



### Supplement of

# Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany

Junwei Song et al.

Correspondence to: Junwei Song (junwei.song@kit.edu) and Harald Saathoff (harald.saathoff@kit.edu)

The copyright of individual parts of the supplement might differ from the article licence.

#### S1. Data processing of CHARON-PTR-MS

The raw data of CHARON-PTR-MS was processed by the Ionicon Data Analyzer (IDA 1.0.2, Ionicon Analytik). Mass calibrations were performed using four ion peaks including  $H_3^{18}O^+$  at m/z21.0226, C<sub>3</sub>H<sub>6</sub>OH<sup>+</sup> at m/z 59.0491, C<sub>6</sub>H<sub>5</sub>I<sup>+</sup> at m/z 203.943 and C<sub>6</sub>H<sub>5</sub>I<sub>2</sub><sup>+</sup> at m/z 330.848, where 5  $C_6H_5I^+$  and  $C_6H_5I_2^+$  were produced from the internal standard diiodobenzene. High-resolution peak fitting for each ion was performed automatically by the IDA software and refined manually according to the database of PTR-ToF-MS literature (Pagonis et al., 2019; Yáñez-Serrano et al., 2021). The quantification procedure of CHARON-PTR-MS data has been described in detail by (Muller et al., 2017). The collision rate (k) between the analyte molecules and reagent ions  $(H_3O^+)$ 10 is calculated based on the parametrization method (Su, 1988). This method uses the properties of the analyte molecule as input parameters: (i) its molecular weight, (ii) its molecular polarizability which is calculated from the elemental composition using the parametrization method (Bosque and Sales, 2002) and (iii) its dipole moment which is assumed to be 0.3 and 2.75 D for pure and substituted hydrocarbons, respectively. The estimated accuracy of this quantification method is 15  $\pm 30\%$ . Further data analyses including gas and particle data separation, and background subtraction were performed with custom-in MATLAB scripts in IDA. Figure S13 shows an example of each CHARON-PTR-MS alternatingly measurement cycle for selected ions including  $C_{10}H_{17}^+$ ,  $C_9H_{15}O^+$ ,  $C_{10}H_{15}O^+$ ,  $C_{10}H_{15}O_4^+$  and  $C_{10}H_{13}O_5^+$ . The signals of particulate more oxidized species ( $C_{10}H_{15}O_4^+$ and  $C_{10}H_{13}O_5^+$ ) measured by the CHARON slowly reached up the plateau compared to less 20 oxidized species ( $C_{10}H_{15}O^+$ ). This is due to the PTR-MS shows slow responses to some organic species especially more oxidized species in the particle phase (Piel et al., 2021). Thus, the initial 290 s particle-phase data at each CHARON measurement cycle were excluded. We also excluded the last 10 s particle-phase data of each CHARON measurement to avoid any inferences due to the switching from particle-phase measurement to gas-phase measurement, thus total 300 s data of 25 each CHARON measurement were excluded finally. Then the processed particle data were corrected by the interpolate subtraction of HEPA filter background. Based on the SMPS measurements, the geometric particle sizes were observed at the range of 20-112 nm (average: 48  $\pm$  12 nm) during the entire campaign. Finally, we adopted an average enrichment factor of 6 for the particles with the sizes <150 nm to calculate the total aerosol mass measured by the CHARON-PTR-MS. Note that the transition time was set with 3 minutes for the switching from CHARON 30 measurement mode to VOC measurement mode before the starting of gas-phase measurement.

Therefore, for the gas phase data, we only excluded the first 10 s and the last 10 s data at each VOC measurement cycle to avoid any inferences due to the switching between different measurement modes. Then we subtracted the gas background from the measurement of VOC-free synthetic air. Finally, we averaged the gas and particle phase background-corrected data into 5 min presented in

this study.

35

The PTR-MS suffers the ionic fragmentation during the protonation processes (Yuan et al., 2017). According to gas calibrations, the residual fractions were on average  $17\% \pm 2\%$  and  $37\% \pm 1\%$  for protonated isoprene (C<sub>5</sub>H<sub>9</sub><sup>+</sup>, *m*/z69.07) and monoterpenes (C<sub>10</sub>H<sub>17</sub><sup>+</sup>, *m*/z137.13) respectively after their fragmentation within the instrument. Previous studies have found that the fragmentation of 2-methyl-3-buten-2-ol (C<sub>5</sub>H<sub>11</sub>O<sup>+</sup>, MBO) emitted from biogenic sources inside PTR instruments can significantly contribute to the C<sub>5</sub>H<sub>9</sub><sup>+</sup> signals (Karl et al., 2012). In this study, the time series of C<sub>5</sub>H<sub>9</sub><sup>+</sup> was correlated with that of C<sub>5</sub>H<sub>11</sub>O<sup>+</sup> (r= 0.69, Figure S18), suggesting that the fragmentation of MBO could contribute to the signals of C<sub>5</sub>H<sub>9</sub><sup>+</sup>. However, the concentrations

- of  $C_5H_{11}O^+$  were much lower than those of  $C_5H_{9^+}$ , thus the contributions from  $C_5H_{11}O^+$ fragmentation to  $C_5H_{9^+}$  were lower than those from the isoprene parent ion. Therefore, it is reasonable to attribute all  $C_5H_{9^+}$  to isoprene in this study. Based on the calibration of  $\beta$ caryophyllene for our instrument in the lab (Gao et al., 2022), we assumed all sesquiterpenes following the similar fragmentation pattern of  $\beta$ -caryophyllene with 29%  $\pm 1$ % at protonated
- 50 sesquiterpene mass ( $C_{15}H_{25}^+$ , *m/z*205.20). Finally, we scaled the measured data of  $C_5H_9^+$ ,  $C_{10}H_{17}^+$ and  $C_{15}H_{25}^+$  for the mixing ratios of isoprene, monoterpenes and sesquiterpenes in this study. For the calibrated aromatic hydrocarbon species (benzene, toluene, xylenes, trimethylbenzene) and acetone, they have minor fragmentation and thus no further correction for their mixing ratios. Besides, no further correction was made for other uncalibrated VOC species.
- 55

#### S2. Comparison with the air quality monitor station data

The hourly particle mass and trace gas data (i.e., PM<sub>2.5</sub>, PM<sub>10</sub>, O<sub>3</sub>, NO<sub>2</sub>, NO and SO<sub>2</sub>) were retrieved from the air quality monitor station of Eggenstein (LUBW), located ~2.5 km southwest of our sampling site (https://udo.lubw.baden-wuerttemberg.de/public/, last access: 1/25/2022). We 60 compared the available data (PM<sub>2.5</sub>, PM<sub>10</sub>, O<sub>3</sub> and NO<sub>2</sub>) at KITcn to those obtained from the Eggenstein monitor station. As shown in Figs. S2 and S3, good correlations were found for the particle mass concentrations measured at these two locations (r = 0.91 for PM<sub>2.5</sub> and 0.76 for PM<sub>10</sub>).

