0; Walters et al., 2014) configuration of the Hadley Centre General 3 
Environment Model version 3 (HadGEM3; Hewitt et al., 2011), which incorporates the UK Chemistry and 4 
Aerosol (UKCA) model at version 8.4 of the UK Met Office's Unified Model (UM). UKCA simulates trace gas 5 
chemistry and the evolution of the aerosol particle size distribution and chemical composition using the GLObal 6 
Model of Aerosol Processes (GLOMAP-mode; Mann et al., 2010) and a whole-atmosphere chemistry scheme 7 
(Morgenstern et al., 2009; O’Connor et al., 2014). The model has a horizontal resolution of 1.25x1.875 degrees 8 
and 85 vertical levels. The aerosol size distribution is defined by seven log-normal modes: one soluble 9 
nucleation mode as well as soluble and insoluble Aitken, accumulation and coarse modes. The aerosol chemical 10 
components are sulfate, sea salt, black carbon (BC), organic carbon (OC) and dust.  Secondary organic aerosol 11 
(SOA) material is produced from the first stage oxidation products of biogenic monoterpenes under the 12 
assumption of zero vapour pressure and is combined with primary particulate organic matter after kinetic 13 
condensation. Use of the GLOMAP model to simulate aerosol size and composition changes reduces Southern 14 
Ocean radiative biases in HadGEM3 (Bodas-Salcedo et al., 2019). 15 
 16 
GLOMAP simulates new particle formation, coagulation, gas-to-particle transfer, cloud processing and 17 
deposition of gases and aerosols. The activation of aerosols into cloud droplets is calculated using globally 18 
prescribed distributions of sub-grid vertical velocities (West et al. 2014) and the removal of cloud droplets by 19 
autoconversion to rain is calculated by the host model. Aerosols are also removed by impaction scavenging of 20 
falling raindrops according to the collocation of clouds and precipitation (Lebsock et al., 2013; Boutle et al., 21 
2014). Aerosol water uptake efficiency is determined by kappa-Kohler theory (Petters and Kreidenweis, 2007) 22 
using composition-dependent hygroscopicity factors. 23 
 24 
We prescribe anthropogenic emissions using the emission inventory prepared for the Atmospheric Chemistry 25 
and Climate Model Inter-comparison Project (ACCMIP) and also prescribed in some of the CMIP Phase 5 26 
experiments. Present-day carbonaceous aerosol emissions were prescribed using a ten year average of 2002 to 27 
2011 monthly mean data from the Global Fire and Emissions Database (GFED3; van der Werf et al., 2010) and 28 
according to Lamarque et al. (2010) for 1850. We prescribe volcanic SO2 emissions for continuously emitting 29 
and sporadically erupting volcanoes (Andres et al., 1998) and for explosive volcanic eruptions (Halmer et al., 30 
2002). Surface ocean dimethyl-sulfide concentrations are prescribed using Kettle and Andreae (2000) and 31 
emitted into the atmosphere using a surface wind speed dependent parametrisation (following Nightingale et al., 32 
2000). Sea spray is emitted into the atmosphere using the Gong (2003) surface wind speed dependent 33 
parametrisation. 34 
  35 
Several modifications were made to version 8.4 of UKCA to overcome known structural deficiencies in the 36 
model. An organically-mediated boundary layer nucleation parametrisation (Metzger et al., 2010) was included 37 
so that remote marine and early-industrial aerosol concentrations were not unrealistically low in the model. We 38 
also added a parametrisation for ice crystal suppression of precipitation known to bring remote marine aerosol 39 
concentrations in line with measurements (Browse et al., 2012). Dust in the base model is calculated using the 40 
CLASSIC bin scheme (Woodward et al., 2001), which we replaced in our model version so that dust is emitted 41 
using the GLOMAP modal scheme. This means interactions between dust and other aerosols are explicitly 42 
simulated. We better resolve the optical properties of aerosols across wavelengths by improving the resolution 43 
of the default look-up tables. Finally, we made minor adjustments to some process parametrisations so that 44 
parameter values could be perturbed globally. All changes to the model are described fully in Yoshioka et al. 45 
(2019). 46 
 47 

