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S1. PM2.5 Mass Closure 

Mass closure, a comparison of the reconstructed mass and sum of measured species with gravimetric mass, is an indicator 

of the data quality. It also provides information about key chemical composition and potential sources of PM2.5 (Chow et al., 

2015).  

Sum of measured species should be less than or equal to the corresponding gravimetric PM2.5 mass concentrations because 5 

species such as oxygen (O) and hydrogen (H) are not measured. The U.S. Environmental Protection Agency (EPA) Quality 

Assurance Guidance for PM2.5 Chemical Speciation suggests that the ratio of sum of species over gravimetric mass should be 

within the range of 0.60–1.32 (U.S. EPA, 2012). This sum includes chemicals quantified on the Teflon-membrane and 

quartz-fiber filters without double counting. Measured concentrations do not account for unmeasured O associated with metal 

oxides in minerals, unmeasured anions and cations, or H, nitrogen (N), and O associated with organic carbon. Figure S1a 10 

shows that the sum of species accounts for 73% of PM2.5, which is within the U.S. EPA limit.  

Mass reconstruction consists of five major categories, including organic matter (OM = OC × fOM/OC), elemental carbon 

(EC), ions, minerals, and other species (Chow et al., 2015; Watson et al., 2016). Ions include ammonium (NH4
+), sodium 

(Na+), magnesium (Mg2+), potassium (K+), calcium (Ca2+), fluoride (F-), chloride (Cl-), nitrite (NO2
-), nitrate (NO3

-), and sulfate 

(SO4
2-) by IC (Chow and Watson, 2017). Minerals are estimated as 2.2×Al + 2.49×Si + 1.63×Ca + 2.42×Fe + 1.94×Ti, 15 

following the IMPROVE formula (Chow et al., 2015; Malm et al., 1994). “Other species” include the measured species not 

included in the major components without double counting.  

The multiplier (fOM/OC) for converting organic carbon (OC) to OM varies with the composition of OM, ranging from 1.2 

for fresh vehicle engine emissions (Kleeman et al., 2000) and fresh urban aerosols (Chow et al., 2002) to 2.6 for aged aerosols 

(Turpin and Lim, 2001). A value of 1.4 has been most commonly used for urban aerosols, and a value of 1.8 is used for more 20 

aged non-urban aerosols (Chow et al., 2015). Reid et al. (2005) found the fOM/OC value to be ~1.5 for fresh biomass burning 

smoke. Assuming that all species are measured and analytical uncertainties are negligible, fOM/OC values for different materials 

can be estimated from mass closure as (Pani et al., 2019): 

fOM/OC = PM2.5−EC−Ions−Minerals−Others
OC

        (S1) 

Table S1 shows that fOM/OC varies from 1.22 for dry vegetation to 1.87 for food discard, with smoldering materials (except 25 

rubber) having higher values than flaming materials, indicating more oxygen in organic aerosols from smoldering combustions. 

The overall average fOM/OC value for all test conditions is 1.4, which is used to convert OC to OM in mass reconstruction. 

Figure S1b compares reconstructed with gravimetric masses showing a linear regression slope of 0.99. Note that some 

data points have reconstructed masses higher or lower than gravimetric mass, likely due to uncertainties in the estimation of 

OM and minerals as well as potential positive and negative sampling artifacts. The differences between gravimetric and 30 

reconstructed masses are referred to as unidentified species. Because the mass closure has ratios close to unity based on both 
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sum of species and reconstructed mass, the chemical analysis of major PM2.5 constituents (i.e., gravimetric mass, carbon, ions, 

and elements) are of high quality. 

 
Table S1: Measured organic matter (OM) to organic carbon (OC) ratio (fOM/OC).  35 

Material fOM/OC 
Paper 1.66 ± 0.16 

Rubber 1.27 ± 0.07 
Textile 1.36 ± 0.28 

Plastic (Bottles) 1.42 ± 0.02 
Plastic (Bags) 1.66 ± 0.60 

Vegetation (0%) 1.22 ± 0.11 
Vegetation (20%) 1.38 ± 0.15 
Vegetation (50%) 1.63 ± 0.12 

Food Discards 1.87 ± 0.09 
Combined 1.40 ± 0.21 

 
(a) 

 

(b) 

 
Figure S1: Comparison of: (a) sum of species and (b) reconstructed mass with gravimetric mass of PM2.5.  
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S2. Supplementary Tables 

 

Table S2: Comparison of heavy metal emission factors (mg kg-1 fuel) between this study and those from other published measurements.  40 