A good linear correlation was also observed for the  $O_3$  data (r = 0.86), but a poor correlation was found for the NO<sub>2</sub> data (r = 0.27). This is expected due to traffic emissions at Eggenstein station,

65

which could lead to more spikes of NO<sub>2</sub> (Fig. S2). If peak values of NO<sub>2</sub> at the Eggenstein monitor station were removed, a better correlation for NO<sub>2</sub> was observed for both locations (r = 0.64).

## S3. Estimation of particulate organic nitrate from AMS data and calculation of steady state NO<sub>3</sub> radicals

- The derived ratio of  $NO_2^+/NO^+$  from AMS data can be used as an indicator for the formation of organic nitrate (Kiendler-Scharr et al., 2016; Xu et al., 2015a; Farmer et al., 2010). Here we used the measured  $NO_2^+/NO^+$  ratios to estimate the fraction of organic nitrate (OrgNO<sub>3</sub>), although this estimation requires accurate ratios for pure ammonium nitrate and organic nitrate. In this study, the average ratio of  $NO_2^+/NO^+$  for calibration using pure ammonium nitrate (NH<sub>4</sub>NO<sub>3</sub>) three times is
- 75 0.61, which is within the ranges (0.29-0.85) reported in previous observations in Europe (Kiendler-Scharr et al., 2016). Based on previous chamber and field studies on organic nitrates, we adopted a fixed value of  $NO_2^+/NO^+$  with 0.1 for organic nitrates ( $R_{0rgNO3}$ ). The mass fraction and concentration ( $pOrgNO3_{Frac}$  and  $pOrgNO3_{Mass}$ ) can be calculated using the following equations:

$$pOrgNO3_{Frac} = \frac{\left(1 + R_{OrgNO3}\right) * \left(R_{meas} - R_{calib}\right)}{\left(1 + R_{meas}\right) * \left(R_{OrgNO3} - R_{calib}\right)}$$
$$pOrgNO3_{Mass} = pOrgNO3_{Frac} * NO3$$

where  $R_{meas}$  is the measured ratios of NO<sub>2</sub><sup>+</sup> and NO<sup>+</sup> ions from AMS data,  $R_{calib}$  is the ratio in the calibration of NH<sub>4</sub>NO<sub>3</sub>. It should be noted that pOrgNO<sub>3</sub> calculated from AMS data only indicate the nitrate functional group of organic nitrates. We converted the mass concentrations of pOrgNO<sub>3</sub> to OrgNO<sub>3</sub> scaled by a factor of 4.2 based on the molecular weight of organic nitrate with 260 g mol<sup>-1</sup> from the FIGAERO-CIMS measurement.

85

80

As shown in Fig. S11, we also observed that  $C_{10}H_{15}O_7N$  and  $C_{15}H_{23}O_7N$  showed better correlations with the calculated OrgNO<sub>3</sub> from the AMS compared to  $C_5H_7O_7N$ . Note that these three particulate molecules measured by the FIGAERO-CIMS the have been proposed as the major oxidation products of isoprene, monoterpenes and sesquiterpenes respectively with nitrate radicals

90 in the field or chamber studies (Huang et al., 2019; Chen et al., 2020; Gao et al., 2022).

According to previous studies (Yu et al., 2019; Xu et al., 2015b), the steady-state NO<sub>3</sub> radicals [NO<sub>3</sub>·] can be roughly estimated by following equation.

$$[NO_3 \cdot] = \frac{k_1[NO_2][O_3]}{j_{NO_3} + k_2[NO] + \sum k_i[VOC_i]}$$

where j<sub>NO3</sub> is the NO3 photolysis rates, k<sub>1</sub> and k<sub>2</sub> are the rate constant with 3.5 x 10<sup>-17</sup> cm<sup>3</sup> molecules<sup>-1</sup>
<sup>1</sup> s<sup>-1</sup> and 2.7 x 10<sup>-11</sup> cm<sup>3</sup> molecules<sup>-1</sup> s<sup>-1</sup> under 298 K, respectively, k<sub>i</sub> is the rate constant of NO3 reacting with VOC species. In this study, we focused on the nighttime NO3 chemistry, thus the j<sub>NO3</sub> was assumed as 0. The data of NO and NO<sub>2</sub> were obtained from the Eggenstein air quality monitor station located ~2.5 km southwest of the sampling site. We considered the sink of NO3 radicals was related to the oxidation of VOC species mainly including isoprene, monoterpenes, sesquiterpenes, benzene, toluene, C<sub>8</sub>-and C<sub>9</sub>-aromatic hydrocarbons. As shown in Figure S19, we observed rapid decreases of steady-state NO3 radicals during early nighttime, and stayed at low concentrations at night, which was mainly due to the sink of terpene oxidation.



**Figure S1.** Calibrated enrichment factor of ammonium nitrate particles as a function of particle size in the 60-700 nm range



Figure S2. Time series of (a) PM<sub>10</sub>, (b) PM<sub>2.5</sub>, (c) NO<sub>2</sub> and NO, (d) O<sub>3</sub> and (e) SO<sub>2</sub> and NH<sub>3</sub> observed at the sampling site (KITcn) and Eggenstein air quality monitor station during the measurement period. The trace gas data of NO<sub>2</sub> and O<sub>3</sub> are only available for few days due to malfunction of the data acquisition software.



Figure S3. Scatter plots for (a) PM<sub>2.5</sub>, (b) PM<sub>10</sub>, (c) NO<sub>2</sub> and (d) O<sub>3</sub> measured at the sampling site
(KITcn) and Eggenstein air quality monitor station during the measurement period. The black solid and dash lines represent the linear fit curve and 1:1 line, respectively. The blue solid line in (c) shows the linear fit curve after removing high NO<sub>2</sub> values (>10 ppb) observed at Eggenstein monitor station.



**Figure S4.** Time series of concentrations of selected VOC species. (a) isoprene; (b) monoterpenes; (c) sesquiterpenes; (d) benzene and (e) toluene.



Figure S5. Diurnal variations of (a) meteorological parameters including temperature (T), relative humidity (RH), radiation, wind speeds (WS) and boundary layer height (BLH); (b) BC and VOCs including isoprene, monoterpenes (MTs), sesquiterpenes (SQTs), benzene, toluene, ethanol; (c) aerosol species and trace gases including OA, sulfate, nitrate, ammonium, O<sub>3</sub>, SO<sub>2</sub>, NO<sub>2</sub> and NH<sub>3</sub> during the entire campaign. All data are shown in medians with the whiskers of 25<sup>th</sup> and 75<sup>th</sup> percentiles.



**Figure S6.** (a) Time series of PM<sub>1</sub>, PM<sub>2.5</sub>, PM<sub>10</sub> measured by the OPC, PM<sub>1</sub> calculated from SMPS measurement (assumed density of 1.4 g cm<sup>-3</sup>), and NR-PM<sub>2.5</sub> measured by the AMS plus BC measured by the AE33. (c-d) scatter plots between OPC\_PM<sub>1</sub> vs. OPC\_PM<sub>2.5</sub>, OPC\_PM<sub>2.5</sub> vs. NR-PM<sub>2.5</sub> plus BC, OPC\_PM<sub>1</sub> vs. SMPS\_PM<sub>1</sub> during the entire measurement period.