SI Methods: Perturbed Parameter Ensembles 48 

We make use of the AER and AER-ATM perturbed parameter ensembles (PPEs) described in Yoshioka et al. 49 
(2019). Results in the main article make use of the AER PPE except for the quantification of aerosol ERF and its 50 
components. These two PPEs were designed to provide complementary insights into causes of uncertainty in the 51 
climate system. The 235 member AER PPE samples uncertainties in a set of 26 aerosol parameters, whilst the 52 
191 member AER-ATM PPE samples uncertainties in 18 aerosol and 9 physical atmosphere parameters related 53 



to clouds, radiation and moisture. The effects of rapid atmospheric adjustments to aerosols are not included in 54 
AER, but are included in AER-ATM (although they have a relatively minor impact on aerosol forcing in this 55 
model (e.g. Mulcahy et al., 2018). Therefore, ERF is calculated for the AER-ATM PPE and combined (in the 56 
“SI Results: Additional constraint to achieve radiative balance” section) with the CERES top-of-the-atmosphere 57 
constraint employed in Regayre et al. (2018), whilst RF is calculated for the AER PPE and combined (in the 58 
main article) with the predominantly Northern Hemisphere aerosol constraint employed in Johnson et al. (2019). 59 
 60 
Both PPEs were nudged towards European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-61 
Interim reanalyses. Nudging means that pairs of simulations have near-identical synoptic-scale features, which 62 
enables the effects of parameter perturbations to be quantified using single-year simulations, although the 63 
magnitude of forcing will vary with the chosen year (Yoshioka et al., 2019; Fiedler et al., 2019). We nudge well 64 
above the Earth’s surface in order to strike a balance between the computational cost of perturbing multiple 65 
parameters and the computational saving of using prescribed meteorology to overcome internal variability 66 
(Zhang et al., 2016). In the AER-ATM PPE only horizontal winds above the boundary layer (around 2km) for 67 
the year 2006 were prescribed, whilst in AER, horizontal winds and temperatures for 2008 were prescribed 68 
above around 1km. In each PPE the model was allowed to respond to parameter perturbations (a spin-up period) 69 
prior to simulating the data used here. Despite these differences, results in the main article are consistent across 70 
the PPEs. 71 
 72 

SI Methods: Sampling and uncertainty 73 
We sample uncertainty in model output using uniform pdfs across each parameter range. The uncertainty in 74 
individual parameters could be sampled in a more informed manner. For example, Yoshioka et al. (2019) used 75 
expert elicited information about likely parameter values to create parameter pdfs, which were used by Bellouin 76 
et al. (2019) and Watson-Paris et al. (2020) to sample uncertainty in aerosol forcing uncertainty. The additional 77 
information provided by expert elicited parameter pdfs is invaluable for quantifying the causes of model 78 
uncertainty (e.g. Regayre et al., 2018) because the choice of pdfs affects the contributions to variance in model 79 
output. However, in nearly 30 dimensions, samples of combined parameter values using multiple pdfs with 80 
centralised tendencies will be heavily weighted towards the centre of the parameter space. Since our intention in 81 
this article is to sample the range of model behaviour in response to the full spectrum of uncertain parameter 82 
combinations prior to constraint using measurements, we use uniform pdfs with maximum and minimum values 83 
from the expert elicited ranges. 84 
 85 
A set of around 200 model variants that make up the PPEs are much too small to allow statistical analysis of 86 
model performance across nearly 30 dimensions of parameter space. We therefore use output from the PPEs to 87 
train Gaussian Process emulators (e.g. Lee et al., 2012), which define how the model outputs vary continuously 88 
over the parameter space. Some additional uncertainty is caused by emulating (rather than simulating) model 89 
output and this uncertainty is incorporated into our model-measurement constraint process (SI Methods: Model-90 
measurement comparisons), despite being much smaller than other sources of uncertainty (Johnson et al., 2019). 91 
We sample Monte Carlo points from the emulated parameter space to produce the set of one million model 92 
variants. 93 
 94 

