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1 Mixing ratios results from the box modelling
The mixing ratios in the baseline simulations provide context for our box modelling results. Select modelled
species from the baseline simulations for London, Cape Verde and Borneo are shown in Figures S1-S3 respec-
tively. The baseline mixing ratio of H2 increased continuously from its initial value of 530 ppbv to 639.97 ppbv
at London and 533.96 ppbv at Borneo. At Cape Verde, the mixing ratio of H2 decreased during the simulated
period to 517.23 ppbv. These changes are equivalent to an increase in H2 of ∼17% over 12 days for London, an
increase of ∼1% over 6 days for Borneo, and a decrease of ∼2% over 12 days for Cape Verde. These final H2
mixing ratios are not representative of the actual values over the selected locations particularly because of the
lack other relevant physical processes such as emissions, transport and uptake by soil.

For the London and Borneo simulations, the H2 increase over time in the baseline run was effectively caused
by the photolysis of formaldehyde and glyoxal (the only H2 sources in this simulation). The decrease in modelled
H2 at Cape Verde was a result of imbalances in the chemical sources and sinks in this regime. For the Cape
Verde simulation, neither formaldehyde nor glyoxal had available measurement constraints (see Table Table 1 in
the manuscript); however, both were produced chemically, with formaldehyde production from the degradation
of methane, ethene, propene, toluene and benzene and glyoxal production from ethene and toluene precursors
(Stavrakou et al., 2009). These five precursor species were all constrained in the Cape Verde simulations (see
Table Table 1, footnote b). Figure S2 shows the time series of selected species modelled for Cape Verde,
including formaldehyde, which had an average modelled value of ∼800 pptv (∼2×1010 molecules cm−3). For
comparison, Whalley et al., 2010 reported an average noon value of 328 pptv for their MCM simulations at
Cape Verde during May-June 2007 (note that they do not report values for glyoxal). Considering that our
modelled formaldehyde mixing ratios were higher than those reported previously by Whalley et al., 2010, and
because of the formaldehyde and glyoxal lifetimes of a few hours, we conclude that our simulations included
sufficient precursor concentrations and therefore that the decrease in H2 in the baseline Cape Verde simulation
implies that the available H2 was consumed by OH more rapidly than it could be produced by formaldehyde
and glyoxal, yielding an effective loss over the 12 days modelled.

2 Dry deposition velocity calculation in Yashiro et al., 2011
The dry deposition velocity on the surface of the inactive layer was calculated by Yashiro et al., 2011 as:

V d =
1

δ
Dsθa

+
√

1
Dskθa

(1)

where θa is volume of gas per unit volume of soil (air filling porosity) [m3 m−3], Ds is the diffusivity in soil,
k is the biological uptake rate [s−1] dependent on soil temperature and soil moisture (see Yashiro et al., 2011
equations 13 to 16). For the diffusivity

Ds = Da
θ3.1a
θ2sat

(2)

where Da is the molecular diffusion coefficient with a value for H2 of 0.611 cm2 s−1 and θsat is the maximum
aerial or liquid water volume per unit volume of soil (total porosity).

The parameterisation to derive the dry deposition velocity for H2 used by Yashiro et al., 2011 implements
the same variables as that used by Ehhalt and Rohrer, 2013. The Ehhalt and Rohrer, 2013 parameterisation,
applied recently by Paulot et al., 2021, differs from the one by Yashiro et al., 2011 in that the latter considers the
diffusivity in the soil to be uniform from the soil surface to a sufficient depth (because the diffusivity is within the
first layer of the parent land model), while Ehhalt and Rohrer, 2013 use two different soil diffusivities. Further,
the biological activity (uptake rate k), soil moisture and soil temperature dependencies are also different between
Yashiro et al., 2011 and Ehhalt and Rohrer, 2013. Yashiro et al., 2011 follow the variation of the biological
activity from Smith-Downey et al., 2006, while Ehhalt and Rohrer, 2013 rely on the dependencies from the
reanalysis performed by Ehhalt and Rohrer, 2011. Also, the thickness of the inactive layer used by Yashiro
et al., 2011 is considered to be uniform (with a value of 0.7 cm) while Ehhalt and Rohrer, 2013 provide values
that are a function of the average volumetric soil water content. Even though both models start from equation
3 (where Fs is the flux and C is the mass concentration of H2) to derive the dry deposition velocity as a
function of the H2 flux and diffusivities, the two models differ when the thickness of the inactive layer δ = 0 as
a consequence of the difference in the definition of the flux.

V d =
Fs

ρC
(3)

Ehhalt and Rohrer, 2013 used equation 4, where Ms corresponds to the H2 mixing ratio in the soil air.
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Fs = −DsρδMs

δz
(4)

On the other hand, Yashiro et al., 2011 used equation 5

Fs = −Dsρθa
δMs

δz
(5)

This equation originated from equations (2), (3) and (4) in Yonemura et al., 2000. The version used by
Yashiro et al., 2011 (equation 5) means that the gradient of the gas concentration between the two layers is
determined not only by the mixing ratio, but also by the air-filled porosity.
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Figure S1: Time series for selected modelled species in molecules cm−3 from the baseline box model simulation
in London starting at noon on the 22nd of July 2012.
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Figure S2: Time series for selected modelled species in molecules cm−3 from the baseline box model simulation
in Cape Verde starting at midnight on the 2nd of January 2015.
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Figure S3: Time series for selected modelled species in molecules cm−3 from the baseline box model simulation
in Borneo starting at 18:00 on the 11th of July 2008.
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Figure S4: Percentage change in the total rate of production of H2 from aldehydes for varying quantum yields
calculated relative to the baseline simulation at the three tested sites for 1 modelled day (local time)
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Figure S5: Percentage change in the total rate of production of H2 from aldehydes for varying quantum yields
at the three tested sites for 5 modelled days (local time)

Page 6



Supplementary material

DJF MAM

JJA SON

350

400

450

500

550

600

H
2 [
pp

b]

Figure S6: Average modelled mixing rations of H2 per season estimated with GEOS-Chem at 500 hPa for 2015
and 2016.