Figure S7. Median mass spectra of OA measured by the CHARON-PTR-MS



**Figure S8.** Key diagnostic plots for 5-factor PMF solution of PTR-measured VOCs: (a)  $Q/Q_{expected}$  as a function of number of factors (P); (b)  $Q/Q_{expected}$  as a function of  $f_{Peak}$ ;(c)) the box and whiskers plot showing the distributions of scaled residuals for each m/z; (d) time series of the measured organic mass and the reconstructed organic mass and (e) time series of variations of the residual values (= measured-reconstructed) of the fit.



**Figure. S9** Bivariate polar plots of (a-f) BC and OA factors including HOA, SV-OOA1, SV-OOA2, LV-OOA and MOOA resolved from the AMS-PMF analysis and (g-h) ethanol and VOC factors including traffic VOC, terpenes, aromatic-OVOC, biogenic-OVOC and aged OVOC.



**Figure S10.** Key diagnostic plots for 5-factor PMF solution of AMS-measured OA: (a)  $Q/Q_{expected}$  as a function of number of factors (P); (b)  $Q/Q_{expected}$  as a function of  $f_{Peak}$ ;(c)) the box and whiskers plot showing the distributions of scaled residuals for each m/z; (d) time series of the measured organic mass and the reconstructed organic mass and (e) time series of variations of the residual values (= measured-reconstructed) of the fit.



Figure S11. Key diagnostic plots for 6-factor PMF solution of CHARON-measured OA: (a)  $Q/Q_{expected}$  as a function of number of factors (P); (b)  $Q/Q_{expected}$  as a function of  $f_{Peak}$ ;(c)) the box and whiskers plot showing the distributions of scaled residuals for each m/z; (d) time series of the measured organic mass and the reconstructed organic mass and (e) time series of variations of the residual values (= measured-reconstructed) of the fit.



**Figure S12.** Time series of selected ions including  $C_3H_5O_2^+$ ,  $C_4H_9O^+$ ,  $C_4H_7O^+$  during an individual CHARON-PTR-MS alternatingly measurement cycle.



Figure S13. An example of alternatingly measurement cycle in the CHARON-PTR-MS including 5-min HEPA mode, 25 min CHARON mode, 3 min transition time, 25 min VOC mode and 2 min transition mode on 13<sup>th</sup> August 2021. Time series of selected ions including C<sub>10</sub>H<sub>17</sub><sup>+</sup>, C<sub>9</sub>H<sub>15</sub>O<sup>+</sup>, C<sub>10</sub>H<sub>15</sub>O<sup>+</sup>, C<sub>10</sub>H<sub>15</sub>O<sub>4</sub><sup>+</sup> and C<sub>10</sub>H<sub>13</sub>O<sub>5</sub><sup>+</sup>.



Figure S14. Time series of particulate  $C_3H_5O_2^+$ , sum of unassigned factor 5 and 6 (F5 + F6) form the CHARON and MOOA resolved from the AMS-PMF analysis.



**Figure S15.** Time series of planetary boundary layer (PBL) height obtained from ERA5 reanalysis data over the entire campaign. The top shows the origins of five air mass clusters.



**Figure S16.** Time series of organic nitrate calculated from the AMS based on the method of  $NO_2^+/NO^+$  and three organic nitrate molecules ( $C_5H_7O_7N$ ,  $C_{10}H_{15}O_8N$  and  $C_{15}H_{23}O_8N$ ) detected by FIGAERO-CIMS related with the oxidation of isoprene, monoterpenes, sesquiterpenes respectively.



**Figure S17.** Cases showing the nighttime non-particle growth events as marked in pink shaded areas. Time series of wind speed, boundary layer height, particle number size distributions and geometric mean particle size, and mixing ratios of terpenes factor and O<sub>3</sub>, production rate of nitrate radicals (PNO<sub>3</sub>), and mass concentrations of SV-OOA1 and organic nitrate calculated from the AMS during  $3^{rd}$ -7<sup>th</sup> August, 2021. Three particulate organic nitrate molecules (C<sub>5</sub>H<sub>7</sub>O<sub>7</sub>N, C<sub>10</sub>H<sub>15</sub>O<sub>8</sub>N, C<sub>15</sub>H<sub>23</sub>O<sub>8</sub>N) detected by the FIGAERO-CIMS are plotted in (a5).



**Figure S18.** Scatter plot of  $C_5H_9^+$  and  $C_5H_{11}O^+$  in the gas phase during the entire campaign.



Figure S19. (a) Time series of steady-state  $[NO_3 \cdot]$  concentrations (b) diurnal variations of  $[NO_3 \cdot]$ .

| Massurada a susan store                                     | In standard and                 | Data period   |           |  |
|-------------------------------------------------------------|---------------------------------|---------------|-----------|--|
| Measured parameters                                         | Instrument                      | Starting      | Ending    |  |
| Meteorological parameters                                   | WS700 (Lufft GmbH)              | 7/16/2021     | 8/17/2021 |  |
| NO2 (data missing)                                          | AS32M (Environment SA)          | 7/16/2021     | 8/17/2021 |  |
| O <sub>3</sub> (data missing)                               | O341M (Environment SA)          | 7/16/2021     | 8/17/2021 |  |
| NH <sub>3</sub>                                             | G2103 (Picarro Inc.)            | 7/16/2021     | 8/17/2021 |  |
| PM <sub>1</sub> , PM <sub>2.5</sub> , PM <sub>10</sub> mass | OPC FIDAS200 (Palas GmbH)       | 7/16/2021     | 8/17/2021 |  |
| Particle size (10–410 nm, $d_m$ )                           | NanoScan-SMPS3910 (TSI Inc.)    | 7/16/2021     | 8/17/2021 |  |
| Particle size (13.6-763.5 nm, $d_m$ )                       | SMPS (TSI Inc.)                 | 7/16/2021     | 8/17/2021 |  |
| Particle number concentration                               | CPC3789 (TSI Inc.)              | 7/23/2021     | 8/17/2021 |  |
| Black carbon                                                | AE33 (Magee Scientific)         | 7/19/2021     | 8/17/2021 |  |
| Particle mass concentration                                 | AMS (Aerodyne Research Inc.)    | 7/16/2021     | 8/14/2021 |  |
| VOCs/oxygenated VOCs                                        | CHARON-PTR-MS (Ionicon Analytik | 7/23/2021 8/1 | 8/17/2021 |  |
|                                                             | GmbH)                           | // _0/ _0/_1  | 0,1,,2021 |  |
| Semi-volatile aerosol particles                             | CHARON-PTR-MS (Ionicon Analytik | 7/23/2021     | 8/17/2021 |  |
| Semi volume derosor particles                               | GmbH)                           | 112312021     | 0/1//2021 |  |
| Oxygenated organic molecules                                | FIGAERO-CIMS (Aerodyne Research | 7/27/2021     | 8/09/2021 |  |
| oxygenated organic molecules                                | Inc.)                           | //2//2021     | 0/07/2021 |  |

