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Abstract. We present a global chemical data assimilation
system using a global atmosphere model, the Community At-
mosphere Model (CAM3) with simplified chemistry and the
Data Assimilation Research Testbed (DART) assimilation
package. DART is a community software facility for assim-
ilation studies using the ensemble Kalman filter approach.
Here, we apply the assimilation system to constrain global
tropospheric carbon monoxide (CO) by assimilating mete-
orological observations of temperature and horizontal wind
velocity and satellite CO retrievals from the Measurement of
Pollution in the Troposphere (MOPITT) satellite instrument.
We verify the system performance using independent CO ob-
servations taken on board the NSF/NCAR C-130 and NASA
DC-8 aircrafts during the April 2006 part of the Intercon-
tinental Chemical Transport Experiment (INTEX-B). Our
evaluations show that MOPITT data assimilation provides
significant improvements in terms of capturing the observed
CO variability relative to no MOPITT assimilation (i.e. the
correlation improves from 0.62 to 0.71, significant at 99%
confidence). The assimilation provides evidence of median
CO loading of about 150 ppbv at 700 hPa over the NE Pacific
during April 2006. This is marginally higher than the mod-
eled CO with no MOPITT assimilation (∼140 ppbv). Our
ensemble-based estimates of model uncertainty also show
model overprediction over the source region (i.e. China) and
underprediction over the NE Pacific, suggesting model errors
that cannot be readily explained by emissions alone. These
results have important implications for improving regional
chemical forecasts and for inverse modeling of CO sources
and further demonstrate the utility of the assimilation system
in comparing non-coincident measurements, e.g. comparing
satellite retrievals of CO with in-situ aircraft measurements.
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(arellano@ucar.edu)

1 Introduction

The availability of near-global and long-term measurements
of tropospheric chemical constituents from space offers an
opportunity to better understand changes in tropospheric
composition through the integration of measurements with
predictions from global chemical transport models. Cen-
tral to this integration is a chemical data assimilation system
that is reasonably efficient and flexible in assimilating mea-
surements of various scales and of various chemical species.
Such a system is useful as a tool in providing initial condi-
tions for chemical weather forecasts, which are important in
regional to global air quality and field missions (e.g. Chai
et al., 2006). Here, the term chemical weather is analogous
to meteorological weather and is described by Lawrence et
al. (2005) as the local to global distribution of important trace
gas and aerosols and their associated short-term variability.
Such a system is also useful in building a framework for
model system diagnosis and process evaluation (e.g. Lary,
1999; Rasch et al., 2001), as well as in conducting retrospec-
tive analysis of chemically and radiatively important trace
gases and aerosols (e.g. Dethof and Holm, 2004; Stajner et
al., 2001; Juckes and Lawrence, 2006 among others).

Chemical data assimilation systems extend from simple
suboptimal techniques such as Newtonian relaxation (nudg-
ing, e.g. Sekiyama and Shibata, 2005), optimal interpolation
(OI, e.g. Levelt et al., 1998; Lamarque et al., 1999; Cler-
baux et al. 2001; Collins et al., 2001), variations of subop-
timal Kalman filtering (e.g. Khattatov et al., 2000; Menard
et al., 2000; Lamarque et al., 2002; Lamarque et al., 2003;
Auger and Tangborn, 2004), to more complex techniques
such as four-dimensional variational methods (4D-var, e.g.
Fisher and Lary, 1995; Elbern and Schmidt, 1999; Wang et
al., 2001; Eskes et al., 2003; Engelen and McNally, 2005;
Chai et al., 2006) and ensemble-based approaches (EnKF,
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e.g., van loon et al., 2000; Hanea et al., 2004; Eben et al.,
2005; Sandu et al., 2005). Incorporation of bias estimation
and model parameter estimation in chemical data assimila-
tion has also been applied in recent years (Elbern et al., 2000;
Lamarque et al., 2004; Yudin et al., 2004) to enhance the fi-
delity of model forecasts and analyses.

Reports of improved performance using variational or
ensemble-based data assimilation in global atmospheric
models (Rabier, 2005; Houtekamer et al., 2005) and chem-
ical transport models (Chai et al., 2006; Sandu et al., 2005)
are encouraging. Such techniques are especially appealing to
studies in global atmospheric constituent transport and chem-
istry where observations are available for a range of chemi-
cal species having observation operators of varying complex-
ity. They also have the potential to provide conditional dis-
tributions of poorly-observed or unobserved model param-
eters, such as surface fluxes or emission rates (e.g. Rayner
et al., 2005; Muller and Stavrakou, 2005; Peters et al., 2005;
Frankenberg et al., 2006; Elbern et al., 2007) that are relevant
to modeling transport and chemistry and in designing pollu-
tion control strategies. More recent collaborative efforts to
include atmospheric chemical constituents such as CO2, O3
and CO in global prediction systems also show great poten-
tial for significant gains in meteorology, climate and chem-
istry (e.g. Engelen and McNally, 2005; McLaughlin et al.,
2005).

We continue these efforts by applying an ensemble-based
approach in assimilating both meteorological and chemical
observations with a global atmospheric model. In particu-
lar, we present an ensemble-based chemical data assimila-
tion system using a global atmospheric model, the Commu-
nity Atmosphere Model (CAM3) with simplified chemistry,
and an assimilation package, the Data Assimilation Research
Testbed (DART) developed at the National Center for Atmo-
spheric Research (NCAR). This system serves as an online
global chemical transport model (GCTM) with observational
constraints to both meteorological fields and trace gas dis-
tribution. For this reason, it potentially offers a consistent
global representation of the dynamical and chemical state
of the atmosphere with an opportunity for studies related
to coupling of chemistry and meteorology. To our knowl-
edge, this type of system is one of the first applications of
EnKF in global chemical data assimilation. In this work, we
demonstrate its utility to chemical weather forecasting. In
particular, we apply the DART/CAM data assimilation sys-
tem to better constrain the global distribution of CO. We
validate our results against independent observations from
NASA’s Intercontinental Chemical Transport Experiment B
(INTEX-B) field mission conducted over the northern Pa-
cific in Spring 2006 (http://www.espo.nasa.gov/intex-b). We
show a significant improvement in modeling the CO distri-
bution with assimilation of meteorological observations and
CO retrievals from the Measurement of Pollution in the Tro-
posphere (MOPITT) instrument on the Terra satellite. We
also show that such constraints in CO distribution provides

a structure of CO forecasts different from that derived from
model simulations and forecast systems with no CO assimi-
lation.

The outline of the paper is as follows. In Sect. 2, we
present in detail the components of the global chemical data
assimilation system being developed and applied specifically
to CO data assimilation. We describe the assimilation ex-
periments conducted for initial verification of the system in
Sect. 3 followed by a presentation of results and verification
with INTEX-B CO data in Sects. 4.1 to 4.2 and a discussion
on several insights from the experiment results in Sects. 4.3
and 4.4. Further analysis on the assimilation diagnostics are
presented in Sect. 4.5 followed by summary and conclusions
in Sect. 5.

2 Description of the chemical data assimilation system

2.1 Data Assimilation Research Testbed (DART)

DART is a community assimilation software package be-
ing developed at the Data Assimilation Research Section
(DAReS) of NCAR (http://www.image.ucar.edu/DAReS/
DART). Built under an ensemble Kalman filter (EnKF) as-
similation framework, it provides a flexible and extensible
environment for collaborative data assimilation research and
application. Originally introduced by Evensen (1994), the
underlying principle of an ensemble Kalman filter is to per-
form an ensemble of forecasts and analysis cycles or an en-
semble of Kalman filters. The error statistics are approxi-
mated using a finite sample of model states as opposed to
handling explicitly a large error covariance matrix. This has
the advantage of reduced cost in propagating the error statis-
tics relative to a Kalman filter. It is also simple to imple-
ment and flexible compared to variational assimilation ap-
proaches such as 4D-VAR, which requires the development
of a tangent linear and an adjoint of the GCTM. Further de-
tails on the comparison of 4D-VAR and EnKF are discussed
in Lorenc (2005).

