

Supplement of

Kinetics of the $OH + NO_2$ reaction: effect of water vapour and new parameterization for global modelling

Damien Amedro et al.

Correspondence to: John N. Crowley (john.crowley@mpic.de)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Figure S1. *Left panel*: Plots of k' versus [NO₂] at 500 Torr He and 292 K. The lines are least-squares fits to the data using Eq. (2) (see main text). Error bars are 2σ statistical only. *Right panel*: Exponential decay of the OH LIF signal in 500 Torr
He, at 292 K, and at four different NO₂ concentrations. The solid lines are fits to the datasets using Eq. (1) (see main text).

Figure S2. *Left panel*: Measurements of k_1 as a function of He density. The blue line corresponds to a fit using equation (2) whereby F_c was fixed to 0.32 leading to $k_0^{\text{He}} = 1.4 \times 10^{-30} \text{ cm}^6$ molecule⁻² s⁻¹. The red line corresponds to a fit using equation (2) whereby F_c was fixed to 0.39 leading to $k_0^{\text{He}} = 1.0 \times 10^{-30} \text{ cm}^6$ molecule⁻² s⁻¹. Other parameters were fixed to: m = 3.1, $k_{\infty} = 6.3 \times 10^{-11} \text{ cm}^3$ molecule⁻¹ s⁻¹ and n = 0. *Right panel*: Ratio of the measured rate constant vs. the parametrisation using $F_c = 0.39$ and $F_c = 0.32$

Figure S3. Comparison with previous experimental data. The data points are measurements by Morley and Smith (1972) at
300 K, the solid line represents our parametrisation at 300 K.

Figure S4. Comparison with previous experimental data. The data points are measurements by Wine et al. (1979) at 297 K, the solid line represents our parametrisation at 297 K.

Figure S5. Comparison with previous experimental data. The data points are measurements by D'Ottone et al. (2001) at 298 K, the solid line represents our parametrisation at 298 K.

Figure S6. Measurements of k_1 in He bath gas at 277, 292 and 332 K. The solid line is a fit to our data using Eqn. (4) with $k_0 = 1.4 \times 10^{-30}$ cm⁶ molecule⁻² s⁻¹, $k_{\infty} = 6.3 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, $F_c = 0.32$, m = 3.1 and n = 0.

Figure S7. Spectrum of the difference between the residuals of NO₂ spectra with and without H₂O ([H₂O] = 4.5×10^{17} molecule 5 cm⁻³, [NO₂] = 1.7×10^{15} molecule cm⁻³) recorded at 50 Torr He, at room temperature. The red line corresponds to absorption by HONO at a concentration of 1×10^{13} molecule cm⁻³.

Figure S8. Parameterisation of the temperature and pressure dependent yield of HOONO in the reaction between OH and NO₂.

Figure S9. Effect of different parameterisations of k_1 on the global (zonal and yearly averaged) concentration of NO_X. The upper panel plots [NOx]_{IUPAC} / [NOx]_{this work}, the lower panel plots [NOx]_{NASA} / [NOx]_{this work}. The black line represents the model tropopause.

Figure S10. Effect of different parameterisations of k_1 on the global (zonal and yearly averaged) concentration of the hydroxyl radical, [OH]. The upper panel plots $[OH]_{IUPAC} / [OH]_{this work}$, the lower panel plots $[OH]_{NASA} / [OH]_{this work}$. The black line represents the model tropopause.

References

D'Ottone, L., Campuzano-Jost, P., Bauer, D., and Hynes, A. J.: A pulsed laser photolysis-pulsed laser induced fluorescence study of the kinetics of the gas-phase reaction of OH with NO2, J. Phys. Chem. A, 105, 10538-10543, 2001.

5 Morley, C., and Smith, I. W. M.: Rate measurements of reactions of OH by resonance absorption. 1. Reactions of OH with NO₂ and NO, Journal of the Chemical Society-Faraday Transactions Ii, 68, 1016-&, 10.1039/f29726801016, 1972.

Wine, P. H., Kreutter, N. M., and Ravishankara, A. R.: Flash photolysis-resonance fluorescence kinetics study of the reaction $OH + NO_2 + M \rightarrow HNO_3 + M$, J. Phys. Chem., 83, 3191-3195, 1979.