SI Methods: Measurements 95 

Measurements were collected during the ACE-SPACE campaign between December 2016 and March 2017. The 96 
measurement methodology is explained in Schmale et al. (2019) as well as in the metadata of the datasets cited 97 
below. We constrain the model uncertainty using near-surface measurements of cloud condensation nuclei 98 
concentrations at 0.2% and 1.0% supersaturations (CCN0.2 and CCN1.0; Tatzelt et al., 2019), as well as number 99 
concentrations of particles with dry aerodynamic diameter larger than 700 nm (N700; corresponds to volume 100 
equivalent diameter larger than around 500 to 570 nm; Schmale et al., 2019a) and mass concentrations of non-101 
sea-salt sulfate in PM10. We compare simulated and measured CCN0.2 concentrations because cloud-active 102 
aerosol concentrations are fundamentally important for RFaci. We use CCN1.0 measurements to challenge the 103 
model's ability to reproduce concentrations of relatively small aerosols that only activate to form cloud droplets 104 
at very high supersaturations. We target the highly uncertain sea spray emission flux scaling parameter by 105 
comparing concentrations of N700 to simulated concentrations of sea spray aerosol, approximated using our 106 
model’s soluble accumulation and coarse mode aerosol concentrations (Mann et al., 2010). This is not a like-for-107 
like comparison because our soluble accumulation mode includes aerosols with dry diameter larger than 100 nm 108 
(Mann et al., 2010; rather than around 500 to 570 nm). Additionally, our soluble accumulation and coarse modes 109 
include negligible contributions from sulfate, primary organic matter and aged carbonaceous and dust particles. 110 



However, over the Southern Ocean we think it is safe to assume that sea spray is the predominant (if not only) 111 
source of relatively large aerosols. Finally, we compare non-sea-salt sulfate concentrations (which omit primary 112 
sulfate in sea spray aerosol) in order to constrain the uncertainty in the emission flux of dimethyl-sulphide from 113 
the ocean surface. The sea salt fraction of sulfate was calculated using sodium as a tracer for the enrichment of 114 
sea salt in the aerosol phase (Sander et al., 2003). Non-sea-salt sulfate was calculated by subtracting this fraction 115 
from the total particulate sulfate as detected from PM10 filters.  116 

Data for all variables were averaged for comparison with monthly mean model values by taking the mean of all 117 
data points that were collected at locations corresponding to positions within model gridboxes. This spatial and 118 
temporal degradation introduces representation errors that we account for using our model-measurement 119 
comparison (next section). However, the reduction in data volume makes the model-measurement comparison 120 
over one million model variants tractable. 121 
 122 
We present monthly mean and annual cloud droplet number concentrations in Table 1 from the model and from 123 
satellite data, over the region between 50oS and 60oS. Following Grosvenor et al., (2018), we calculated cloud 124 
droplet concentrations from the MODIS (MODerate Imaging Spectroradiometer) Collection 5.1 Joint Level-2 125 
(Aqua satellite) for the year 2008 (to correspond to the meteorological year used in our simulations). Our 126 
calculation used cloud optical depth and 3.7 micron effective radius values derived under the adiabatic cloud 127 
assumption (essentially, cloud liquid water increases linearly with height, droplet concentrations are constant 128 
throughout the cloud and the ratio of volume mean radius to effective radius is constant). We improved the 129 
cloud droplet concentration data (Grosvenor and Wood, 2018) by excluding 1x1 degree data points for which 130 
the maximum sea-ice areal coverage over a moving 2-week window exceeded 0.001%. The sea-ice data used in 131 
this process were the daily 1x1 degree version of Cavalieri et al. (2016). As with other data used in our model-132 
measurement comparison, we degraded the cloud droplet number concentration data to the model gridbox and 133 
monthly mean spatial and temporal resolutions. 134 
  135 

SI Methods: Model-measurement comparisons 136 
Our constraint approach follows Johnson et al. (2019) and involves comparing output from model variants 137 
(parameter combinations) to a set of measurements and ruling out variants that are judged to be implausible. 138 
This method uses the statistical methodology of history matching, which has been effectively applied to 139 
complex models in a range of fields (Craig et al., 1997; Williamson et al., 2013; McNeall et al., 2016; Rodrigues 140 
et al., 2017 and Andrianakis et al., 2017). We account for emulator uncertainty, measurement uncertainty 141 
(instrument error) and representativeness uncertainties (caused by spatial and temporal mismatches in resolution 142 
and sampling between model and measurements). We do not include potential structural errors (e.g. from 143 
missing processes) in our constraint approach because such errors cannot be robustly quantified a priori. 144 
 145 
For each measurement we calculate a ‘measure of implausibility’ for each of the one million model variants, 146 
calculated as the model-measurement difference standardised by the combined emulator, measurement and 147 
representativeness uncertainties. Using this ‘implausibility measure’ we can identify implausible model variants 148 
and rule out implausible parts of parameter space via the combination of the ‘closeness’ of the measurement and 149 
model output, and the size of the related uncertainties. The ‘implausibility metric’ is defined as: 150 
 151 
 152 