In this particular application, we use the ensemble adjust-
ment Kalman filter scheme (EAKF) introduced by Ander-
son (2001). The EAKF approach differs from other EnKF
schemes (e.g. Houtekamer and Mitchell, 1998) in its deter-
ministic analysis update, which ensures that both the ensem-
ble posterior mean and the posterior error covariance as esti-
mated by the ensemble are consistent with Kalman filtering
theory. Based on Anderson (2001) and other variants of what
is generally known as deterministic ensemble square root fil-
ters (EnSRF, Tippett et al., 2003), this type of assimilation
scheme updates the prior ensemble to a new set of observa-
tions without the addition of stochastic noise.

In practice, the use of EAKF (and EnKF) in global chem-
ical data assimilation requires some additional approxima-
tions in computing posterior means and covariances. The
approximations are needed to minimize degeneracy in co-
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variance matrices, errors in sampling, and filter divergence,
as a result of using limited ensemble sizes for computational
expedience in such large systems. Our first approximation
involves applying the filter locally and independently onto
subsets of the model states. In particular, we use the filter on
CO observations to only influence the model CO states. We
also use the filter on temperature and wind velocity obser-
vations to only influence a subset of the model meteorolog-
ical states that includes temperature, wind, surface pressure,
specific humidity, cloud ice and cloud water. Our second ap-
proximation involves artificially inflating the covariance to
account for model error, low bias and inaccuracies in sam-
pling the prior covariance and mean by a small ensemble
size (Anderson and Anderson, 1999). Such error causes the
prior covariances to shrink at some point in the assimilation,
ultimately causing filter divergence. Specifically, the ensem-
ble is linearly inflated around its mean prior to the update,
by increasing the deviations of each ensemble member about
their ensemble mean with an inflation factor slightly larger
than one. This covariance inflation retains the information of
the ensemble mean and correlation structure between ensem-
ble state variables. We use a constant inflation factor which
is calculated empirically such that the ensemble mean root-
mean-square error (RMSE) relative to observations is at its
minimum. The values of the inflation factor we obtained for
each assimilation cycle range from 1.1 to 1.4. There are how-
ever more advanced methods in dealing with covariance in-
flation, which are currently being developed and tested for
future applications (e.g. Anderson, 2007b). In effect, these
two approximations avoid degeneracy in sample covariances
of small ensemble sizes. Our third approximation involves
the use of covariance localization. This is also related to our
first approximation, but here we use the localization to mini-
mize the impact of spurious correlations between an observa-
tion and a state variable that are physically separated (Hamill
et al., 2001; Anderson, 2007a). We multiply the sample
covariance between the observation and the state variable
by a distance dependent correlation function with local sup-
port. We use the fifth order piecewise rational function from
Eq. (4.10) of Gaspari and Cohn (1999) for this application.

2.2 Community Atmosphere Model (CAM3)

We use the Community Atmosphere Model (CAM) version
3.1.1 as the model component of our chemical data assimi-
lation system (CDAS). CAM3 is an atmospheric general cir-
culation model (AGCM) developed as either a stand-alone
AGCM or as an atmospheric component of the community
climate system model, CCSM3 (seehttp://www.ccsm.ucar.
edu/models/atm-camfor documentation, input datasets and
model simulations). A full description of its physics and dy-
namical formulation is also given by Collins et al. (2006). We
use CAM3 with the finite-volume (FV) dynamical core at a
spatial resolution of 2◦×2.5◦ horizontal and 26 vertical levels
with a model top of about 4 hPa. We choose to use the FV dy-

namical core as it exhibits certain numerical properties (e.g.
conservative, less diffusive) favorable for tracer transport and
chemistry studies (Rasch et al., 2006). A coupling of CAM
with the Model for Ozone And Related chemical Tracers v4
(MOZART4) chemistry (or CAM-MZ4) has been developed
for climate-chemistry studies (Lamarque et al., 2005).

For CO simulations, we treat CO as a tracer constituent in
CAM3, by specifying the direct emissions (e.g. fossil-fuel,
biofuel, biomass burning, biogenic) and indirect emissions
(e.g. chemical oxidation of hydrocarbons) of CO and pre-
scribing the sink of CO by fixing the distribution of OH rad-
icals (e.g. Granier et al., 1999; Bey et al., 2001). This is ap-
propriate due to the medium lifetime of CO (globally about
2 months) and the dominance of oxidation by OH as the CO
sink. Both the OH fields and CO from chemical oxidation of
hydrocarbons are taken from an archive of MOZART4 full
chemistry simulation (Emmons et al., 20071). While it is en-
visaged that future CAM/CO simulations will be performed
using interactive chemistry (in anticipation of possible multi-
species chemical data assimilation), this work reports model
simulations using the “tagged-CO” scheme for the purpose
of initial CDAS development.

2.3 Initial ensembles

Below, we describe our approach for generating our initial
ensembles of model states. It is recognized that having a
reasonable representation of the initial ensembles (both its
mean and spread) appreciably aids in making a successful
ensemble-based CDAS (e.g. Sandu et al., 2005). Albeit lim-
ited in scope, our approach is predicated on the assump-
tion that the variability of the CO state is mostly due to the
variability induced from atmospheric transport (Allen et al.,
1996) and from the spatial and temporal variability in emis-
sions (e.g. Logan, 1981; Novelli et al., 2003). We partition
our approach to include the following pre-processing proce-
dures: 1) create an initial ensemble of CAM meteorologi-
cal state variables, 2) create a monthly ensemble of CO to-
tal emissions, and 3) create an ensemble of CO distributions
consistent with our ensembles in meteorology and emissions.
The choice of using an ensemble of meteorology and an en-
semble of emissions within an online GCTM framework is
directly tied to the need of an EnKF system to maintain the
variability of CO states over the period of forecast and anal-
ysis cycles.

2.3.1 Ensemble of meteorological state variables

A 20-member ensemble of CAM initial conditions for 1
April 2006 is constructed using a 100-year climatological

1Emmons, L. K., Hess, P. G., Lamarque, J.-F., Fillmore, D.,
Granier, C., Kinnison, D., Laepple, T., Orlando, J., Pétron, G., Pfis-
ter, G., Tie, X., Tyndall, G., and Walters, S.: Sensitivity of chemical
budgets to meteorology in MOZART-4, manuscript in preparation,
2007.
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Fig. 1. Ensemble-mean (left panels) and ensemble-spread (right
panels) of initial conditions for CAM3 temperature (T ) in K, hor-
izontal wind velocity componentsU andV in m/s at 500 hPa (1
April 2006).

simulation of CAM. It is assumed here that each 1 April
initial condition across the entire span of the climatological
simulations is a realization of CAM meteorology for a clima-
tological April and that the 100-year period spans the spread
or variability of the majority of CAM state variables. A sub-
set of these initial files is used as members of our ensemble of
CAM initial conditions. Shown in Fig. 1 are ensemble means
and ensemble spreads of CAM temperature and horizontal
wind velocity state variables. They are calculated from the
20-member ensemble generated for CAM initial conditions.
Here, the large spread is interpreted as a gross estimate of
variability of the modeled initial states which is intended to
be larger than typical uncertainties of modeled states.

