

Supplement of

Technical note: Measurement of chemically resolved volume equivalent diameter and effective density of particles by AAC-SPAMS

Long Peng et al.

Correspondence to: Xinhui Bi (bixh@gig.ac.cn) and Guohua Zhang (zhanggh@gig.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Sampling schedule for atmospheric particles by AAC-SPAMS

Sampling duration	D_a
07/06 14:45-15:28	
07/06 22:51-23:48	
07/07 09:16-09:58	
07/07 13:39-14:20	
07/07 18:15-18:58	250.0 nm, 350.0 nm, 450.0 nm, and 550.0 nm
07/07 22:35-23:18	
07/08 06:43-07:26	
07/08 09:18-10:12	
07/08 15:19-16:04	

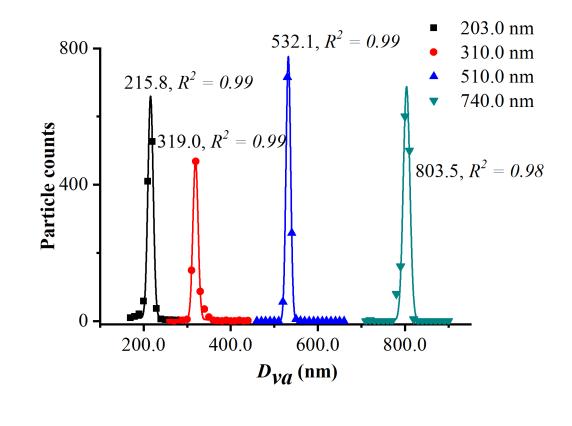
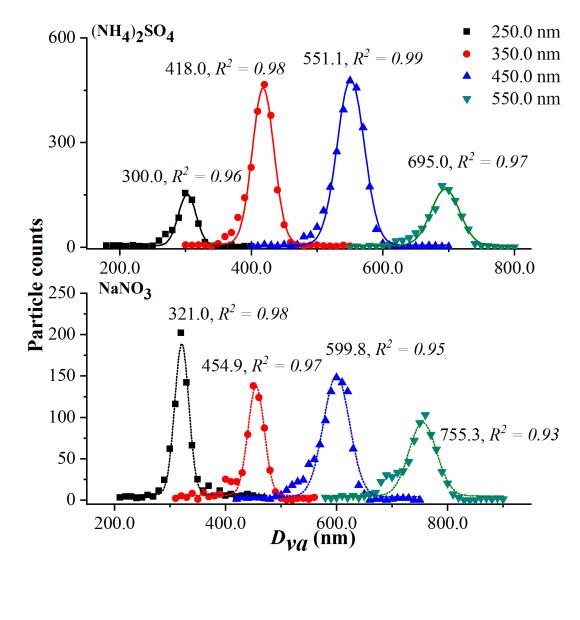



Figure S1. Gaussian fitting for the D_{va} size distribution of an aerosol of spherical PSL particles with D_{ve} values of 203.0 nm, 310.0 nm, 510.0 nm, and 740.0 nm after screening by the AAC.

Figure S2. Gaussian fitting for the D_{va} size distribution of the aspherical aerosol particles of (NH₄)₂SO₄ and NaNO₃ with D_a values of 250.0 nm, 350.0 nm, 450.0 nm, and 550.0 nm.

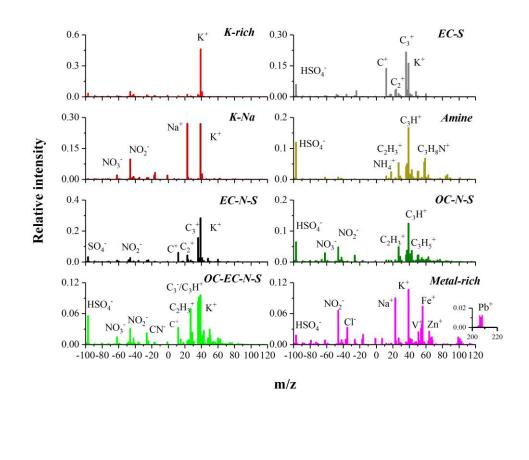
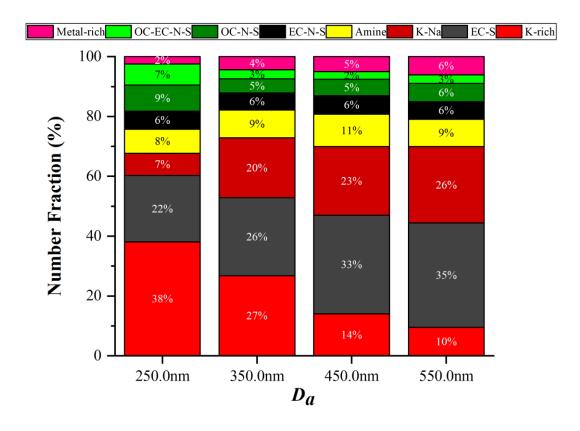



Figure S3. Average positive and negative mass spectra for eight major types

Figure S4. Aerodynamic diameter-resolved chemical composition of different type particles.

34	Figures S3 and S4 show the average positive and negative digitized mass spectra of eight types
35	particles and their number fraction distribution from 250 nm to 550 nm, respectively. The K-rich
36	spectra are characterized by the dominant potassium (39[K] ⁺), which number fraction decreases
37	from 38% at 250 nm D_a to 10% at 550 nm D_a . Elemental carbon (12[C] ⁺ , 24[C ₂] ⁺ and 36[C ₃] ⁺) and
38	sulfate (-97 [HSO ₄] ⁻) are the dominant peaks in EC-S which number fraction increases from 22% at
39	250 nm to 35% at 550 nm. K-Na particles possess the distinct sodium (23[Na] ⁺) and potassium in
40	positive spectra and nitrate (-46 $[NO_2]^-$ and/or -62 $[NO_3]^-$) in the negative spectra, comprising 7%
41	number fraction at 250 nm and 26% at 550 nm. Amine particles distinguish them from other particles
42	by organic amine fragments such as $58[C_3H_8N]^+$, accounting for about 9% for particles with D_a from
43	250 nm to 550 nm. The types of EC-N-S, OC-N-S and OC-EC-N-S have similar predominant peaks
44	of sulfate and nitrate in the negative spectra. The makers of carbonaceous matters differentiate EC-
45	N-S, OC-N-S and OC-EC-N-S. The spectra of EC-N-S mainly contains elemental carbon, and the
46	spectra of OC-N-S mainly possesses hydrocarbon ion series such as $27[C_2H_3]^+$ and $37[C_3H]^+$, and
47	the spectra of OC-EC-N-S has markers of both of elemental carbon and organic carbon. The
48	proportions of types of EC-N-S, OC-N-S and OC-EC-N-S in the whole size range are relatively
49	stable with 6%, 7%, and 3%, respectively. The Metal-rich particles are dominated by peaks at $51[V]^+$,
50	54/56[Fe] ⁺ , 64/66/68 [Zn] ⁺ and 206/207/208 [Pb] ⁺ , which number fraction increase from 2% at 250
51	nm to 6% at 550 nm.