 Table S1 Instruments installed in the measurement room.

| m/z   | Formula           | Tentative assignment               | Ave (ppb) | Std (ppb) | MDL (ppb) |
|-------|-------------------|------------------------------------|-----------|-----------|-----------|
| 41.04 | $C_3H_5{}^+$      | alkyl fragment                     | 3.078     | 1.752     | 0.1505    |
| 42.03 | $C_2H_4N^+$       | acetonitrile                       | 0.361     | 0.413     | 0.0117    |
| 43.02 | $C_2H_3O^+$       | acetic acid fragment               | 5.791     | 3.718     | 0.2686    |
| 43.05 | $C_3H_7^+$        | propene + fragment                 | 0.402     | 0.251     | 0.0414    |
| 44.01 | $CH_2NO^+ \\$     | isocyanic acid                     | 0.140     | 0.085     | 0.0103    |
| 44.05 | $C_2H_5N^+$       | formamide                          | 0.096     | 0.042     | 0.0082    |
| 45.03 | $C_2H_5O^+$       | acetaldehyde                       | 1.754     | 0.951     | 0.1282    |
| 46.03 | $CH_4NO^+$        | formamide                          | 0.067     | 0.028     | 0.0054    |
| 47.01 | $CH_3O_2^+$       | formic acid                        | 1.011     | 0.732     | 0.0516    |
| 47.05 | $C_2H_7O^+$       | ethanol                            | 0.071     | 0.117     | 0.0006    |
| 55.02 | $C_{3}H_{3}O^{+}$ | fragment                           | 0.084     | 0.053     | 0.0066    |
| 55.05 | $C_4H_7H^+$       | fragment                           | 0.649     | 0.299     | 0.0642    |
| 57.03 | $C_3H_5O^+$       | acrolein                           | 0.322     | 0.335     | 0.0177    |
| 57.07 | $C_4H_9^+$        | fragment                           | 0.629     | 0.712     | 0.0331    |
| 59.05 | $C_3H_7O^+$       | acetone                            | 3.828     | 1.621     | 0.1250    |
| 61.03 | $C_2H_5O_2{}^+$   | acetic acid                        | 1.258     | 0.819     | 0.0547    |
| 62.02 | $CH_4NO_2{}^+$    | nitromethane                       | 0.035     | 0.018     | 0.0017    |
| 63.03 | $C_2H_7S^+$       | dimethyl sulfide                   | 0.035     | 0.018     | 0.0015    |
| 63.04 | $C_2H_7O_2{}^+$   | ethylene glycol                    | 0.014     | 0.007     | 0.0014    |
| 67.05 | $C_5H_7H^+$       | fragment                           | 0.166     | 0.093     | 0.0131    |
| 69.03 | $C_4H_5O^+$       | furan                              | 0.084     | 0.038     | 0.0055    |
| 69.07 | $C_5H_9^+$        | Isoprene                           | 0.242     | 0.144     | 0.0280    |
| 71.01 | $C_3H_3O_2{}^+$   | unknown                            | 0.060     | 0.027     | 0.0037    |
| 71.05 | $C_4H_7O^+$       | methyl vinyl ketone + methacrolein | 0.204     | 0.134     | 0.0092    |
| 71.09 | $C_{5}H_{11}^{+}$ | pentenes                           | 0.044     | 0.020     | 0.0095    |
| 73.03 | $C_3H_5O_2{}^+$   | methylglyoxal/acrylic acid         | 0.171     | 0.063     | 0.0197    |
| 73.06 | $C_4H_9O^+$       | methyl ethyl ketone/butanals       | 0.152     | 0.085     | 0.0052    |
| 75.04 | $C_3H_7O_2{}^+$   | propanonic acid/hydroxyacetone     | 0.181     | 0.120     | 0.0091    |
| 77.02 | $C_2H_5O_3{}^+$   | glycolic acid                      | 0.038     | 0.015     | 0.0046    |
| 79.05 | $C_6H_7^+$        | benzene                            | 0.303     | 0.227     | 0.0123    |
| 81.07 | $C_6H_9^+$        | fragment of monoterpenes           | 1.060     | 1.420     | 0.0192    |
| 83.05 | $C_5H_7O^+$       | methylfuran                        | 0.163     | 0.092     | 0.0080    |
| 83.09 | $C_{6}H_{11}^{+}$ | fragments of hexenol/hexanal       | 0.058     | 0.036     | 0.0110    |
| 85.03 | $C_4H_5O_2{}^+$   | furanone                           | 0.096     | 0.054     | 0.0059    |
| 85.06 | $C_5H_9O^+$       | cyclopentanone                     | 0.066     | 0.039     | 0.0037    |
| 85.10 | $C_{6}H_{13}^{+}$ | methylcyclopentane                 | 0.014     | 0.008     | 0.0042    |
| 87.04 | $C_4H_7O_2{}^+$   | 2,3-butanedione                    | 0.158     | 0.082     | 0.0099    |
| 87.08 | $C_5H_{11}O^+$    | 2-pentanone                        | 0.015     | 0.009     | 0.0008    |
| 89.02 | $C_3H_5O_3^+$     | butryic acid                       | 0.014     | 0.005     | 0.0008    |
| 89.06 | $C_4H_9O_2{}^+$   | methyl propanoate                  | 0.016     | 0.012     | 0.0036    |
| 91.05 | $C_7H_7^+$        | unknown                            | 0.102     | 0.081     | 0.0063    |

**Table S2** List of VOC ions and average mixing ratios with standard deviation (Std) as well as

 measurement detection limit (MDL) included in the PMF analysis.

