

Supplement of

Influence of convection on the upper-tropospheric O_3 and NO_x budget in southeastern China

Xin Zhang et al.

Correspondence to: Yan Yin (yinyan@nuist.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Figure S1. Domain and terrain height (m) of the WRF-Chem simulations for the 2019 and 2020 cases. The horizontal grid resolution of domains for the 2019 case is 15 km (D01), 3 km (D02) and 0.6 km (D03). For the 2020 case, it is 27 km (D01), 9 km (D02), 3 km (D03), and 1 km (D04).

Figure S2. (a) Regional mean $(118.5^{\circ}E - 119.5^{\circ}E, 31.5^{\circ}N - 32.5^{\circ}N)$ preconvection (blue) and postconvection (orange) O₃ profiles from the 6-hour WACCM forecasts. (b) The percent difference of O₃ profiles in (a).

Figure S3. Vertical cross sections of (a) WRF-Chem simulated and (b) observed radar reflectivity fields along the transect lines (AB) in Fig. 2 for 25 July, 2019.

Figure S4. Same as Figure S3 but for the case on 01 September 2020.

Figure S5. The tropospheric NO₂ slant column density (SCD_{tropNO₂}) recalculated using the WRF-Chem results with different lightning NO settings: (a, e) 0 mol/flash, (b, f) 330 mol/flash, (c, g) 500 mol/flash and (d, h) 700 mol/flash.

Figure S6. Profiles with different lightning NO productions at TROPOMI overpass time over three regions (fresh lightning, downwind of fresh lightning, and aged lightning). (a–c) The NO₂ profiles compared with the official TM5 a priori NO₂ profile. (d–f) The lightning NO₂ and NO_x profiles. The gray dashed line is the cloud optical pressure detected by TROPOMI.