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Figure S1. (a) Fuigh-ru, the fractions of wintertime samples with RH above 80%, for the 2018-2019
(18-19), 2019-2020 (19-20) and 2020-2021 (20-21) campaigns. (b—d) Monthly-averaged LG to
TC ratios (on a basis of carbon mass) for the three campaigns, respectively. During the 2018-2019
and 2020-2021 campaigns, the LG/TC ratios peaked in February and April, respectively. Both
months were characterized by intensive fire hotspots in and around Harbin, pointing to prevalence

of agricultural fires.
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Figure S2. Dependences of LG/TC on LG/OC” for the three campaigns. The two ratios exhibited

strong linear correlations as indicated by the close-to-one r values.
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Figure S3. Comparisons of (a) nitrate and (b) NOR across three cases with increasing impacts of
agricultural fires for the 2018-2019 campaign, and comparisons of (c¢) nitrate and (d) NOR across

the three campaigns.
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Figure S4. Average RH (upper panel), SOR and NOR (lower panel) for the winters of 18-19, 19—
20 and 20-21.
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Figure S5. Dependence of AATN on RH for the 2019-2020 campaign. Only two samples were
strongly impacted by agricultural fires, as highlighted by the red circles.
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Figure S6. Temporal variations of (a) RH and SOR + NOR, (b) OC/EC-I, (¢) OC/EC-II and (d)
OC/EC-III for samples during the 2018-2019 winter period with insignificant influence of
agricultural fires. The shadowed area highlights three distinct samples characterized by high RH
and enhanced formation of secondary aerosols. OC/EC-I was derived from OC and EC measured
by the untreated sample using NIOSH. OC/EC-II was calculated by ECexiracted, IMPROVE-A and the
corresponding OC (i.e., TCuntreated— ECextracted, MPrROVE-a). OC/EC-III was determined similarly based
on NIOSH. Obviously, OC/EC-II and OC/EC-III exhibited poor accordance with secondary aerosol
formation. For the OC/EC-I ratio, it was elevated for not only the high-RH period but also some
low-RH samples, prohibiting the use of it as a robust indicator for the RH-dependent enhancement
of SOA production.
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Figure S7. The same as Figure 4 in the main manuscript but for January 2021.
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Figure S8. Comparisons of Rmvpyv and Rniosu across different sulfate/TCexiractea ranges for the

samples with little fire impact. Results from all the three campaigns were involved.
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Figure S9. (a) Comparison of Rniosu between the 2018-2019 samples with strong impacts of
agricultural fires (as indicated by “Strong”) and those with the same sulfate/TCexiracted range but little
fire impact (as indicated by “Little”). (b) The same as (a) but for 2020-2021.
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Figure S10. Source profiles resolved by PMF. The first two factors (i.e., SA-1 and SA-2) were
considered secondary, since they had little EC but the majority of secondary ions. The third and
fourth factors (i.e., BB-1 and BB-2) were attributed to primary emissions from biomass burning, as
~90% of levoglucosan was apportioned into these two factors whereas none of them was a major
contributor to secondary ions. The last two factors (i.e., non-BByi,1 and non-BBy:i2) were inferred
to represent primary emissions from non-BB sources, due to their dominant contributions to EC and

chloride.

S-11

(%) ssew sa10ads JO JuddId ]



150
1:1
/
E 0
P /
£100 A S
@) //
2 ] o
O @
2 50 -
=
0 —
0 50 100 150
OC”* (ugC/m3)

Figure S11. Dependence of MSOC on OC”, with the 1:1 line also included. Linear regression of
MSOC on OC”" led to a close-to-one slope of 0.99 + 0.00 (intercept was set as zero; » = 0.998).

Results from all the three campaigns were involved.

S-12



(8]
()

sec-MSOC by PMF
SOC by EC-tracer

SOC (ugC/m?)
[} ]
(e}

[a—
(=]

0

12/1  12/15  12/29 112 126 2/9 2/23

Figure S12. Variations of SOC derived from different approaches for the 2020-2021 winter. SOC
was determined as secondary MSOC (i.e., sec-MSOC) based on PMF. In addition, SOC was also
estimated by the EC-tracer method as OC — EC X (OC/EC)min, where (OC/EC)min indicates the
minimum OC to EC ratio; OC and EC results measured by the untreated samples deploying
IMPROVE-A were used for the calculation. SOC resolved by the two approaches showed similar
patterns of temporal variation and comparable mass concentrations, leading to a strong linear
correlation (= 0.91). As indicated by the shadowed periods, SOC was not estimated for the samples

strongly impacted by firework emissions during the Chinese New Year Period.