 
𝐼(𝒙) =  

| 𝑀 − 𝑂 |

√[𝑉𝑎𝑟(𝑀) + 𝑉𝑎𝑟(𝑂) + 𝑉𝑎𝑟(𝑅)]
 ,   

(1) 

 153 
where M is the model variant output and O is the observed value (the measurement). In the denominator Var(M) 154 
is the variance in the model estimate (caused by emulator uncertainty), Var(O) is the variance in the 155 
measurement (i.e., instrument or retrieval uncertainty) and the representativeness error, Var(R), is the variance 156 
associated with comparing model output to measurements at different spatial (Schutgens et al., 2016a; Weigum 157 
et al. 2016, Schutgens et al., 2017) and temporal (Schutgens et al., 2016b; Schutgens et al., 2017) resolutions. 158 
We compare the 2016-17 measurements to the models nudged towards 2008 meteorology for AER and 2006 159 
meteorology for AER-ATM because the measurements were not collected when the PPE was created. The 160 
Var(R) term therefore includes additional uncertainty due to inter-annual variability. According to the definition 161 
of the implausibility measure, model variants will not be ruled out if either the model-measurement difference is 162 
small or the uncertainty in the denominator is large. In other words, we retain model variants that are skilful and 163 
model variants whose skill cannot be adequately determined because the model-measurement comparison 164 
uncertainties are too large. 165 



 166 
The variance terms in the denominator of Eq. (1) are calculated uniquely for each measurement. Following 167 
Johnson et al. (2019), we use an instrument error of 10%, a spatial co-location uncertainty of 20% and a 168 
temporal co-location uncertainty of 10%. Fig. S1 shows an example of the degradation of data for comparison 169 
with monthly mean model output. Emulator uncertainty is calculated for each model-measurement combination 170 
using the error on the predicted mean from the emulator for the model variant. We use residuals in de-trended 171 
monthly mean output from a HadGEM-UKCA hindcast simulation over the period of 1980-2009 (Turnock et 172 
al., 2015) to estimate the inter-annual variability for each variable across all model gridboxes and months. 173 
 174 

 175 
Fig S1: Measured CCN0.2 values between the 3rd and 10th January 2017, after filtering for possible ship stack contamination. 176 
The ACE-SPACE vessel transited through 5 model gridboxes during this period. We average all measurements collected in 177 
locations, over one or more days, within each model gridbox, for comparison with monthly mean model output. These 178 
average values and one standard deviation of the measurement data are shown in red at the central time for each 179 
measurement subset. From left to right, these values correspond to the five model gridboxes in Fig. 1 between around 60oE 180 
and 90oE, at the following latitude and longitudes: 1) 49.5oS, 65.5oE, 2) 49.5oS, 69.5oE, 3) 54oS, 77oE, 4) 54oS, 84.5oE and 5) 181 
56.5oS, 92oE. 182 
 183 
We calculate implausibility values for each of the one million model variants for every measurement. Deciding 184 
which model variants to retain would be trivial were we comparing the sample output to a single measurement. 185 
We would sequentially rule out the variant with the highest implausibility metric until some small fraction of the 186 
original sample remained. However, our task is more complex. We need to rule out model variants based on 187 
multiple implausibility metrics that are distinct for each measurement location and measurement type.  188 
 189 
A variant may compare well with a measurement type in one location and poorly in another because spatial and 190 
temporal features in the measurement data (e.g. changing aerosol sources) mean each measurement could 191 
provide different information about the plausibility of the models. To avoid prematurely ruling out model 192 
variants based on a few poor comparisons, we only rule out variants if their implausibility exceeds a defined 193 
threshold for more than a tolerable fraction of measurements. We choose threshold and tolerance values with a 194 
goal of retaining around 3% of the original sample. The subjective choice of 3% retention determines the results 195 
to some extent. Retaining a much smaller percentage of the model variants could potentially over-constrain the 196 
model. However, retaining a larger proportion risks weakening the constraint and retaining addition implausible 197 
variants.  198 
 199 
We set threshold and tolerance values for each variable distinctly for each month of data. This makes processing 200 
the implausibility data more efficient and allows for a degree of automation of the constraint process. We ensure 201 
that each measurement type on each leg of the journey (Schmale et al., 2019) affects the combined constraint. 202 
This requires quantification of the constraint of individual measurement types on parameter values at multiple 203 
combinations of threshold and implausibility exceedance tolerances. We avoid increasing the threshold and/or 204 
tolerance values in individual months for each measurement type, if the constraint efficacy of the measurement 205 
would saturate as a result. Otherwise, threshold and tolerances for each month are required to be as similar as 206 
possible.  207 
 208 
Although our analysis in the main article focusses on a combined measurement constraint, this analysis is 209 
informed by individual measurement type constraints. The threshold and exceedance tolerances for individual 210 
measurement type constraints are summarised in Table S1. Only 0.004% of the one million model variants (40 211 
variants) are retained when these individual constraints are combined. Thus, we relax the threshold and 212 
tolerance criteria for each measurement type constraint when combining constraints (Table S2). 213 