2.3.2 Ensemble of CO total emissions

We based our estimates of uncertainty in CO emissions
on recent inverse modeling results, as well as on recent
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Fig. 2. Ensemble-spread of CAM3 total surface CO emissions for
the month of April 2006 in molecules/cm2/s (a), and in percentage
% relative to ensemble mean emissions(b).

data-constrained biomass burning inventories. In partic-
ular, we used a recently compiled monthly emission in-
ventory at 1◦×1◦ resolution from MOZART4 for the pe-
riod 1996 to 2006. This inventory includes direct emis-
sions from fossil-fuel/biofuel sources, based on Precursors
of Ozone and their Effects in the Troposphere (POET) inven-
tory (http://www.aero.jussieu.fr/projet/ACCENT/POET) and
scaled to have regional magnitudes consistent with estimates
of optimized emissions from inverse modeling using MO-
PITT for the year 2000 (Ṕetron et al., 2004). This inventory
also includes biomass burning sources, based on GFEDv2
dataset (van der Werf et al., 2006) for 1996–2004. Emissions
from biomass burning for 2005–2006 are taken from a cli-
matological mean of GFEDv2 and scaled with year-specific
MODIS Climate Modeling Grid 8-day fire product (Giglio
et al., 2006). The compiled emission inventory,µemis, is
then perturbed assuming that the monthly emissionxemis
is log-normally distributed with meanµemis and covariance
6emis. The covariance6emis is the combination of sub-grid
and inter-annual variability as well as estimates of regional
magnitude uncertainties from inverse analyses (Arellano and
Hess, 2006). Details on the construction of6emis are pre-
sented in Appendix A. In principle, we draw random samples
of the distributionp(xemis)∼ ln(µemis, 6emis), and use these
samples as members of the ensemble. These are then used as
monthly emission input to CAM ensemble forecast cycle.

As an example, we show in Fig. 2 a spatial distribution
of diag(6emis)

1/2 for April 2006. We note that in addition
to the variability mainly coming from estimates in the in-
verse analyses, which is about 50% of the mean in most
regions, there is also a large variability apparent in regions
of frequent biomass burning consistent with our current un-
derstanding. We acknowledge however that this empirically-
based methodology is limited in various aspects especially
as to its applicability to other emission and modeling studies.
We view this approach simply as an interim solution to pro-
vide realistic estimates of direct emission ensembles for CO
ensemble-based data assimilation.

For indirect emissions, which consist of CO sources
from chemical oxidation of non-methane hydrocarbons and
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methane, we draw samples of the distributionp(xchem) as-
suming a log-normal distribution with meanµchem from
MOZART4 full chemistry simulation and a covariance
6chemwhose square root of its diagonal elements is equal to
10% ofµchem. This is a simplification of the bulk uncertainty
associated with this type of source, which certainly consists
of various precursors that are non-linearly related and diffi-
cult to quantify.

2.3.3 Ensemble of initial CO distribution

The ensembles are generated using the ensembles of CAM
initial conditions (Sect. 2.3.1) and emissions (Sect. 2.3.2).
We start off by using a single CO initial condition from a
previous MOZART4 simulation. We allow the CO in the
model to be propagated forward in time, to gain sufficient
variance, as each member of the ensemble of CAM initial
conditions are integrated for two weeks. The integration in-
cludes a randomly assigned CAM3 emission from members
of the emission ensembles. As such, the CO states after spin-
up exhibit an equilibrated variability due to coupled pertur-
bations of the dynamical states and emissions. We used this
ensemble of CO states as our ensemble of CO initial condi-
tions. A sample of the mean and spread of the ensemble are
shown in Fig. 3. As can be expected, the variability of CO
is large in regions where there is a strong direct CO source
(i.e. east Asia, northern Africa) and also in regions where
transport can have significant impact (i.e. Pacific basin). We
also find that the variability of CO has equilibrated across all
regions after about 5 to 7 days.

2.4 Observations

The current DART/CAM global system has the ability to
assimilate both meteorological and chemical observations.
For the system’s initial development and evaluation, we fo-
cus on assimilating a subset of available meteorological data
currently used in NWP centers and satellite-derived CO re-
trievals from the MOPITT instrument. The following sec-
tions briefly describe these observations within the context
of this assimilation system.

2.4.1 Meteorological observations

We use the meteorological observations processed at Na-
tional Centers for Environmental Prediction (NCEP) (http://
dss.ucar.edu/datasets/ds351.0). These data are taken from ra-
diosondes, pibals and aircraft reports collected by the Global
Telecommunications System (GTS), and from satellite data
processed at National Environmental Satellite, Data and In-
formation Service (NESDIS). These are used as primary in-
put to the NCEP Global Data Assimilation System (GDAS)
for producing operational forecasts and final meteorological
analyses. Here, we use a subset of these data including ob-
servations of temperature (T ) from radiosondes and observa-
tions of horizontal wind velocities (U , V ) from radiosondes

CO (mean) CO (spread)

Fig. 3. Ensemble-mean (left panel) and ensemble-spread (right
panel) of initial conditions of CAM3 CO in ppbv at 500 hPa for
1 April 2006.

and cloud drift analysis (or satwind). We selected this small
subset to simplify our evaluation of the system performance.
Also, this particular setup for DART/CAM only assimilates
observations of a subset of meteorological state variables (i.e.
T , U , V ). However, it uses these observations to influence
other model state variables such as surface pressure. Further
details of the assimilation setup are discussed in Sect. 3.

We use a limited quality control on top of NCEP data pro-
tocol for these observations. In particular, we limit obser-
vations below 150 hPa and observations with values within
three standard deviations from the expected observations de-
rived from the model. We also assign associated observation
errors based on reported instrument uncertainties (i.e. on av-
erage,∼3–4 m/s for satwind,∼1–2 m/s for radiosonde wind
and∼0.8 K for radiosonde temperature).

2.4.2 MOPITT CO retrievals

We use the satellite-derived CO observations from MO-
PITT satellite instrument on board the NASA Terra satel-
lite (http://mopitt.eos.ucar.edu/mopitt). It has a horizontal
resolution (in nadir view) of about 22×22 km2 and offers
near-global coverage within 3-5 days. The MOPITT instru-
ment provides CO retrieved profiles based on measured radi-
ances in a 4.7µm thermal channel for cloud-free pixels and
pixels covered by low clouds. The reported profiles nomi-
nally represent 7 vertical levels in the troposphere (surface,
850, 700, 500, 350, 250, 150 hPa). However, these pro-
files are strongly correlated, exhibiting vertical sensitivities
which are limited only within the free troposphere (Deeter
et al., 2004). For our purposes, we use a subset of the
CO observations by only using CO retrievals having high
measurement sensitivity and physically realistic mixing ra-
tios. In particular, we use MOPITT v3 Level 2 700 hPa re-
trievals having less than 50% retrieval a priori contribution
and mixing ratios greater than 30 ppbv. Our quality control,
which is mainly based on MOPITT data quality statement
(http://mopitt.eos.ucar.edu/mopitt/data), ensures that we use
CO observations that are reasonably representative of the true
CO states. We use the retrieval associated averaging kernel,
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terior (red) ensemble-mean relative to observations of radiosonde
horizontal wind velocity, radiosonde temperature and satwind hori-
zontal wind velocity for the entire assimilation period (April 2006).
Lower panels correspond to global RMSEs in the vertical using all
observations over the same period.

which is a measure of the vertical sensitivity of the measure-
ment, as an additional observation operator in the assimila-
tion system. We note that the broad averaging kernel ex-
hibited by MOPITT retrievals implies assimilating a partial
CO column observation instead of a typical point observation
(see also Sect. 4). Although we recognize that our selection
criteria limit the full use of available information provided by
MOPITT, again we use this subset to simplify our evaluation
of the system. The selected CO retrievals are assumed in this
work to be independent and unbiased with observation er-
ror of 10% of the CO retrieved mixing ratio (Emmons et al.,
2004). The unbiased assumption is verified and discussed
later in this paper (Sect. 4.2).

3 Assimilation experiments

Two sets of assimilation experiments are carried out to test
and evaluate the performance of DART/CAM system. First,
we conduct a reference CO simulation (REFSIM), consisting
of a 20-member ensemble, which sequentially assimilates
meteorological observations for the whole month of April
2006. This simulation is similar to a free-running offline
GCTM simulation of CO, which may be driven by either as-
similated meteorology (i.e. Global Modeling and Assimila-
tion Office, GMAO) or reanalysis meteorology (i.e. NCEP
or European Centre for Medium-Range Weather Forecast,
ECMWF). The second experiment (COASSIM) involves a
20-member ensemble simulation of CO assimilating both
meteorological observations and MOPITT CO retrievals over
the same period. In combination, these two experiments pro-

vide insights on how well tracer transport is represented in
the model.