Element Cr Ni Cu Zn Cd Pb 
Paper       

This study 0.22 ± 0.34 0.00 ± 0.06 4.30 ± 2.79 0.91 ± 0.74 0.00 ± 0.77 1.70 ± 1.30 
(Park et al., 2013) 0.33–0.38 0.20–0.26 0.07–0.22 0–18.19 0.02–0.05 0–0.07 
(Cheng et al., 2020) 0.43–0.69 0.54–0.74 6.17–6.96 1.20–2.09 0.27–0.37 1.83–1.99 
Plastics       

This study (bottle) 4.75 ± 1.91 0.00 ± 0.94 5.81 ± 9.72 0.27 ± 3.17 0.52 ± 12.42 12.53 ± 10.99 
This study (bag) 0.26 ± 0.24 0.00 ± 0.07 3.36 ± 1.01 0.99 ± 0.40 0.00 ± 0.92 1.77 ± 0.88 
(Park et al., 2013) 0.36–1.46 0.05–0.24 0.04–0.12 0–65.17 0.01–0.02 0.002–1.13 
(Cheng et al., 2020) 0.49–0.80 0.48–0.62 7.02–8.0 1.66–3.73 0.28–0.45 1.14–1.33 
Vegetations       

This study (0%) 0.26 ± 0.45 0.00 ± 0.06 0.86 ± 0.75 0.41 ± 1.47 0.39 ± 0.58 0.50 ± 0.74 
This study (20%) 0.64 ± 0.16 0.04 ± 0.08 0.35 ± 0.49 1.18 ± 3.37 0.00 ± 0.45 0.87 ± 0.48 
This study (50%) 5.94 ± 1.33 0.24 ± 0.68 5.01 ± 3.50 2.13 ± 27.22 0.00 ± 3.63 8.37 ± 2.15 
(Park et al., 2013) 0.14–0.46 0.07–0.50 0.05–0.18 2.69–15.65 0.01–0.19 0.05–0.10 
(Cheng et al., 2020) 0.27–0.31 0.34–0.38 5.38–5.45 0.85–2.13 0.18–0.23 1.03–1.21 
Combined Materials       

This study 0.00 ± 0.06 0.00 ± 0.03 1.53 ± 0.30 0.56 ± 0.53 0.07 ± 0.41 5.59 ± 4.55 
(Lemieux, 1997) 0.176–0.237 0.188–0.804 0.573–15.02 0.073–18.9 0.037–0.239 0.22–2.57 
(Christian et al., 2010)   0.35–2.13 0.98–1.72 0.27–0.59 4.0–7.8 
(Park et al., 2013) 0.53–1.02 0.15–0.66 0.04–0.08 13.29–14.16 0.01–0.02 0.01–0.05 
(Jayarathne et al., 2018)   0.29 ± 0.07  0.07 ± 0.15 4.2 ± 5.7 
(Cheng et al., 2020) 0.41–0.62 0.46–0.53 6.55–6.84 1.06–2.44 0.27–0.35 1.12–1.25 
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Table S3: PAH diagnostic ratios.  

Diagnostic ratios Paper Rubber Textile Plastic 
(Bottles) 

Plastic 
(Bags) 

Vegetation 
(0%) 

Vegetation 
(20%) 

Vegetation 
(50%) Food Combined 

FL/(FL+PYR) 0.09 ± 0.03 0.39 ± 0.09 0.14 ± 0.02 0.18 ± 0.06 0.19 ± 0.05 0.12 ± 0.06 0.12 ± 0.02 0.18 ± 0.01 0.10 ± 0.03 0.20 ± 0.04 
PHE/ANT 0.41 ± 0.05 0.52 ± 0.02 0.52 ± 0.03 1.10 ± 0.08 1.49 ± 0.53 0.36 ± 0.04 0.76 ± 0.11 0.82 ± 0.06 16.14 ± 3.15 0.93 ± 0.11 

ANT/(ANT+PHE) 0.71 ± 0.03 0.66 ± 0.01 0.66 ± 0.01 0.48 ± 0.02 0.41 ± 0.08 0.74 ± 0.02 0.57 ± 0.03 0.55 ± 0.02 0.06 ± 0.01 0.52 ± 0.03 
FLA/PYR 1.27 ± 0.19 1.98 ± 0.67 1.31 ± 0.21 2.22 ± 1.31 1.81 ± 0.48 1.21 ± 0.40 1.04 ± 0.11 1.09 ± 0.43 0.81 ± 0.29 1.57 ± 0.10 

FLA/(FLA+PYR) 0.56 ± 0.04 0.65 ± 0.07 0.56 ± 0.04 0.66 ± 0.12 0.64 ± 0.06 0.54 ± 0.09 0.51 ± 0.03 0.51 ± 0.10 0.44 ± 0.10 0.61 ± 0.02 
BaA/CHR 2.17 ± 0.23 0.36 ± 0.10 2.00 ± 0.19 0.61 ± 0.22 0.57 ± 0.09 1.91 ± 0.95 1.46 ± 0.45 0.92 ± 0.41 1.98 ± 0.88 0.65 ± 0.12 