 214 
Table S1: Individual measurement type constraint threshold values and exceedance tolerance values for December to April, 215 
as well as the percentage of the one million member sample retained by each constraint. Exceedance tolerances values are 216 
percentages of the number of measurements in each month. 217 

 CCN0.2 CCN1.0 Nss-sulfate N700 

Implausibility 

Threshold  

3.5 3.5 3.5 3.5 

Exceedance 

tolerance (%) 

Dec-Apr 

15,15,20,20,10 2,2,2,5,2 15,20,20,15 20,20,25,20,20 

Percentage retained 3.3 3.0 6.2 3.0 

 218 

Table S2: Threshold values and exceedance tolerance values for December to April, as well as the percentage of the one 219 
million member sample retained by each constraint. Exceedance tolerances values are percentages of the number of 220 
measurements in each month. These constraints are combined to retain around 3% of the one million member sample of 221 
model variants, as described in the main article. 222 

 CCN0.2 CCN1.0 Nss-sulfate N700 

Implausibility 

Threshold  

4.5 4.5 4.0 4.5 

Exceedance 

tolerance (%)  

Dec-Apr 

30,30,30,30,10 25,30,30,15,5 20,20,20,15 25,25,25,30,25 

 

Percentage retained 20.6 18.1 29.9 24.2 

 223 
 224 
SI Results 225 
SI Results: Constrained marginal parameter distributions 226 
In Fig. 3 of the main article we show the marginal probability distributions for the 26 parameters in the AER 227 
PPE. These marginal distributions show the effect of measurement constraint on individual parameter 228 
likelihoods. Marginal densities for the constrained sample are scaled such that the tops of the constrained and 229 
unconstrained pdfs are aligned. Similar parameter constraints are found when constraining the AER-ATM PPE 230 
using the same constraint process and original set of measurements (Fig. S2). In addition to parameters that are 231 
perturbed in both PPEs, we show the effect of measurement constraint on the few physical atmosphere 232 
parameters (Rad_Mcica_Sigma and Fac_Qsat) that are constrained by our process as well as additional aerosol 233 
parameters that were perturbed in AER-ATM (BC_RI and OC_RI).  234 
 235 
 236 

 237 



 238 
Fig. S2. Marginal probability distributions for aerosol and physical atmosphere parameters from the AER-ATM PPE after 239 
constraint. The density of parameter values in the unconstrained sample are shown as dashed lines. Densities of constrained 240 
samples are shown in colour. The 25th, 50th and 75th percentiles of each marginal distribution are shown in the central boxes. 241 
Parameter values on the x-axes correspond to values used in the model (Yoshioka et al., 2019). 242 
 243 

In addition to the constraint achieved by combining remote marine aerosol measurements, Table S3 shows the 244 
effect of individual measurement type constraints (Table S2) on model parameters and how these translate into a 245 
combined constraint (Fig. 3).  246 

Table S3. Ranges and inter-quartile ranges of marginal parameter distributions from individual constraints using measured 247 
concentrations of CCN0.2, CCN1.0, non-sea-salt sulfate and N700, as well as for the combined constraint. These individual 248 
constraints are those described in Table S2 and were combined to constrain the model and make Fig. 3. Values are marked in 249 
bold where the individual measurement type constraint moves the range, 25th or 75th percentile closer towards the range or 250 
percentiles of the combined constraint than other measurement types, relative to the unconstrained values.  251 