As mentioned in Sect. 2.1, the current system is configured
so that the meteorological observations of temperature and
wind velocities statistically influence the model state vari-
ables, namely, surface pressure, temperature, horizontal ve-
locity, specific humidity, cloud ice and cloud water but not
CO. In contrast, the CO observations only statistically influ-
ence the CO state variable. In a statistical sense, it is pos-
sible that the CO observations can influence the other state
variables and that the meteorological observations can im-
pact the CO state. However, this EnKF feature is not applied
in the present experiments.

In addition to localizing the impact of observations to a
subset of state variables, a physically-based localization is
also implemented for all types of observations. The observa-
tional impact is localized by multiplying a correlation func-
tion (from Gaspari and Cohn, 1999) to the flow-dependent
covariances between the prior state variables and observa-
tion variables. We use a half-width of∼1200 km in the hori-
zontal component of the correlation function for all types of
observations. In the vertical, we use∼2 km for all types of
observations except MOPITT CO. Assimilation of MOPITT
CO presents a particular difficulty since the retrieved profiles
exhibit longer vertical length scales (2–3 km) than typical
vertical length scales of DART/CAM CO (∼1 km). And so,
we adjust the calculated vertical correlation distance between
the observed CO and the CO state variable such that the ef-
fective correlation function exhibits broader vertical length
scales comparable to MOPITT. By effectively broadening the
vertical localization, this adjustment only partially accounts
for the scale mismatch between a partial column observation
and the model. A more appropriate transformation should
be used in future assimilation of this type of observation to
fully account for the apparent scale mismatch. Details on
the scale mismatch between satellite retrieved profiles and
global chemical transport models will be discussed in a sep-
arate paper (Arellano, A. F. and Hess, P. G.: Ensemble-based
estimates of CO sensitivity during INTEX-B field mission,
manuscript in preparation).

4 Results and discussions

4.1 Summary statistics of assimilation experiments

Shown in Fig. 4 are global comparisons of the meteorologi-
cal observations and the expected observations of model vari-
ables, represented as ensemble means of the forecast (prior)
and analysis (posterior). Figure 5 corresponds to the en-
semble spreads or standard deviations (both prior and pos-
terior) of the model variables across the 20-member ensem-
bles. These results correspond to both assimilation experi-
ments (REFSIM and COASSIM) as the two are identical in
their configuration for assimilating meteorological observa-
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Fig. 5. Corresponding global prior (black) and posterior (red)
ensemble-spread of expected observations for radiosonde horizon-
tal wind velocity, radiosonde temperature and satwind horizontal
wind velocity for the entire assimilation period (April 2006).

tions. The plots in Fig. 4 show that the predicted temperature
and horizontal velocities are significantly improved in terms
of root-mean-square errors (RMSEs) and bias relative to ra-
diosonde and satwind observations used in the assimilation.
In fact, the RMSEs for both model variables are reasonably
close to the error range of radiosonde and satwind observa-
tions, pointing to low errors in the assimilation. This is also
evident in the ensemble spread shown in Fig. 5, which also
shows rapid reduction over the first few assimilation cycles.
However, the error estimate, which is represented here as the
ensemble spread, is less than the RMSE relative to observa-
tions. This appears to suggest an insufficient variance of the
ensemble and an underestimation of the uncertainty of the
modeled states. Even so, it is clear from these results that the
mean of the system rapidly converges to observed tempera-
ture and wind velocities within 2–3 days of assimilation. Re-
gional comparisons (not shown here) suggest a convergence
rate in the data-dense Northern Hemisphere region of about
2 days and about 5 days in the Southern Hemisphere region.

Assimilating MOPITT CO retrievals in COASSIM experi-
ment also show similar improvements in terms of RMSE and
bias (Fig. 6, left panel). Globally, the posterior ensemble
mean of expected CO observations has an RMSE of about
11 ppbv and bias of about 1–2 ppbv relative to MOPITT re-
trievals. The resulting ensemble spread for CO (Fig. 6, right
panel) has also dropped significantly during the first few
assimilation cycles indicating that information from the re-
trievals are being integrated effectively into the model space.
The rate of model convergence to observed CO is longer than
the convergence of meteorological variables to observed me-
teorology due to the larger variability of CO over its source
regions and the longer period for the MOPITT instrument
to achieve near-global coverage (∼3–5 days). The nature of
MOPITT retrievals, which exhibit broader vertical structures
than typical point observations, potentially slows down the
convergence as well.

4.2 Verification with other datasets

Results of the assimilation experiments are verified using two
main datasets. First, the assimilated meteorological variables
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Fig. 6. Global RMSE of prior (black) and posterior (red) ensemble-
mean CO relative to MOPITT CO (left panel) and their correspond-
ing ensemble-spread (right panel) for the entire assimilation period
(April 2006). Global bias relative to MOPITT is∼2.14 ppbv for
prior ensemble-mean and∼1.55 ppbv for posterior ensemble-mean.

are compared for the same time period with the analysis
of the NCEP Global Forecast System (GFS) product. This
dataset is currently used as input meteorology by several of-
fline GCTMs (e.g. MOZART4). This comparison provides
a means of assessing the ability of DART/CAM assimilation
system to represent key components of tracer transport in a
GCTM. It is recognized however that this dataset does not
serve as an independent verification since the NCEP GFS
uses similar observational dataset (e.g., but with additional
data) in its assimilation system.

The modeled CO states are compared with an independent
CO dataset from the second phase of the NASA INTEX-B
field mission, which was conducted during Spring of 2006
(17 April–15 May). This intensive field campaign aimed at
sampling chemical (pollution) outflow from Asia and at as-
sessing its long-range transport across the Pacific and impact
over North America. This is an especially good opportunity
to evaluate the model performance of the DART/CAM sys-
tem and its potential for chemical weather forecasting. Our
verification focuses on the April campaign period for NCAR
C-130 flights over the northeast Pacific basin and for NASA
DC-8 flights out of Hawaii. Shown in Fig. 7 are the flight
tracks for C-130 and DC-8 aircrafts for this period. Both
aircrafts carried CO instrumentations, in particular an aero-
laser fast-response carbon monoxide analyser on board C-
130 (by T. Campos) and a Differential Absorption CO Mea-
surement (DACOM) spectrometer system on board DC-8 (by
G. Sachse).

4.2.1 Meteorological variables

As shown in Fig. 8, the ensemble-mean analyses of horizon-
tal wind velocities averaged over the month of April 2006
are remarkably similar to the NCEP GFS product. The plots
show a high degree of similarity both in terms of magnitude
and spatial structure demonstrating a decent performance
of DART/CAM assimilation system relative to GFS, given
also that only a subset of NCEP observations was used in
DART/CAM assimilation. The similarity is particularly clear
in the Northern Hemisphere where the data is dense. Differ-
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Fig. 7. INTEX-B flight tracks for NSF/NCAR C-130 and for NASA
DC-8 during 17 April to 1 May 2006 campaign period. Colors rep-
resent the corresponding flight altitudes in hPa.

ences can be seen mostly in the Southern Hemisphere, es-
pecially in the tropical Pacific, coastal regions in India, cen-
tral Africa and in the polar region. The difference can be
attributed to the difference in the model used for the assim-
ilation system and the larger density of data (e.g. satellite)
in the Southern Hemisphere used in GFS than in this work.
Nonetheless, the comparison provides confidence in the fi-
delity of DART/CAM to represent realistic transport drivers
in the global model.