| 93.07  | $C_7H_9^+$             | toluene                                         | 0.282 | 0.219 | 0.0126 |
|--------|------------------------|-------------------------------------------------|-------|-------|--------|
| 95.01  | $C_5H_3O_2{}^+$        | unknown                                         | 0.041 | 0.053 | 0.0016 |
| 95.05  | $C_6H_7O^+$            | phenol                                          | 0.170 | 0.047 | 0.0092 |
| 95.09  | $C_7 H_{11}{}^+$       | fragment of monoterpenes                        | 0.226 | 0.243 | 0.0107 |
| 97.03  | $C_5H_5O_2{}^+$        | furfural                                        | 0.023 | 0.011 | 0.0024 |
| 97.06  | $C_6H_9O^+$            | 2-ethylfuran/2,5-dimethylfuran                  | 0.116 | 0.072 | 0.0054 |
| 97.10  | $C_{7}H_{13}^{+}$      | methylcyclohexene                               | 0.018 | 0.017 | 0.0068 |
| 99.01  | $C_4H_3O_3{}^+$        | unknown                                         | 0.028 | 0.017 | 0.0032 |
| 99.04  | $C_5H_7O_2{}^+$        | furanone                                        | 0.082 | 0.050 | 0.0045 |
| 99.08  | $C_6H_{11}O^+$         | cyclohexanone                                   | 0.019 | 0.011 | 0.0011 |
| 101.02 | $C_4H_5O_3{}^+$        | pentanedione                                    | 0.023 | 0.012 | 0.0019 |
| 101.06 | $C_5H_9O_2{}^+$        | C5-hydroxycarbonyl (ISOPOOH conversion product) | 0.182 | 0.139 | 0.0083 |
| 103.04 | $C_4H_7O_3^+$          | acetic anhydride                                | 0.012 | 0.007 | 0.0013 |
| 105.07 | $C_8H_9^+$             | styrene                                         | 0.033 | 0.028 | 0.0031 |
| 107.09 | $C_8 H_{11}^+$         | C <sub>8</sub> aromatics (xylenes)              | 0.195 | 0.145 | 0.0062 |
| 109.03 | $C_6H_5O_2{}^+$        | unknown                                         | 0.012 | 0.008 | 0.0023 |
| 109.06 | $C_7H_9O^+$            | cresol/benzylalcohol                            | 0.053 | 0.029 | 0.0020 |
| 109.10 | $C_8 H_{13}{}^+$       | fragment of sesquiterpenes                      | 0.067 | 0.048 | 0.0063 |
| 111.04 | $C_6H_7O_2{}^+$        |                                                 | 0.056 | 0.034 | 0.0033 |
| 111.08 | $C_7H_{11}O^+$         | heptadienal                                     | 0.048 | 0.029 | 0.0025 |
| 113.02 | $C_5H_5O_3{}^+$        | furoic acid                                     | 0.031 | 0.020 | 0.0019 |
| 113.06 | $C_6H_9O_2{}^+$        | hexendione                                      | 0.041 | 0.026 | 0.0019 |
| 115.04 | $C_5H_7O_3{}^+$        | pentanetrione                                   | 0.016 | 0.008 | 0.0011 |
| 115.08 | $C_{6}H_{11}O_{2}^{+}$ | 2,5-hexanedione/ethyl-2-butenoate               | 0.042 | 0.030 | 0.0025 |
| 121.10 | $C_{9}H_{13}^{+}$      | C <sub>9</sub> aromatics (trimethylbenzene)     | 0.084 | 0.068 | 0.0037 |
| 123.08 | $C_8H_{11}O^+$         | unknown                                         | 0.022 | 0.014 | 0.0013 |
| 123.12 | $C_9H_{15}^+$          | fragment of sesquiterpenes                      | 0.034 | 0.028 | 0.0032 |
| 125.06 | $C_7H_9O_2{}^+$        | guaiacol + dihydroxy toluene                    | 0.024 | 0.015 | 0.0018 |
| 125.10 | $C_8H_{13}O^+$         | unknown                                         | 0.026 | 0.016 | 0.0019 |
| 127.04 | $C_6H_7O_3{}^+$        | unknown                                         | 0.015 | 0.009 | 0.0018 |
| 127.08 | $C_7H_{11}O_2{}^+$     | unknown                                         | 0.023 | 0.015 | 0.0004 |
| 127.11 | $C_8H_{15}O^+$         | E-2-octenal                                     | 0.003 | 0.002 | 0.0008 |
| 129.05 | $C_6H_9O_3{}^+$        | unknown                                         | 0.008 | 0.006 | 0.0016 |
| 129.09 | $C_7 H_{13} O_2^+$     | unknown                                         | 0.016 | 0.010 | 0.0016 |
| 133.10 | $C_{10}H_{13}^+$       | cymenene                                        | 0.014 | 0.013 | 0.0029 |
| 135.08 | $C_9H_{11}O^+$         | unknown                                         | 0.006 | 0.006 | 0.0018 |
| 135.12 | $C_{10}H_{15}^+$       | C <sub>10</sub> aromatics/p-cymene              | 0.038 | 0.036 | 0.0018 |
| 137.13 | $C_{10}H_{17}^+$       | monoterpenes                                    | 0.393 | 0.570 | 0.0035 |
| 139.08 | $C_8H_{11}O_2{}^+$     | unknown                                         | 0.021 | 0.014 | 0.0016 |
| 139.11 | $C_9H_{15}O^+$         | nopinone                                        | 0.023 | 0.018 | 0.0009 |
| 141.05 | $C_7H_9O_3{}^+$        | dicarbonyl epoxide                              | 0.020 | 0.015 | 0.0033 |
| 141.09 | $C_8H_{13}O_2^+$       | unknown                                         | 0.018 | 0.012 | 0.0013 |
| 143.07 | $C_7H_{11}O_3^+$       | unknown                                         | 0.006 | 0.005 | 0.0021 |
| 143.11 | $C_8H_{15}O_2{}^+$     | Z-3-hexenyl acetate                             | 0.008 | 0.005 | 0.0015 |

| 149.10 | $C_{10}H_{13}O^+$     | unknown                            | 0.006 | 0.006 | 0.0010 |
|--------|-----------------------|------------------------------------|-------|-------|--------|
| 149.13 | $C_{11}H_{17}^+$      | fragment of sesquiterpene          | 0.004 | 0.003 | 0.0010 |
| 151.11 | $C_{10}H_{15}O^+$     | fragment of pinonaldehyde          | 0.027 | 0.026 | 0.0012 |
| 151.08 | $C_9H_{11}O_2^+$      | methylsalicylate                   | 0.009 | 0.007 | 0.0015 |
| 153.09 | $C_9H_{13}O_2^+$      | unknown                            | 0.008 | 0.005 | 0.0008 |
| 153.13 | $C_{10}H_{17}O^+$     | camphor                            | 0.013 | 0.013 | 0.0007 |
| 155.07 | $C_8H_{11}O_3^+$      | unknown                            | 0.008 | 0.009 | 0.0024 |
| 155.11 | $C_9H_{15}O_2^+$      | arbusculone, C9 unsaturated esters | 0.004 | 0.003 | 0.0006 |
| 167.07 | $C_9H_{11}O_3^+$      | unknown                            | 0.007 | 0.007 | 0.0041 |
| 167.11 | $C_{10}H1_5O_2{}^+$   | unknown                            | 0.004 | 0.004 | 0.0015 |
| 169.09 | $C_9H_{13}O_3^+$      | unknown                            | 0.003 | 0.005 | 0.0029 |
| 169.12 | $C_{10}H_{17}O_2{}^+$ | unknown                            | 0.008 | 0.004 | 0.0007 |
| 205.20 | $C_{15}H_{25}^{+}$    | sesquiterpenes                     | 0.002 | 0.004 | 0.0001 |
|        |                       |                                    |       |       |        |