Parameter 

Name 

Unconstrained CCN0.2 CCN1.0 Non-sea-salt 

sulfate 
N700 Combined 

BL_Nuc 0.1,10.0 

[0.3,3.2] 

0.1,10.0 

[0.3,3.5] 
0.1,10.0 

[0.3,3.0] 
0.1,10.0 

[0.3,3.3] 
0.1,10.0 

[0.3,3.2] 
0.1,10.0 

[0.3,3.5] 
Ageing 0.3,10.0 

[2.7,7.6] 

0.3,10.0 

[3.0,7.9] 
0.3,10.0 

[2.5,7.5] 
0.3,10.0 

[2.7,7.6] 
0.3,10.0 

[2.6,7.5] 
0.3,10.0 

[2.7,7.6] 
Acc_ 

Width 
1.2,1.8 

[1.4,1.6] 

1.2,1.8 

[1.3,1.7] 
1.2,1.8 

[1.4,1.7] 
1.2,1.8 

[1.4,1.7] 
1.2,1.8 

[1.3,1.7] 
1.2,1.8 

[1.3,1.7] 
Ait_Width 1.2,1.8 

[1.3,1.6] 

1.2,1.8 

[1.3,1.7] 
1.2,1.8 

[1.3,1.6] 
1.2,1.8 

[1.3,1.7] 
1.2,1.8 

[1.3,1.7] 
1.2,1.8 

[1.3,1.6] 
Cloud_pH 4.6,7.0 

[5.2,6.4] 

4.6,7.0 

[5.1,6.4] 
4.6,7.0 

[5.1,6.2] 
4.6,7.0 

[5.2,6.4] 
4.6,7.0 

[5.2,6.4] 
4.6,7.0 

[5.1,6.2] 
Carb_FF_ 

Ems 
0.5,2.0 

[0.7,1.4] 

0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
Carb_BB_ 

Ems 
0.25,4.00 

[0.50,2.00] 

0.25,4.00 

[0.52,2.16] 
0.25,4.00 

[0.48,2.01] 
0.25,4.00 

[0.50,2.01] 
0.25,4.00 

[0.49,2.03] 
0.25,4.00 

[0.49,2.06] 
Carb_Res_ 

Ems 
0.25,4.00 

[0.50,2.00] 

0.25,4.00 

[0.45,1.78] 
0.25,4.00 

[0.48,2.02] 
0.25,4.00 

[0.49,2.00] 
0.25,4.00 

[0.50,2.02] 
0.25,4.00 

[0.48,1.94] 
Carb_FF_ 

Diam 
30,90 

[45,75] 

30,90 

[45,76] 
30,90 

[44,75] 
30,90 

[45,75] 
30,90 

[45,75] 
30,90 

[45,76] 
Carb_BB_ 

Diam 
90,300 

[143,248] 

90,300 

[141,250] 
90,300 

[140,249] 
90,300 

[142,248] 
90,300 

[141,248] 
90,300 

[141,249] 
Carb_Res_ 

Diam 
90,500 

[193,398] 

90,500 

[193,404] 
90,500 

[190,399] 
90,500 

[192,400] 
90,500 

[193,400] 
90,500 

[189,400] 
Prim_SO4_ 

Frac 
1.0e-6,1.0e-1 

[1.8e-5,5.6e-3] 

1.0e-6,1.0e-1 

[1.7e-5,6.5e-3] 
1.0e-6,1.0e-1 

[1.3e-5,4.2e-3] 
1.0e-6,1.0e-1 

[1.7e-5,5.6e-3] 
1.0e-6,1.0e-1 

[1.6e-5,6.0e-3] 
1.0e-6,1.0e-1 

[1.6e-5,5.2e-3] 
Prim_SO4_ 

Diam 
3,100 

[27,76] 

3,100 

[26,75] 
3,100 

[29,78] 
3,100 

[27,76] 
3,100 

[26,77] 
3,100 

[28,77] 
Sea_ 

Spray 
0.1,8.0 

[0.4,2.8] 

1.5,8.0 

[2.7,3.8] 
1.9,8.0 

[3.8,5.7] 
0.1,8.0 

[0.3,2.8] 
1.5,5.2 

[2.5,3.6] 
1.6,5.1 

[2.6,3.7] 
Anth_SO2 0.6,1.5 

[0.8,1.2] 