4.2.2 CO

Our system verification for CO is summarized in Fig. 9a.
These are Taylor diagrams showing the distance of modeled
CO from observed CO defined in terms of correlation (R),
root-mean-square error (RMSE) and bias. Results are shown
for both the experiment with MOPITT assimilation (COAS-
SIM) and without MOPITT assimilation (REFSIM). Based
on Taylor (2001), a typical RMSE metric (E) can be decom-
posed into two orthogonal components, a bias term (E) and
a pattern RMS difference (E′). That is,

E2
= E

2
+ E′2 (1)

where

E′2
= σ 2

f + σ 2
r − 2σf σrR (2)

such thatσf andσr correspond to the standard deviation of
the modeled CO concentration and the observed CO concen-
tration, respectively; andR corresponds to the correlation be-
tween the modeled and observed CO concentration. We can
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Fig. 8a. Global comparison of April 2006 mean horizontal
wind component (U ) in m/s from DART/CAM assimilation and
NCEP/GFS forecast/analysis product (regridded to 2◦

×2.5◦). The
upper panels correspond to 700 hPa distribution while the lower
panels correspond to zonal distribution (vertical axis in hPa).
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Fig. 8b. Global comparison of April 2006 mean horizontal
wind component (V ) in m/s from DART/CAM assimilation and
NCEP/GFS forecast/analysis product (regridded to 2◦

×2.5◦). The
upper panels correspond to 700 hPa distribution while the lower
panels correspond to meridional distribution (vertical axis in hPa).

then construct a diagram which shows these relationships,
by plottingσf andσr as distances from the origin in a polar
graph (see Fig. 9b), with the angle represented as the arcco-
sine ofR. The shortest distance between the modeled and
observed quantity represents the pattern RMS difference (or
unbiased RMSE). We can also extend this to indicate over-
all means, by attaching to the plotted model quantity, a line
segment that is perpendicular to the line defined byE′ and
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Fig. 9a. DART/CAM model skills relative to INTEX-B flight ob-
servations (gray). The blue dots represent the model skills for
each ensemble member of DART/CAM with MOPITT assimila-
tion (COASSIM) while red dots correspond to DART/CAM without
MOPITT assimilation (REFSIM). Large filled circles correspond to
ensemble-mean of analyses with the unfilled circles representing the
total RMSE (see Fig. 9b).

whose distance is equal toE. The distance from the obs
quantity to the extended model quantity is then equal toE.
A best fit to observations is typically interpreted to exhibit
the smallest pattern difference. However, we can also define
a skill score which summarizes the relationship between the
modeled and observed CO concentrations. Here, we defined
a skill S as:

S =
4(1 + R)4(

σ̂f + 1/σ̂f

)2
(1 + R0)

4
(3)

whereσ̂f is the ratio ofσf andσr , andR0 is the maximum
potentially realizable correlation, assumed here to be 0.90
based on assimilated CO and MOPITT comparisons. This
skill score, which is based on Eq. (5) of Taylor (2001), is
superimposed as contours in Fig. 9a. Unlike typical skill
scores, this skill score places more emphasis on modeled CO
that is highly correlated with observations and that exhibits
better simulation of the pattern difference. The skill ap-
proaches unity asσf approaches toσr and asR approaches to
R0. It is also interpreted to decrease with increasing RMSE
but with additional penalty for low correlation and low model
variability. Note that the skill also depends on maximum
realizable correlationR0, which in this case, is assumed to
be lower than a perfect correlation of 1. This means that a
perfect skill score (or most skillful model) will have a range
from 1 to about 1.2 since it is relax towards achieving a cor-
relation ofR0 as well.

It is clear from the diagrams in Fig. 9a that the assimi-
lation of MOPITT retrievals improves the pattern statistics
in modeled CO when compared to both C-130 and DC-8
flight observations. The ensemble mean of REFSIM CO has
a correlation of 0.63 and 0.62 for C-130 and DC-8 respec-
tively, while the COASSIM CO shows an improved correla-
tion of 0.72 (C-130) and 0.68 (DC-8). In terms of model

Fig. 9b. Taylor diagram representation of correlation (R), RMSE
and bias of modeled CO relative to observation (based from Taylor,
2001).

skill, COASSIM shows a skill of about 0.6 in contrast to
REFSIM which has a skill of about 0.2 to 0.4. This improve-
ment is attributed to the increase in modeled CO variability
and correlation, and is significant at 99% confidence given
the spread of the model skill for all ensemble members.

Also apparent from the Taylor diagrams is the increase
in bias on the COASSIM CO relative to REFSIM CO. As
noted in Sect. 4.1, the assimilation of MOPITT retrievals in
DART/CAM, which has a global bias of about 1–2 ppbv rela-
tive to MOPITT, implies that the assimilated CO is very close
to MOPITT CO and exhibits low error associated with the as-
similation. This suggests that the assimilated CO is a good
surrogate for MOPITT. The bias observed relative to INTEX-
B CO therefore is primarily due to the bias of MOPITT re-
trievals relative to INTEX-B. Such comparison with inde-
pendent observations demonstrates the utility of an assim-
ilation system in validating and comparing non-coincident
datasets and measurements with complex observation oper-
ators. The positive bias observed in MOPITT is approxi-
mately 23–27 ppbv for C-130 CO and 11–14 ppbv for DC-8
CO. Based on two CO data inter-comparisons conducted dur-
ing the 2nd phase of INTEX-B, it is possible that differences
in the bias between C-130 and DC-8 observed by the assim-
ilation can be mainly attributed to instrument discrepancies
on board the two aircrafts. The DC-8 CO appears to be 5-10
ppbv higher than C-130 CO. That is, the ratio of DC-8 CO
versus C-130 CO is observed to be 1.08 from the two inter-
comparison analyses. The bias estimates are nonetheless in
reasonable agreement with past and present MOPITT valida-
tions, which also report a positive bias in MOPITT retrievals
of about 7–14% or 7–18 ppbv at 700 hPa (e.g. Emmons et
al., 2004; Emmons et al., 2007). This apparent bias in the
MOPITT retrievals with respect to this and other validation
data is being investigated by the NCAR MOPITT team. It
is expected that the next data reprocessing (version 4) which
will include several retrieval enhancements will greatly re-
duce this discrepancy. Since the model verification is lim-
ited to the INTEX-B domain (Fig. 7), it is complicated to
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Fig. 10. COASSIM CO (ppbv) in blue and REFSIM CO in red
relative to flight observations in gray during April field campaign.
COASSIM CO is removed with observed bias (see Fig. 9a).

globally extrapolate the spatial variability of the bias (or the
lack thereof) based only on the assimilated CO comparisons.
More detailed investigations are necessary for proper global
bias correction within the assimilation system (e.g. Lamar-
que et al., 2004; Dee, 2005).

Figures 10 and 11 are concatenations of 1-minute C-130
and DC-8 CO observation points for April campaign period,
superimposed with the corresponding CO from REFSIM and
COASSIM after removing the observed mean MOPITT bias
(e.g. 25 ppbv for C-130, 13 ppbv for DC-8). The plots fur-
ther show that MOPITT CO assimilation better captures the
observed variability and improves the modeled vertical struc-
ture relative to INTEX-B observations, particularly for C-
130 CO. We note however that the assimilation sometimes
results in poor model prediction, for example, in DC-8 CO
comparisons (Fig. 10) during a flight at the end of April (i.e.
points from 1500 to 2100). Overall, while the model is able
to capture the mean CO outflow from Asia and its transport
to the NE Pacific, since it closely matched the magnitude of
observed mean CO concentrations downwind of the source
regions (Fig. 10), the simulation without MOPITT assimi-
lation has difficulty simulating accurately the observed gra-
dients and CO enhancements. This can also be seen in the
averaged vertical structure (Fig. 11), expressed here as me-
dian vertical profile, where COASSIM CO is better corre-
lated with the observed vertical structure than REFSIM CO.
Given the difference in the shape of the observed and REF-
SIM vertical profiles, applying a simple bias correction for
REFSIM would not significantly influence the improvement
we find in COASSIM CO relative to observations. While
our current system only assimilates 700 hPa retrievals from
MOPITT, there are indications that information at 700 hPa
is translated to nearby vertical levels through the ensemble
covariances. The apparent improvement in model skill has
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Fig. 11. Median vertical structure of COASSIM CO (ppbv) in
blue and REFSIM CO in red relative to flight observations in gray.
COASSIM CO is presubtracted with observed bias (see Fig. 9a).
Observation error bars correspond to interquartile range calculated
for each vertical bin.

important implications in particular to efforts in improving
future chemical weather forecasts and GCTM predictability
in general.