**Table S3** List of organic ions in the particle phase measured by the CHARON included in thePMF analysis.

| m/z   | Formula               | Ave (ng m <sup>-3</sup> ) | Std (ng m <sup>-3</sup> ) |
|-------|-----------------------|---------------------------|---------------------------|
| 63.04 | $C_2H_7O_2^+$         | 7.0                       | 4.3                       |
| 65.02 | $C_{1}H_{5}O_{3}^{+}$ | 1.4                       | 2.2                       |
| 67.05 | $C_{5}H_{7}^{+}$      | 21.3                      | 28.0                      |
| 69.03 | $C_4H_5O_1{}^+$       | 19.2                      | 19.2                      |
| 69.07 | $C_5H_9^+$            | 29.1                      | 19.0                      |
| 71.05 | $C_4H_7O_1{}^+$       | 27.3                      | 25.4                      |
| 73.03 | $C_3H_5O_2{}^+$       | 185.7                     | 35.7                      |
| 73.07 | $C_4H_9O_1{}^+$       | 2.5                       | 2.3                       |
| 75.04 | $C_3H_7O_2{}^+$       | 22.3                      | 11.2                      |
| 77.04 | $C_6H_5^+$            | 7.9                       | 6.5                       |
| 79.05 | $C_{6}H_{7}^{+}$      | 20.3                      | 19.6                      |
| 81.07 | $C_6H_9^+$            | 34.3                      | 34.6                      |
| 83.05 | $C_{5}H_{7}O_{1}^{+}$ | 34.9                      | 33.8                      |
| 83.08 | $C_6H_{11}^+$         | 16.2                      | 6.7                       |
| 85.03 | $C_4H_5O_2{}^+$       | 47.0                      | 49.7                      |
| 85.07 | $C_{5}H_{9}O_{1}^{+}$ | 7.7                       | 6.9                       |
| 87.04 | $C_4H_7O_2{}^+$       | 22.3                      | 14.8                      |
| 87.08 | $C_5H_{11}O_1^+$      | 1.6                       | 0.6                       |
| 89.02 | $C_{3}H_{5}O_{3}^{+}$ | 3.0                       | 3.3                       |

| 89.06  | $C_4H_9O_2{}^+$        | 21.3 | 10.9 |
|--------|------------------------|------|------|
| 91.05  | $C_{7}H_{7}^{+}$       | 7.9  | 8.5  |
| 93.03  | $C_6H_5O_1{}^+$        | 0.9  | 2.4  |
| 93.07  | $C_7H_9^+$             | 38.7 | 33.0 |
| 95.04  | $C_6H_7O_1{}^+$        | 39.3 | 37.7 |
| 95.08  | $C_7 H_{11}^+$         | 20.4 | 23.1 |
| 97.03  | $C_5H_5O_2{}^+$        | 20.0 | 19.4 |
| 97.06  | $C_6H_9O_1$            | 19.5 | 22.7 |
| 97.10  | $C_{7}H_{13}^{+}$      | 8.3  | 2.7  |
| 99.04  | $C_5H_7O_2^+$          | 29.4 | 31.6 |
| 99.08  | $C_{6}H_{11}O_{1}^{+}$ | 4.5  | 4.3  |
| 99.12  | $C_{7}H_{15}^{+}$      | 0.4  | 0.4  |
| 101.06 | $C_5H_9O_2^+$          | 11.2 | 10.6 |
| 101.10 | $C_{6}H_{13}O_{1}^{+}$ | 1.5  | 0.6  |
| 103.04 | $C_4H_7O_3{}^+$        | 8.5  | 6.4  |
| 103.08 | $C_5H_{11}O_2^+$       | 0.9  | 0.5  |
| 105.07 | $C_8H_9^+$             | 5.7  | 6.1  |
| 107.05 | $C_7H_7O_1{}^+$        | 4.8  | 2.3  |
| 107.08 | $C_8H_{11}^+$          | 34.1 | 42.0 |
| 109.07 | $C_7H_9O_1{}^+$        | 14.5 | 17.4 |
| 109.10 | $C_8H_{13}^+$          | 15.7 | 18.9 |
| 111.05 | $C_6H_7O_2^+$          | 26.2 | 27.0 |
| 111.08 | $C_7 H_{11} O_1^+$     | 7.8  | 7.8  |
| 111.11 | $C_8H_{15}^+$          | 3.5  | 1.5  |
| 113.02 | $C_{5}H_{5}O_{3}^{+}$  | 8.6  | 8.1  |
| 113.06 | $C_6H_9O_2^+$          | 17.6 | 18.8 |
| 115.04 | $C_5H_7O_3^+$          | 9.5  | 9.2  |
| 115.08 | $C_{6}H_{11}O_{2}^{+}$ | 14.6 | 7.8  |
| 119.08 | $C_9H_{11}^+$          | 7.1  | 6.6  |
| 121.02 | $C_7H_5O_2{}^+$        | 2.1  | 1.8  |
| 121.07 | $C_8H_9O_1{}^+$        | 4.8  | 4.4  |
| 121.10 | $C_9H_{13}^+$          | 5.8  | 6.8  |
| 123.04 | $C_7H_7O_2^+$          | 8.3  | 7.9  |
| 123.08 | $C_8H_{11}O_1^+$       | 9.6  | 10.3 |
| 123.11 | $C_9H_{15}^+$          | 6.9  | 9.4  |
| 125.03 | $C_6H_5O_3{}^+$        | 4.7  | 4.7  |

| 125.06 | $C_7H_9O_2{}^+$           | 20.1 | 21.1 |
|--------|---------------------------|------|------|
| 125.10 | $C_8H_{13}O_1^+$          | 4.9  | 5.1  |
| 125.13 | $C_9H_{17}^+$             | 0.9  | 0.5  |
| 127.04 | $C_6H_7O_3{}^+$           | 15.0 | 13.8 |
| 127.07 | $C_7 H_{11} O_2^+$        | 12.6 | 14.4 |
| 127.12 | $C_8H_{15}O_1^+$          | 0.9  | 0.5  |
| 129.02 | $C_5H_5O_4{}^+$           | 4.5  | 4.1  |
| 129.06 | $C_6H_9O_3{}^+$           | 7.6  | 7.6  |
| 129.09 | $C_7 H_{13} O_2^+$        | 1.3  | 1.1  |
| 131.03 | $C_5H_7O_4{}^+$           | 6.5  | 4.2  |
| 131.07 | $C_{6}H_{11}O_{3}^{+}$    | 6.3  | 3.3  |
| 133.01 | $C_4H_5O_5{}^+$           | 0.9  | 0.7  |
| 133.05 | $C_5H_9O_4{}^+$           | 6.6  | 4.7  |
| 133.10 | $C_{10}H_{13}^{+}$        | 8.8  | 7.0  |
| 135.04 | $C_8H_7O_2{}^+$           | 3.7  | 3.4  |
| 135.08 | $C_9H_{11}O_1^+$          | 10.1 | 6.5  |
| 135.11 | $C_{10}H_{15}^{+}$        | 9.9  | 17.2 |
| 137.10 | $C_9H_{13}O_1^+$          | 10.9 | 10.4 |
| 137.13 | $C_{10}H_{17}^+$          | 0.2  | 0.3  |
| 139.04 | $C_7H_7O_3^+$             | 18.3 | 22.3 |
| 139.12 | $C_9H_{15}O_1^+$          | 0.9  | 0.9  |
| 141.06 | $C_7H_9O_3{}^+$           | 39.4 | 42.1 |
| 141.13 | $C_9H_{17}O_1^+$          | 0.5  | 0.7  |
| 143.03 | $C_6H_7O_4{}^+$           | 4.5  | 4.0  |
| 143.07 | $C_7H_{11}O_3^+$          | 8.1  | 7.9  |
| 143.11 | $C_8H_{15}O_2^+$          | 1.3  | 1.3  |
| 145.05 | $C_6H_9O_4{}^+$           | 16.3 | 16.1 |
| 147.08 | $C_{10}H_{11}O_{1}{}^{+}$ | 4.6  | 4.1  |
| 149.03 | $C_8H_5O_3{}^+$           | 1.5  | 1.7  |
| 149.06 | $C_9H_9O_2^+$             | 6.8  | 5.9  |
| 151.08 | $C_9H_{11}O_2^+$          | 15.1 | 12.3 |
| 151.11 | $C_{10}H_{15}O_{1}^{+}$   | 11.2 | 13.2 |
| 153.05 | $C_4H_9O_6^+$             | 9.2  | 9.6  |
| 153.09 | $C_9H_{13}O_2^+$          | 24.4 | 26.7 |
| 153.13 | $C_{10}H_{17}O_{1}^{+}$   | 2.0  | 4.3  |
| 155.07 | $C_8H_{11}O_3^+$          | 24.5 | 23.3 |