0.6,1.5 

[0.8,1.2] 
0.6,1.5 

[0.7,1.2] 
0.6,1.5 

[0.8,1.2] 
0.6,1.5 

[0.8,1.2] 
0.6,1.5 

[0.8,1.2] 
Volc_SO2 0.7,2.4 

[1.0,1.8] 

0.7,2.4 

[1.0,1.8] 
0.7,2.4 

[1.0,1.8] 
0.7,2.4 

[1.0,1.8] 
0.7,2.4 

[1.0,1.8] 
0.7,2.4 

[1.0,1.8] 
BVOC_ 

SOA 
0.8,5.4 

[1.3,3.4] 

0.8,5.4 

[1.3,3.5] 
0.8,5.4 

[1.4,3.5] 
0.8,5.4 

[1.3,3.4] 
0.8,5.4 

[1.3,3.4] 
0.8,5.4 

[1.3,3.4] 
DMS 0.5,2.0 

[0.7,1.4] 

0.5,2.0 

[0.7,1.5] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.8,1.5] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.8,1.3] 
Dry_Dep_ 

Ait 
0.5,2.0 

[0.7,1.4] 

0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.3] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
Dry_Dep_ 

Acc 
0.1,10.0 

[0.3,3.2] 

0.1,9.3 

[0.2,0.9] 
0.1,6.7 

[0.2,1.0] 
0.1,10.0 

[0.3,1.9] 
0.1,10.0 

[0.3,3.2] 
0.1,6.4 

[0.2,0.8] 
Dry_Dep_ 

SO2 
0.2,5.0 

[0.4,2.2] 

0.2,5.0 

[0.4,2.2] 
0.2,5.0 

[0.4,2.4] 
0.2,5.0 

[0.4,2.2] 
0.2,5.0 

[0.4,2.2] 
0.2,5.0 

[0.4,2.2] 
Kappa_ 

OC 
0.1,0.6 

[0.2,0.5] 

0.1,0.6 

[0.2,0.5] 
0.1,0.6 

[0.2,0.5] 
0.1,0.6 

[0.2,0.5] 
0.1,0.6 

[0.2,0.5] 
0.1,0.6 

[0.2,0.5] 
Sig_W 0.1,0.7 

[0.3,0.5] 

0.1,0.7 

[0.2,0.6] 
0.1,0.7 

[0.2,0.6] 
0.1,0.7 

[0.2,0.6] 
0.1,0.7 

[0.2,0.6] 
0.1,0.7 

[0.2,0.6] 



Dust 0.5,2.0 

[0.7,1.4] 

0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
0.5,2.0 

[0.7,1.4] 
Rain_Frac 0.3,0.7 

[0.4,0.6] 

0.3,0.7 

[0.4,0.6] 
0.3,0.7 

[0.4,0.6] 
0.3,0.7 

[0.4,0.6] 
0.3,0.7 

[0.4,0.6] 
0.3,0.7 

[0.4,0.6] 
Cloud_Ice_ 

Thresh 
0.1,0.5 

[0.2,0.4] 

0.1,0.5 

[0.2,0.3] 
0.1,0.5 

[0.2,0.4] 
0.1,0.5 

[0.2,0.4] 
0.1,0.5 

[0.2,0.4] 
0.1,0.5 

[0.2,0.4] 
 252 

 253 
Constrained marginal parameter distributions in Fig. 3 and Fig. 5 of the main article tell a one-dimensional 254 
story. In Fig. S3, we show the effect of constraint to remote marine aerosol measurements, combined with the 255 
constraint from Johnson et al. (2019) on a subset of the marginal 2-dimensional parameter combinations.   256 
 257 