Figure S7: Seasonal comparison between average modelled (triangles) and average observed (circles) H2 esti-
mated ratios at different heights with respect to the surface layer. Modelled averaged values are from 2015 and
2016. Observations averaged values are those from the Aircraft (AIA) flask sampling data from Krummel et al.,
2021r
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Figure S8: Comparison between baseline-selected in-situ data, baseline-sampled data measured with a PDD
detector (blue and orange line) and flask baseline sampled by CSIRO at Cape Grim from April 2015.
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Figure S9: Seasonal cycle comparisons of CO at five sites from the CSIRO dataset (Krummel et al., 2021a,
2021b, 2021c, 2021d, 2021e, 2021f, 2021g, 2021h, 2021i) reported Flask Data for 2015 and 2016, the dash line
with circle markers corresponds to observed values and the continuous line with triangle markers corresponds
to modelled values in GEOS-Chem.
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Figure S10: Percentage difference on the chemical production of H2 between the 1% production of H2 scenario
and the baseline for a year a) At the surface level, b) At 500 hPa, c) Longitude section at 2 N and d) Latitude
section at -70 W

Figure S11: Percentage difference on the chemical production of H2 between the 1% production of H2 scenario
and the baseline for a year at the surface layer from the photolysis of a) methylglyoxal b) acetaldehyde, HPALD,
glycolaldehyde, methacrolein, lumped aldehydes with more than 3 carbon atoms RCHO (integrated)

Figure S12: Simulated mixing ratios of methylglyoxal at the surface layer for January and July 2015. The
modelled magnitudes of methylglyoxal in our GEOS-Chem simulation are comparable to those shown by Fu
et al., 2008 in their Figure 2b.
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Figure S13: Percentage difference on the modelled mixing ratios of H2 between the 1% production of H2 scenario
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Table S1: List of aldehydes in the MCM, along with photolysis products and rates (J [s−1]) for the H2 channel
estimated with 1%, 2%, 5% and 10% quantum yields applied across wavelengths.

Aldehyde MCM ID Photolysis
productsa

JID J 1% qy J 2% qy J 5% qy J 10% qy

Formaldehyde
(Methanal)

HCHOb H2 + CO J12 - - - -

Glyoxal (oxalde-
hyde)

GLYOXb CO + CO +
H2

J31 - - - -

Acetaldehyde CH3CHO CH2COc +
H2

J62 4.37E-07 8.74E-07 2.18E-06 4.37E-06

Propanal C2H5CHO C2H4 + H2
+ CO

J63 5.68E-07 1.14E-06 2.84E-06 5.68E-06

Butanal C3H7CHO C3H6 + H2
+ CO

J64 6.76E-07 1.35E-06 3.38E-06 6.76E-06

Isobutylaldehyde IPRCHO C3H6 + H2
+ CO

J65 5.49E-07 1.10E-06 2.74E-06 5.49E-06

Acrolein (2-
propenal)

ACR C2H2 + H2
+ CO

J66 2.44E-06 4.89E-06 1.22E-05 2.44E-05

(2-methylprop-
2-enal)

MACR C3H4 + H2
+ CO

J67 3.05E-07 6.09E-07 1.52E-06 3.05E-06

Methylglyoxal
(2-oxopropanal)

MGLYOX CH2COc +
H2 + CO

J68 4.42E-07 8.83E-07 2.21E-06 4.42E-06

HPALD (2-
hydroperoxyacetaldehyde)

HCOCH2OOH H2 + Other
products

J69 4.65E-08 9.30E-08 2.32E-07 4.65E-07

Glycolaldehyde
(2-
hydroxyacetaldehyde)

HOCH2CHO HCHO + H2
+ CO

J70 1.07E-07 2.15E-07 5.37E-07 1.07E-06

3-Hydroxy 2-
Methylpropanal

HOIPRCHO H2 + Other
products

J71d 6.76E-07 1.10E-06 3.38E-06 6.76E-06

Lactaldehyde CH3CHOHCHO H2 + Other
products

J71d 6.76E-07 1.10E-06 3.38E-06 6.76E-06

3-Oxopentanal CO3C4CHO H2 + Other
products

J71d 6.76E-07 1.10E-06 3.38E-06 6.76E-06

3-Hydroxy-
pentanal

HO3C4CHO H2 + Other
products

J71d 6.76E-07 1.10E-06 3.38E-06 6.76E-06

3-
Hydroxypropanal

HOC2H4CHO H2 + Other
products

J71d 6.76E-07 1.10E-06 3.38E-06 6.76E-06

2-
Hydroxybutanal

HO3C3CHO H2 + Other
products

J71d 6.76E-07 1.10E-06 3.38E-06 6.76E-06

4-
Hydroxybutanal

HOC3H6CHO H2 + Other
products

J71d 6.76E-07 1.10E-06 3.38E-06 6.76E-06

a

Expressed with the identification used in the MCM.
b

Species in MCM that already include the photolytic generation of H2. The photolysis rates were kept the
same for all tests.

c

The ketene CH2CO generated in the photolysis channel was replaced with glycolaldehyde as described in the
text.

d

In absence of aldehyde-specific cross section measurements, the photolysis rate of butanal was used as a
surrogate in each case.
Names in parenthesis are IUPAC names
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