| 155.10 | $C_9H_{15}O_2^+$        | 0.8  | 1.5  |
|--------|-------------------------|------|------|
| 157.05 | $C_7H_9O_4{}^+$         | 20.0 | 21.3 |
| 159.06 | $C_7 H_{11} O_4^+$      | 7.7  | 6.9  |
| 163.05 | $C_{13}H_{7}^{+}$       | 4.3  | 3.7  |
| 163.08 | $C_{10}H_{11}O_2^+$     | 5.2  | 5.2  |
| 163.13 | $C_8H_{19}O_3^+$        | 1.3  | 0.8  |
| 165.02 | $C_8H_5O_4{}^+$         | 1.1  | 0.9  |
| 165.09 | $C_{10}H_{13}O_2^+$     | 14.1 | 14.4 |
| 167.03 | $C_8H_7O_4{}^+$         | 0.8  | 0.9  |
| 167.07 | $C_9H_{11}O_3^+$        | 16.1 | 14.6 |
| 167.11 | $C_{10}H_{15}O_2^+$     | 6.0  | 7.2  |
| 169.05 | $C_8H_9O_4{}^+$         | 8.1  | 7.2  |
| 169.09 | $C_9H_{13}O_3^+$        | 15.0 | 16.5 |
| 171.07 | $C_8H_{11}O_4^+$        | 19.2 | 19.3 |
| 171.17 | $C_{11}H_{23}O_1^+$     | 2.0  | 1.1  |
| 173.04 | $C_7H_9O_5^+$           | 2.8  | 2.7  |
| 175.07 | $C_{11}H_{11}O_2{}^+$   | 6.7  | 5.7  |
| 177.05 | $C_{6}H_{9}O_{6}^{+}$   | 3.2  | 2.7  |
| 179.07 | $C_{10}H_{11}O_3^+$     | 4.8  | 3.7  |
| 179.09 | $C_{14}H_{11}^{+}$      | 4.4  | 3.4  |
| 181.09 | $C_{10}H_{13}O_{3}^{+}$ | 12.7 | 13.1 |
| 183.10 | $C_{10}H_{15}O_{3}^{+}$ | 10.1 | 11.2 |
| 183.17 | $C_{12}H_{23}O_{1}^{+}$ | 0.8  | 0.7  |
| 185.01 | $C_7H_5O_6^+$           | 0.9  | 0.7  |
| 185.08 | $C_9H_{13}O_4^+$        | 10.9 | 10.7 |
| 185.16 | $C_{11}H_{21}O_{2}^{+}$ | 1.8  | 0.7  |
| 187.06 | $C_8H_{11}O_5^+$        | 5.9  | 5.5  |
| 187.17 | $C_{11}H_{23}O_2^+$     | 0.5  | 0.3  |
| 189.06 | $C_{15}H_{9}^{+}$       | 5.9  | 5.1  |
| 191.05 | $C_7 H_{11} O_6^+$      | 3.3  | 2.4  |
| 191.15 | $C_{13}H_{19}O_{1}^{+}$ | 1.8  | 1.4  |
| 193.07 | $C_7 H_{13} O_6^+$      | 4.3  | 3.4  |
| 193.17 | $C_{13}H_{21}O_{1}^{+}$ | 1.2  | 1.1  |
| 195.12 | $C_8H_{19}O_5^+$        | 9.9  | 6.2  |
| 197.09 | $C_{10}H_{13}O_4{}^+$   | 9.0  | 8.9  |
| 197.19 | $C_{13}H_{25}O_{1}^{+}$ | 0.8  | 0.5  |

| 199.05 | $C_9H_{11}O_5^+$          | 3.2  | 2.6 |
|--------|---------------------------|------|-----|
| 199.09 | $C_{10}H_{15}O_4{}^+$     | 7.4  | 8.4 |
| 201.07 | $C_{16}H_{9}^{+}$         | 6.5  | 6.6 |
| 201.19 | $C_{12}H_{25}O_2^+$       | 4.0  | 1.9 |
| 205.12 | $C_{13}H_{17}O_2^+$       | 4.9  | 3.4 |
| 205.20 | $C_{15}H_{25}^{+}$        | 0.5  | 0.4 |
| 207.03 | $C_{10}H_7O_5^+$          | 1.9  | 1.6 |
| 207.15 | $C_{13}H_{19}O_2^+$       | 7.4  | 4.6 |
| 209.01 | $C_9H_5O_6^+$             | 1.4  | 1.0 |
| 211.09 | $C_7H_{15}O_7^+$          | 3.3  | 3.2 |
| 211.20 | $C_{14}H_{27}O_1^+$       | 1.6  | 0.8 |
| 213.08 | $C_{10}H_{13}O_5^+$       | 4.6  | 4.4 |
| 219.06 | $C_8H_{11}O_7^+$          | 2.1  | 1.5 |
| 219.18 | $C_{15}H_{23}O_1^+$       | 4.0  | 2.0 |
| 221.11 | $C_9H_{17}O_6^+$          | 3.3  | 2.5 |
| 223.07 | $C_{15}H_{11}O_{2}^{+}$   | 2.9  | 3.5 |
| 225.06 | $C_{14}H_9O_3^+$          | 2.2  | 2.4 |
| 225.22 | $C_{15}H_{29}O_1^+$       | 1.4  | 0.9 |
| 227.21 | $C_{14}H_{27}O_2^+$       | 5.2  | 1.8 |
| 229.10 | $C_{18}H_{13}^{+}$        | 2.9  | 2.5 |
| 229.22 | $C_{14}H_{29}O_2^+$       | 3.5  | 1.7 |
| 239.11 | $C_{16}H_{15}O_{2}{}^{+}$ | 6.4  | 3.6 |
| 247.10 | $C_{14}H_{15}O_4^+$       | 1.3  | 1.0 |
| 247.23 | $C_{14}H_{31}O_{3}{}^{+}$ | 3.3  | 1.5 |
| 257.25 | $C_{16}H_{33}O_2^+$       | 13.5 | 6.8 |
| 275.26 | $C_{16}H_{35}O_{3}^{+}$   | 12.8 | 6.7 |
| 299.07 | $C_{20}H_{11}O_{3}{}^{+}$ | 0.5  | 0.6 |