 258 
Fig. S3. Two-dimensional marginal probability density distributions for a) sea spray emission flux scale factor (Sea_Spray) 259 
and the Accumulation aerosol mode dry deposition velocity scale factor (Dry_Dep_Acc), b) sea spray emission flux scale 260 
factor and dimethylsulfide surface water concentration scale factor (DMS), c) sea spray emission flux scale factor and cloud 261 
droplet pH (Cloud_pH), and d) Accumulation aerosol mode dry deposition velocity scale factor and dimethylsulfide surface 262 
water concentration scale factor. Individual parameter ranges are plotted according to their constrained values (Table S3), 263 
not the full range of values used in the original sample of model variants as shown in Fig. 3, Fig. 5 and Fig. S2. 264 
 265 
SI Results: Wind Speed discrepancies 266 
Southern Ocean wind speeds during the ACE-SPACE expedition were often much lower than climatological 267 
mean values, but on average were higher than winds in our ensemble (Schmale et al., 2019). We account for the 268 
effects of inter-annual variability in the Var(R) term in equation S1. However, monthly mean differences 269 
between ERA-Interim wind speeds in the measurement year and the year used in the ensemble are less than 20% 270 
along the route taken by the ACE-SPACE campaign vessel (Fig. S4). The modest discrepancy in wind speeds 271 
may be important for constraining aerosol concentrations, because sea spray emissions in our model are strongly 272 
dependent on wind speeds (Gong, 2003). However, the measured wind speed and N700 values are only weakly 273 
correlated (Pearson correlation coefficient of around 0.2) when degraded to the resolution used for comparison 274 
with model output.  275 
 276 
Our constraint process has in-built functionality that prevents the use of measurements with large model-277 
measurement discrepancies. We tested the robustness of our constraint methodology to the discrepancy in wind 278 



speeds by neglecting around 50% of the measurements (those with the largest discrepancies between measured 279 
and AER-ATM PPE mean simulated winds) and repeating the constraint. The effects on marginal parameter and 280 
aerosol forcing constraints were negligible (not shown). The consistency of constraint, with and without 281 
measurements in locations with relatively large model-measurement wind speed discrepancies, suggests the 282 
constraint methodology is insensitive to wind speed discrepancies caused by daily wind speed variability and 283 
differences in meteorological years between model simulations and measurements. 284 
 285 
 286 
 287 

 288 
Fig. S4. Ratio of ERA-Interim wind speed differences (between measurement and simulated years) to the measurement year. 289 
Monthly mean winds from 2006 (matching the AER PPE) were subtracted from monthly mean winds for December 2016 to 290 
April 2017 (matching the ACE-SPACE campaign) to calculate the differences. The map is an assimilation of data between 291 
months, where data is presented at each location for months corresponding to the timing of the ACE-SPACE measurement 292 
campaign. 293 
 294 
SI Results: Effect of constraint on cloud droplet number concentration 295 
Table 1 shows that our constraint on natural emission parameters also constrains summertime Southern Ocean 296 
cloud droplet number concentrations towards higher values. Credible interval ranges are reduced by around 50% 297 
and mean values are in closer agreement with MODerate Imaging Spectroradiometer (MODIS; Salomonson et 298 
al., 1989) instrument data (note that droplet number concentrations were not used to constrain the model). Thus, 299 
we conclude in the main article that the constraint on aerosol forcing towards weaker values is a genuine 300 
constraint, associated with higher cloud droplet number concentrations, increased aerosol load and higher 301 
natural aerosol emissions, and is not the result of an arbitrary tuning. 302 
 303 
 304 
SI Results: Additional constraint to achieve radiative balance  305 
We additionally test the effect of ruling out model variants that differ from the Clouds and the Earth's Radiant 306 
Energy System (CERES; Loeb et al., 2009) measurement of global, annual mean top-of-the-atmosphere 307 
outgoing shortwave radiative flux of 98.3 W m-2 by more than 0.25 W m-2, which was the constraint applied in 308 
Regayre et al. (2018). The constraint on ERF using the CERES-derived top-of-the-atmosphere fluxes in addition 309 
to the ACE-SPACE measurement dataset weakens the reduction in aerosol ERF from 8% to 7%. Fig. S5 (for 310 
comparison with Fig. 4a) shows the effect of this additional constraint on aerosol ERF. Retaining only model 311 
variants that agree with top-of-the-atmosphere radiative flux measurements does not noticeably affect the 312 
constraint on aerosol ERF (as shown in Regayre et al., 2018). Furthermore, the marginal parameter pdfs are 313 
unaffected by the additional constraint (not shown). 314 
 315 
 316 



 317 

 318 

Fig. S5. Probability distribution of ERFaci from the AER-ATM PPE. Values from the unconstrained sample of one million 319 
model variants are in black. Red lines show the values constrained by ACE-SPACE measurements and additionally 320 
constrained using CERES top-of-the-atmosphere measurements. Plotting features are identical to Fig. 4. 321 
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