BaA/(BaA+CHR) 0.68 ± 0.02 0.26 ± 0.05 0.67 ± 0.02 0.37 ± 0.08 0.36 ± 0.04 0.63 ± 0.12 0.59 ± 0.07 0.47 ± 0.11 0.65 ± 0.10 0.39 ± 0.05 
PYR/BaP 6.17 ± 0.79 0.19 ± 0.02 4.48 ± 1.30 0.26 ± 0.04 0.24 ± 0.08 2.50 ± 0.78 1.06 ± 0.15 1.39 ± 0.08 2.04 ± 0.56 0.67 ± 0.29 

BaP/(BaP+CHR) 0.22 ± 0.07 0.27 ± 0.05 0.26 ± 0.05 0.37 ± 0.14 0.41 ± 0.06 0.56 ± 0.12 0.52 ± 0.10 0.36 ± 0.04 0.53 ± 0.09 0.39 ± 0.04 
BeP/BaP 1.00 ± 0.07 1.48 ± 0.52 1.45 ± 0.25 3.23 ± 0.86 2.76 ± 0.51 0.85 ± 0.07 1.04 ± 0.12 1.07 ± 0.18 0.92 ± 0.07 1.63 ± 0.30 

BaP/BghiP 0.72 ± 0.16 0.82 ± 0.32 0.62 ± 0.10 0.42 ± 0.12 0.43 ± 0.16 0.57 ± 0.13 0.56 ± 0.06 0.49 ± 0.03 0.51 ± 0.11 0.76 ± 0.14 
IcdP/BghiP 0.29 ± 0.09 2.23 ± 0.47 0.28 ± 0.14 3.22 ± 1.03 2.86 ± 1.07 0.31 ± 0.08 1.04 ± 0.36 0.91 ± 0.11 1.15 ± 0.30 2.45 ± 0.48 

IcdP/(IcdP+BghiP) 0.22 ± 0.05 0.69 ± 0.05 0.21 ± 0.09 0.75 ± 0.07 0.72 ± 0.09 0.23 ± 0.05 0.50 ± 0.09 0.48 ± 0.03 0.53 ± 0.07 0.71 ± 0.04 
RET/(RET+CHR) 0.74 ± 0.08 0.00 ± 0.00 0.78 ± 0.07 0.00 ± 0.00 0.00 ± 0.00 0.55 ± 0.09 0.39 ± 0.09 0.31 ± 0.06 0.57 ± 0.04 0.21 ± 0.09 

 45 
PAH abbreviations: 
ANT: Anthracene   BaA: Benzo[a]anthracene   BaP: Benzo[a]pyrene  BeP: Benzo[e]pyrene 
BghiP: Benzo[g,h,i]perylene  CHR: Chrysene   FL: Fluorene   FLA: Fluoranthene 
IcdP: Indeno[1,2,3-c,d]pyrene PHE: Phenanthrene   PYR: Pyrene   RET: retene 
 50 
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S3. Supplementary Figures 

a) 

 

b) 

 
c) 

 

d) 

 
e) 

 

f) 

 
Figure S2: Major chemical composition (% of PM2.5 mass) for waste materials tested.  
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g) 

 

h) 

 
i) 

 

j) 

 
 
Figure S2 continued.  55 
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Figure S3: Abundances of carbon fractions (% of PM2.5 mass).  
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Figure S4: Abundances of elements (% of PM2.5 mass). 60 
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Figure S5: Abundances of particulate ions captured on the front (F) quartz-fiber filters and gaseous ions collected on the back (B) 
impregnated filters (see filter configuration in Figure 1). The sum of the particulate inorganic ions on the front filters was less than 
10% of PM2.5 mass for all waste materials. Among the three vegetations, particulate ions were most abundant in dry vegetation 65 
(9.9%), and their abundances decreased with increasing moisture content, likely due to lower combustion temperatures decreasing 
the generation of these ions. The gaseous ions were more abundant than particulate ions and the dry vegetation had higher gaseous 
ion than those with higher moisture content. The vegetation samples show high abundances of HCl, HNO2, HNO3, and NH3. The 
rubber sample had a higher HCl abundance (6.7%) than for the other samples except for dry vegetation.  

 70 

 
Figure S6: Abundances of particulate anion (A) and cation (C) captured on the front quartz-fiber filters (% of PM2.5 mass).  
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Figure S7: Emission factors of organic species.  75 
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Figure S8: Abundances of PAHs (% of PM2.5 mass).  
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Figure S9: Abundances of nitro-PAHs (% of PM2.5 mass).  

 80 
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Figure S10: Abundances of n-alkanes (% of PM2.5 mass).  
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Figure S11: Abundances of phthalates (% of PM2.5 mass).  85 
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