#### References

- Bosque, R. and Sales, J.: Polarizabilities of Solvents from the Chemical Composition, Journal of Chemical Information and Computer Sciences, 42, 1154-1163, 10.1021/ci025528x, 2002.
- Chen, Y., Takeuchi, M., Nah, T., Xu, L., Canagaratna, M. R., Stark, H., Baumann, K., Canonaco, F., Prévôt, A. S. H., Huey, L. G., Weber, R. J., and Ng, N. L.: Chemical characterization of secondary organic aerosol at a rural site in the southeastern US: insights from simultaneous high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and FIGAERO chemical ionization mass spectrometer (CIMS) measurements, Atmos. Chem. Phys., 20, 8421-8440, 10.5194/acp-20-8421-2020, 2020.
- Farmer, D. K., Matsunaga, A., Docherty, K. S., Surratt, J. D., Seinfeld, J. H., Ziemann, P. J., and Jimenez, J. L.: Response of an aerosol mass spectrometer to organonitrates and organosulfates and implications for atmospheric chemistry, P. Natl. Acad. Sci. USA, 107, 6670-6675, 2010.
- Gao, L., Song, J., Mohr, C., Huang, W., Vallon, M., Jiang, F., Leisner, T., and Saathoff, H.: Kinetics, SOA yields, and chemical composition of secondary organic aerosol from β-caryophyllene ozonolysis with and without nitrogen oxides between 213 and 313 K, Atmos. Chem. Phys., 22, 6001-6020, 10.5194/acp-22-6001-2022, 2022.
- Huang, W., Saathoff, H., Shen, X., Ramisetty, R., Leisner, T., and Mohr, C.: Chemical Characterization of Highly Functionalized Organonitrates Contributing to Night-Time Organic Aerosol Mass Loadings and Particle Growth, Environ. Sci. Technol., 53, 1165-1174, 10.1021/acs.est.8b05826, 2019.
- Karl, T., Hansel, A., Cappellin, L., Kaser, L., Herdlinger-Blatt, I., and Jud, W.: Selective measurements of isoprene and 2-methyl-3-buten-2-ol based on NO<sup>+</sup> ionization mass spectrometry, Atmos. Chem. Phys., 12, 11877-11884, 10.5194/acp-12-11877-2012, 2012.
- Kiendler-Scharr, A., Mensah, A. A., Friese, E., Topping, D., Nemitz, E., Prevot, A. S. H., Aijala, M., Allan, J., Canonaco, F., Canagaratna, M., Carbone, S., Crippa, M., Dall Osto, M., Day, D. A., De Carlo, P., Di Marco, C. F., Elbern, H., Eriksson, A., Freney, E., Hao, L., Herrmann, H., Hildebrandt, L., Hillamo, R., Jimenez, J. L., Laaksonen, A., McFiggans, G., Mohr, C., O'Dowd, C., Otjes, R., Ovadnevaite, J., Pandis, S. N., Poulain, L., Schlag, P., Sellegri, K., Swietlicki, E., Tiitta, P., Vermeulen, A., Wahner, A., Worsnop, D., and Wu, H. C.: Ubiquity of organic nitrates from nighttime chemistry in the European submicron aerosol, Geophys. Res. Lett., 43, 7735-7744, 2016.
- Muller, M., Eicher, P., D'Anna, B., Tan, W., and Wisthaler, A.: Direct Sampling and Analysis of Atmospheric Particulate Organic Matter by Proton-Transfer-Reaction Mass Spectrometry, Analytical Chemistry, 89, 10889-10897, 10.1021/acs.analchem.7b02582, 2017.
- Pagonis, D., Sekimoto, K., and de Gouw, J.: A Library of Proton-Transfer Reactions of H3O+ Ions Used for Trace Gas Detection, Journal of the American Society for Mass Spectrometry, 30, 1330-1335, 10.1007/s13361-019-02209-3, 2019.

- Piel, F., Müller, M., Winkler, K., Skytte af Sätra, J., and Wisthaler, A.: Introducing the extended volatility range proton-transfer-reaction mass spectrometer (EVR PTR-MS), Atmos. Meas. Tech., 14, 1355-1363, 10.5194/amt-14-1355-2021, 2021.
- Su, T.: Trajectory calculations of ion–polar molecule capture rate constants at low temperatures, The Journal of Chemical Physics, 88, 4102-4103, 10.1063/1.453817, 1988.
- Xu, L., Suresh, S., Guo, H., Weber, R. J., and Ng, N. L.: Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates, Atmos. Chem. Phys., 15, 7307-7336, 10.5194/acp-15-7307-2015, 2015a.
- Xu, L., Guo, H., Boyd, C. M., Klein, M., Bougiatioti, A., Cerully, K. M., Hite, J. R., Isaacman-VanWertz, G., Kreisberg, N. M., Knote, C., Olson, K., Koss, A., Goldstein, A. H., Hering, S. V., de Gouw, J., Baumann, K., Lee, S. H., Nenes, A., Weber, R. J., and Ng, N. L.: Effects of anthropogenic emissions on aerosol formation from isoprene and monoterpenes in the southeastern United States, Proc Natl Acad Sci U S A, 112, 37-42, 10.1073/pnas.1417609112, 2015b.
- Yáñez-Serrano, A. M., Filella, I., Llusià, J., Gargallo-Garriga, A., Granda, V., Bourtsoukidis, E., Williams, J., Seco, R., Cappellin, L., Werner, C., de Gouw, J., and Peñuelas, J.: GLOVOCS -Master compound assignment guide for proton transfer reaction mass spectrometry users, Atmos. Environ., 244, 117929, https://doi.org/10.1016/j.atmosenv.2020.117929, 2021.
- Yu, K., Zhu, Q., Du, K., and Huang, X. F.: Characterization of nighttime formation of particulate organic nitrates based on high-resolution aerosol mass spectrometry in an urban atmosphere in China, Atmos. Chem. Phys., 19, 5235-5249, 10.5194/acp-19-5235-2019, 2019.
- Yuan, B., Koss, A. R., Warneke, C., Coggon, M., Sekimoto, K., and de Gouw, J. A.: Proton-Transfer-Reaction Mass Spectrometry: Applications in Atmospheric Sciences, Chemical Reviews, 117, 13187-13229, 10.1021/acs.chemrev.7b00325, 2017.