4.3 CO distribution

The CO distributions over the Pacific basin for REFSIM and
COASSIM experiments are presented in Fig. 12. These are
ensemble-mean CO at 700 hPa averaged across the month
of April. The COASSIM CO is uniformly reduced by 15%
of its CO concentration to account for the apparent MO-
PITT bias over the region. This percentage is calculated
such that the bias of COASSIM CO with INTEX-B CO is
at its minimum, given the apparent 8% error between the
two instruments. The COASSIM CO distribution shows
a slightly different spatial structure than the REFSIM CO
distribution. From a monthly-averaged perspective, the ap-
parent CO enhancements at 700 hPa over the northeastern
Pacific in COASSIM (∼150±3 ppbv) are not well repre-
sented in REFSIM (∼140±3 ppbv). Over Asia, MOPITT as-
similation sees more CO over eastern Siberia (∼175±7 vs.
∼165±5 ppbv) and less over Shanghai, southern China and
Burma (∼135±20 vs. 165±20 ppbv). There is some indica-
tion of a more dominant CO export pathway north of 40 N
than an easterly boundary layer CO outflow from the source
region in southern China. The import of Asian pollution to
NE Pacific is slightly enhanced in COASSIM CO distribu-
tion. In contrast, there appears to be more CO in REFSIM
over the tropical Pacific and extending to the west of Cali-
fornia and Mexico, demonstring a more distinct hemispheric
gradient in COASSIM. The differences in CO structure ap-
parently suggest that some subtle features of CO sources,
outflow and/or transport are not accurately represented in the
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Fig. 12. Mean CO distribution (in ppbv) at 700 hPa over the
INTEX-B domain as depicted in DART/CAM analyses (top panel)
REFSIM, (middle panel) COASSIM with observed MOPITT bias
removed and (bottom panel) difference between REFSIM and
COASSIM.

model. To some extent, this supports the previous results that
while REFSIM reasonably simulates the large-scale features,
it has difficulty capturing the CO variability and gradients
observed in INTEX-B. In part, this can be attributed to the
coarse resolution of the model where the observed variabil-
ity may possibly be within the model sub-grid scales. The
assimilation however is able to compensate for the lack of
variability (and inherent model deficiencies) and hence pro-
vides a good source of model diagnosis.

4.4 Illustration of CO forecast sensitivity

Short-term regional forecasts require an even more accurate
representation, particularly an initial condition that is close
to observations. Representing the short-term variability on
top of the mean flow patterns is critical in regional forecasts.
This is true in forecasting pollution from Asia, which can
be episodically transported to the NE Pacific within the time
scales of 5 to 7 days depending on prevailing transport con-

Fig. 13.Comparison of DART/CAM CO 3-day forecasts (top panel:
forecast in ppbv at 700 hPa valid for 20 April 2006 00:00 UTC
from a free-running CO simulation (REFSIM), middle panel: fore-
cast initialized with MOPITT-constrained CO at 17 April 2006
00:00 UTC, bottom panel: difference between the two forecasts).

ditions (Yienger, 2000; Jaffe et al., 1999). This highlights the
role of initial condition in providing a fairly reliable forecast.
In Fig. 13, we demonstrate the utility of the assimilation sys-
tem to provide observationally-constrained CO initial condi-
tions for CO forecasts. In addition to the two assimilation ex-
periments, we conducted a 3-day forecast-mode experiment
valid for 20 April 2006 00:00 UTC, which was initialized
with bias-corrected COASSIM CO (see Sect. 4.3) at 17 April
2006 00:00 UTC. The difference shown in Fig. 13 is a com-
parison between the 3-day forecasts at 700 hPa from REF-
SIM and the 3-day forecast at the same level using COAS-
SIM initial condition. Differences of about 20–40 ppbv are
evident in regions of Asian outflow and along the frontal sys-
tems across the Pacific. The spatial patterns depicted in the
figure illustrate the key role of observationally-constrained
initial condition in producing accurate forecasts. This may
have an effect on efforts like mission flight planning where
the goal is to correctly track enhanced plumes of pollution.
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Fig. 14. Ensemble-spread (in ppbv) of DART/CAM CO at 700 hPa
within the INTEX-B domain averaged between 6 April to 1 May
2006. The upper and lower panels correspond respectively to en-
semble spread from REFSIM (top panel) and COASSIM analyses
(bottom panel).

4.5 Estimates of model uncertainties

4.5.1 Ensemble spread

The ensemble-based data assimilation system provides a
probabilistic characterization of the CO state estimates.
Here, we show the ensemble spread of modeled CO for REF-
SIM and COASSIM. Taken as the standard deviation of the
predicted CO concentrations across the 20 ensemble mem-
bers, the ensemble spread can be considered as a measure
of uncertainty on the estimate of the CO states (or on how
well the ensemble members agree on the CO forecast). As
presented in Fig. 14, the ensemble spread of REFSIM CO
is mainly characterized by a large spread in two source re-
gions. This is most likely influenced by our large error es-
timates (>50%) of biomass burning emissions in Southeast
Asia and Central America (see Fig. 2) rather than the spread
due to perturbations in meteorology. We expect this since the
spread in meteorology is significantly reduced in the meteo-
rological assimilation component of CDAS while the spread
in emissions is fixed during the assimilation cycles and is
not presently constrained. We see changes in the structure
on the ensemble spread of COASSIM, with clear indications
of transport-related uncertainties, such as an outflow east of
China and Japan and a regional circulation over southeast-
ern Siberia. Although not shown here, the flow-dependent
patterns of variability as estimated from the mean ensem-

Fig. 15. Mean spatial distribution of analysis increments (Posterior
CO – Prior CO, in ppbv) at 700 hPa averaged between 6 April to 1
May 2006.

ble spread are consistent with the variability of the assimi-
lated CO in the region as estimated from the standard devi-
ation of ensemble-mean CO across the time period. To an
extent, the COASSIM ensemble spread is an improvement
in representing the structure of the uncertainties in the CO
distribution since it appears to represent additional features
other than emission uncertainties. However, when compared
to the model RMSE relative to MOPITT (Fig. 6), the poste-
rior ensemble spread still appears to be under-estimated espe-
cially in the downwind region, where the variability is mostly
transport-induced. Such differences in the structure of the
ensemble spread between COASSIM and REFSIM demon-
strate the spatial variability of the error estimates and point
to locations were the errors are apparently too small. For
this reason, a more appropriate characterization of the uncer-
tainties as estimated from the ensemble approach is to take
advantage of the structure by conducting an analysis of the
correlation in conjunction with an analysis of the variance.

4.5.2 Mean analysis increments

The assimilation system can also be used to diagnose model
and/or observation errors. Following Dee (2005), we use the
difference of CO analysis and forecast (or increments) to rep-
resent short-term systematic errors in the model. The adjust-
ments in the CO forecast for each 6-hour assimilation cycle
can be assumed to be mostly attributed to errors in the model.
As previously discussed in Sect. 4.1, the errors from the as-
similation methodology are relatively small. If it can be as-
sumed that the assimilated CO has already converged to MO-
PITT CO after several assimilation cycles, then, the manner
in which the systematic CO short-term forecast diverges from
MOPITT CO largely relates to errors in the model. To illus-
trate, we took the 6-hourly ensemble-mean forecast CO and
the analysis CO in the observation space and averaged over
the INTEX-B domain (from equator to 65N latitude, 90 E to
90 W longitude). The resulting time series of the spatially-
averaged observation increment describes the evolution of
the forecast and analysis errors relative to assimilated MO-
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PITT retrievals. Similar to the global time series shown on
the left panel of Fig. 6, the mean forecast RMSEs are sys-
tematically larger than the analysis errors. This difference
represents the adjustment made in the analysis step to bring
the modeled CO closer to observations. We can also take
the temporal mean of these increments and look at its spa-
tial distribution to explore characteristic regions where the
modeled CO is frequently adjusted. Figure 15 shows the spa-
tial distribution of the mean adjustments about the 6 April–1
May 2006 period. We specifically remove the first 5 days
of assimilation to allow for spin-up in the assimilation. As
shown, the model appears to overpredict in source regions
(i.e. China and east of Asia) and underpredict in downwind
regions (i.e. northeastern Pacific across the C-130 and DC-8
flight coverage). The mean adjustments are consistent with
results discussed in the previous sections (e.g. Fig. 12). Ad-
ditionally, this model error characteristic has been reported in
other GCTM simulations. In particular, some offline GCTM
results consistently report a negative bias in CO concentra-
tions during Spring over Hawaii and Midway (e.g. Bey et al.,
2001; Liang et al., 2004; Arellano et al., 2004). However,
increasing Asian emissions to account for this bias degrades
the model further over Asia. We note in particular that the
ensemble-mean emissions of Asian CO (and other regions
like Europe) used in DART/CAM have already been opti-
mized following Ṕetron et al. (2004). The spatial structure
provides further evidence of a GCTM related error, which
can not be readily explained by emissions alone. It is a bulk
error that appears to be a combination of errors due to trans-
port, emissions and/or chemistry. It is possible that the mod-
eled CO is transported slightly differently from what is ob-
served by MOPITT and/or the modeled chemical production
of CO from hydrocarbon oxidation during transport is under-
estimated. While further analysis is necessary to identify the
sources of this error, knowledge of model error is useful in
providing a consistent inverse analysis. Without a reason-
able model error estimate, results of inverse analyses will be
largely sensitive to the choice of the observation domain and
the proximity of the observations to the source location of
interest.

5 Conclusions

We have introduced a new global chemical data assimilation
system based on an ensemble Kalman filter approach. The
system interfaces CAM3 global atmosphere model with sim-
plified chemistry into the DART ensemble framework. Such
an ensemble-based data assimilation system is appealing for
studies in global chemical transport as it offers the flexibil-
ity and efficiency to assimilate measurements with various
scales and of various chemical species. This is especially
true, at present, in light of the availability of near-global and
long-term chemical observations.

One of the goals of this work is to demonstrate the utility
of the system to studies related to chemical weather fore-
casts, focusing initially on assessing its model performance
on Asian CO outflow and its episodic transport to North
America during the INTEX-B field mission in April 2006.
We apply the assimilation system in constraining the global
tropospheric CO distribution within CAM3, by jointly as-
similating observations of temperature and horizontal wind
velocity as well as satellite CO retrievals from the MOPITT
satellite instrument. Since the variability of CO is mainly
induced by transport and emissions, a reasonable ensemble
representation of CO is generated first. This includes rep-
resenting an ensemble of initial meteorological conditions
in CAM3, based on long-term climatological CAM3 sim-
ulations, together with an ensemble of total CO emissions,
mainly based on our current estimates of emission uncertain-
ties. The DART/CAM assimilation performance is verified
using independent CO observations from C-130 and DC-8
flights during the field campaign. Assimilation results show
that the current system converges to the observed MOPITT
CO distribution within the first 5 days of assimilation, con-
sistent with the duration of MOPITT obtaining near-global
coverage. The DART/CAM analyzed meteorology also ap-
pears to be very similar in magnitude and structure to opera-
tional NCEP GFS analyses. Significant improvements in the
model skill are evident with MOPITT assimilation (COAS-
SIM), notably capturing the observed CO variability and im-
proving the correlation between modeled CO and INTEX-B
flight observations. We note however that the present model
representation of CO with no MOPITT assimilation (REF-
SIM) generally captures the large-scale CO outflow. This
can be mostly attributed to optimized estimates of Asian an-
thropogenic emissions. Also, the activity of biomass burning
in the region, which largely accounts for uncertainty in mod-
eling CO emissions, is observed to be relatively low over NE
Pacific during the campaign period.

Constraining CO using the assimilation system, and eval-
uating against independent set of measurements, provides
important information on the MOPITT retrievals as well as
on the fidelity of the model to represent CO transport over
the Pacific. The assimilation reveals a slight positive bias
in MOPITT CO, of about 10–18% compared to INTEX-B
mean CO concentration. The results demonstrates an im-
portant utility of the assimilation system in validating and
comparing non-coincident datasets and measurements (like
MOPITT) having complex observation operators. With re-
moval of the observed bias in COASSIM CO, the assimila-
tion results show evidence of monthly-mean CO loadings of
about 150 ppbv over the NE Pacific, which is slightly higher
than REFSIM CO (∼140 ppbv). Furthermore, analysis of
mean assimilation increments reveals a model error structure
showing model overprediction of CO in the source regions
of Asia and underprediction in downwind regions consistent
with several offline GCTM simulations. Yet, it appears that
the model error, depicted in this work as mean adjustments,
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cannot be solely explained, to the first order, as an under-
prediction in Asian emissions. Albeit limited in scope, these
results have important implications in efforts to improve fu-
ture regional CO forecasts and to inverse modeling of CO.

Appendix A

Construction of CO emission covariance

The climatological monthly emission covariance,6emis is
expressed as a combination of sub-grid variability6G, inter-
annual variability6A and uncertainty estimates on regional
monthly totals of CO emissions from inverse analyses,6I .
That is,∑m

emis
=

∑m

G
+

∑m

A
+

∑m

I
(A1)

wherem is the month index from 1 to 12 (i.e. January to
December). 6emis, 6G, 6A and 6I are monthly covari-
ance matrices whose dimensions arengrid×ngrid , where
ngrid=144×91 at 2◦×2.5◦ CAM horizontal resolution.

First, we divide the globe into 13 broad regions based on
Arellano and Hess (2006). The covariance6G is constructed
as a block diagonal matrix with block matrix elementsBr,m,
wherer is the region index from 1 to 13. This matrix is
defined as,

Br,m = diag(σ grid,r)
2, (A2)

whereσ grid,r is the standard deviation of 1◦
×1◦ grid emis-

sions within each 2◦×2.5◦ CAM grid for a particular month,
m and region,r. In this work, this corresponds to the sub-grid
variability specific for April 2006 emissions. That is,

4∑
G

=


B1,4

. . .

. . .

B13,4

 (A3)

The second covariance term,6A, is associated with the
spatial covariance of each emission grid point with its neigh-
boring grids for a particular climatological month. How-
ever, the covariance is localized within a certain region. It
is assumed that uncertainties across regions are independent.
As such,6A is constructed as block diagonal matrix with
each block corresponding to a particular region. We form
a data matrix,Xr,m for each of the region and for each
climatological month. Each matrix forms a dimension of
ngrid region×nmonth, wherengrid region is the number of model
2◦

×2.5◦ grids in a particular region andnmonth=10 (e.g. com-
pilation of each April from 1996 to 2006). We calculate em-
pirically for each data matrixXr,m, a sample spatial covari-
anceCr,m,

Cr,m =< Xr,mXT
r,m > . (A4)

We then smooth the sample covariance by doing an eigen-
value decomposition ofCr,m and retaining only its 3 leading
eigenvectors.6A is constructed as a compilation of resulting
smoothed covariances for all 13 regions. For example,

4∑
A

=


C1,4

. . .

. . .

C13,4

 (A5)

In this manner, we account for the spatial variability on
a regional basis by assuming that the variability within each
region is stationary in time across the period spanned by the
inventory (i.e. 10 years).

The third covariance term,6I , is also constructed as block
diagonal matrix, where each block corresponds to an uncer-
tainty estimate of total sum of emissions for each region. The
estimates are taken from Arellano and Hess (2006) sensitiv-
ity analyses, where they reported a larger uncertainty in MO-
PITT CO inverse estimates for the year 2000 when a different
treatment of tracer transport is used in the inverse model. We
construct a diagonal covariance matrixDr,m for each region
and climatological month. This is calculated as:

Dr,m = diag
( σr

100
µgrid,r

)2
. (A6)

whereσr is the relative spread (in %) of the total sum of
annual emission for each region andµgrid,r is the emission
associated for each grid within the region. As such, form=4,

∑4

I
=


D1,4

. . .

. . .

D13,4

 (A7)

Acknowledgements.We thank the NCAR/MOPITT team for CO
observations and the INTEX-B team for access to other field
observations. We also acknowledge J.-F. Lamarque (NCAR/ACD)
and J. Hacker (NCAR/MMM) for reviewing the initial manuscript
and V. Yudin (NCAR/ACD) for helpful discussions. We thank
T. Hoar (NCAR/IMAGe) for assistance with DART and F. Vitt
(NCAR/ACD) for his help with CAM installation. This work
is supported by NSF ITR Grant 115912 and by NASA Grant
NN9069B279. The National Center for Atmospheric Research is
operated by the University Corporation for Atmospheric Research
under the sponsorship of the National Science Foundation.

Edited by: H. Singh

References

Allen, D. J., Kasibhatla, P. S., Thompson, A. M., et al..: Transport-
induced interannual variability of carbon monoxide determined
using a chemistry and transport model, J. Geophys. Res., 101,
28 655–28 670, doi:10.1029/96JD02984, 1996.

Atmos. Chem. Phys., 7, 5695–5710, 2007 www.atmos-chem-phys.net/7/5695/2007/



A. F. Arellano Jr. et al.: Ensemble-based global chemical data assimilation 5709

Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementa-
tion of the nonlinear filtering problem to produce ensemble as-
similations and forecasts, Mon. Weather Rev., 127, 2741–2758,
1999.

Anderson, J. L.: An ensemble adjustment Kalman Filter for data
assimilation, Mon. Weather Rev., 129, 2884–2903, 2001.

Anderson, J. L.: Exploring the need for localization in ensemble
data assimilation using an hierarchical ensemble filter, Physica
D, 230, 99-11, doi:10.1016/j.physd.2006.02.011, 2007a.

Anderson, J. L.: An adaptive covariance inflation error correction
algorithm for ensemble filters, Tellus A, 59, 210–224, 2007b.

Arellano Jr., A. F., Kasibhatla, P. S, Giglio, L., et al.: Top-down
estimates of global CO sources using MOPITT measurements,
Geophys. Res. Lett., 31, L01104, doi:10.1029/2003GL018609,
2004.

Arellano, A. F. and Hess, P. G.: Sensitivity of top-down estimates
of CO sources to GCTM transport, Geophys. Res. Lett., 33,
L21807, doi:10.1029/2006GL027371, 2006.

Auger, L. and Tangborn, A. V.: A Wavelet-Based Reduced Rank
Kalman Filter for Assimilation of Stratospheric Chemical Tracer
Observations, Mon. Weather Rev., 132, 1220–1237, 2004.

Bey, I., Jacob, D. J., Logan, J. A., and Yantosca, R. M.:
Asian chemical outflow to the Pacific in spring: Origins, path-
ways, and budgets, J. Geophys. Res., 106, 23 097–23 114,
doi:10.1029/2001JD000806, 2001.

Chai T., Carmichael, G. R., Sandu, A., et al.: Chemical data as-
similation of Transport and Chemical Evolution over the Pa-
cific (TRACE-P) aircraft measurements, J. Geophys. Res., 111,
D02301, doi:10.1029/2005JD005883, 2006.

Clerbaux, C., Hadji-Lazaro, J., Hauglustaine, D., et al.: Assimi-
lation of carbon monoxide measured from satellite in a three-
dimensional chemistry-transport model, J. Geophys. Res., 106,
15 385–15 394, doi:10.1029/2000JD900682, 2001.

Collins, W. D., Rasch, P. J., Eaton, B. E., et al.: Simulating aerosols
using a chemical transport model with assimilation of satellite
aerosol retrievals: Methodology for INDOEX, J. Geophys. Res.,
106, 7313–7336, doi:10.1029/2000JD900507, 2001.

Collins, W. D., Bitz, C. M., Blackmon, M. L., et al.: The Formula-
tion and atmospheric simulation of the Community Atmosphere
Model Version 3 (CAM3), J. Climate, 19(11), 2144–2161, 2006.

Dee, D. P.: Bias and data assimilation, Q. J. Roy. Meteor. Soc.,
131(613), 3323–3343, 2005.

Deeter, M. N., Emmons, L. K., Edwards, D. P., et al.:
Vertical resolution and information content of CO profiles
retrieved by MOPITT, Geophys. Res. Lett., 31, L15112,
doi:10.1029/2004GL020235, 2004.

Dethof, A. and H́olm, E.: Ozone assimilation in the ERA-40 reanal-
ysis project, Q. J. R. Meteor. Soc., 130, 2851–2872, 2004.

Eben, K., Juru, P., Resler, J., et al.: An ensemble Kalman filter for
short-term forecasting of tropospheric ozone concentrations, Q.
J. Roy. Meteor. Soc., 131, 3313–3322, 2005.

Elbern, H., Strunk, A., Schmidt, H., and Talagrand, O.: Emission
rate and chemical state estimation by 4-dimensional variational
inversion, Atmos. Chem. Phys., 7, 1–59, 2007,
http://www.atmos-chem-phys.net/7/1/2007/.

Elbern, H. and Schmidt, H.: A four-dimensional variational chem-
istry data assimilation scheme for Eulerian chemistry transport
modeling, J. Geophys. Res., 104, 18 583–18 598, 1999.

Elbern, H., Schmidt, H., Talagrand, O., and Ebel, A.: 4D-variational

data assimilation with an adjoint air quality model for emission
analysis, Environ. Modell. Software, 15, 539–548, 2000.

Emmons, L. K., Deeter, M. N., Gille, J. C., et al.: Validation of
Measurements of Pollution in the Troposphere (MOPITT) CO
retrievals with aircraft in situ profiles, J. Geophys. Res., 109,
D03309, doi:10.1029/2003JD004101, 2004.

Emmons, L. K., Pfister, G. G., Edwards, D. P., et al.: Measurements
of Pollution in the Troposphere (MOPITT) validation exer-
cises during summer 2004 field campaigns over North America,
J. Geophys. Res., 112, D12S02, doi:10.1029/2006JD007833,
2007.

Engelen, R. J. and McNally, A. P.: Estimating atmospheric CO2
from advanced infrared satellite radiances within an opera-
tional four-dimensional variational (4D-Var) data assimilation
system: Results and validation, J. Geophys. Res., 110, D18305,
doi:10.1029/2005JD005982, 2005.

Eskes, H. J., Van Velthoven, P. F. J., Valks, P. J. M., et al.: As-
similation of GOME total ozone satellite observations in a three-
dimensional tracer transport model, Q. J. Roy. Meteor. Soc., 129,
1663–1681, 2003.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-
geostrophic model using Monte-Carlo methods to forecast error
statistics, J. Geophys., Res., 99, 10 143–10 162, 1994.

Fisher, M. and Lary, D. J.: Lagrangian four-dimensional variational
data assimilation of chemical species, Q. J. Roy. Meteor. Soc.,
121, 1681–1704, 1995.

Frankenberg, C., Meirink, J. F., Bergamaschi, P., et al.: Satellite
chartography of atmospheric methane from SCIAMACHY on
board ENVISAT: Analysis of the years 2003 and 2004, J. Geo-
phys. Res., 111, D07303, doi:10.1029/2005JD006235, 2006.

Gaspari, G. and Cohn, S. E.: Construction of correlation functions
in two and three dimensions, Q. J. Roy. Meteor. Soc., 125, 723–
758, 1999.

Giglio, L., Csiszar, I., and Justice, C. O.: Global distribu-
tion and seasonality of active fires as observed with the
Terra and Aqua Moderate Resolution Imaging Spectrora-
diometer (MODIS) sensors, J. Geophys. Res., 111, G02016,
doi:10.1029/2005JG000142, 2006.
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