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Abstract. An observation-based box model approach was
undertaken to estimate concentrations of OH, HO2, and RO2
radicals and the net photochemical production rate of ozone
at the top of Mount Tai, located in the middle of Central East
China, in June 2006. The model calculation was constrained
by the measurements of O3, H2O, CO, NO, NO2, hydrocar-
bon, HCHO, and CH3CHO concentrations, and temperature
andJ values. The net production rate of ozone was estimated
to be 6.4 ppb h−1 as a 6-h average (09:00–15:00 CST), sug-
gesting 58±37 ppb of ozone is produced in one day. Thus
the daytime buildup of ozone recorded at the mountain top as
∼23 ppb on average is likely affected by in situ photochem-
istry as well as by the upward transport of polluted air mass in
the daytime. On days with high ozone concentrations (hourly
values exceeding 100 ppb at least once), in situ photochem-
istry was more active than it was on low ozone days, suggest-
ing that in situ photochemistry is an important factor control-
ling ozone concentrations. Sensitivity model runs for which
different NOx and hydrocarbon concentrations were assumed
suggested that the ozone production occurred normally under
NOx-limited conditions, with some exceptional periods (un-
der volatile-organic-compound-limited conditions) in which
there was fresh pollution. We also examined the possible in-
fluence of the heterogeneous loss of gaseous HO2 radicals in
contact with aerosol particle surfaces on the rate and regimes
of ozone production.
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(yugo@jamstec.go.jp)

1 Introduction

Central East China (CEC) is regarded as one of the regions
in the world where tropospheric ozone is present at high con-
centrations. Pochanart et al. (2009) revealed the seasonal
variation in ozone concentrations over CEC from observa-
tion. They found that at the top of Mount Tai (36.26◦ N,
117.11◦ E, 1534 m a.s.l., Shandong Province of the People’s
Republic of China) located in the middle of CEC, monthly
averaged ozone concentrations regularly peak in June at
∼80 ppbv, with highest hourly values exceeding 120 ppbv
in each year of 2004–2006. Considering that the site is not
directly affected by plumes from large cities, a geographi-
cally wide area (with a scale of several hundred kilometers)
is likely covered by air masses containing high concentra-
tions of ozone. Zhu et al. (2004) indicated in their regional
modeling study that a zonal band (between 35 and 40◦ N) of
high ozone concentration (>70 ppb) emerged from the west-
ern boundary (70◦ E) of their model domain to 130◦ E in
June, the latitudinal location of which was affected by sea-
sonal transition associated with the Asian monsoon system.
The regionally high ozone burden in this region is of interest
from the viewpoints of the greenhouse effect, health effects,
and agricultural damage.

The primary cause for the high ozone concentrations over
this region would be photochemical production. Wang et
al. (2006) simulated an episode of high ozone concentra-
tions (around 110 ppbv) observed at Mt. Tai on 24 and 25
May 2004 with the Nested Air Quality Prediction Model-
ing System and found that the modeled ozone concentrations
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at Mt. Tai had a large (20–50%) sensitivity to emissions in
the Yangtze Delta region, suggesting that the photochemistry
during the travel of the air mass from that region was im-
portant. Using a similar model, Li et al. (2007) calculated
that photochemical production is the dominant term for the
time derivative of ozone concentration for the grid surround-
ing Mount Tai station (surface area of 400×400 km with a
0–2.5 km altitude range) in June. However, an in situ produc-
tion rate of ozone that is representative over this region has
not yet been quantified on the basis of the observed concen-
trations of ozone precursors (NOx, CO, and hydrocarbons)
and relevant parameters (J values, temperature, and humid-
ity).

Knowledge of the ozone production regime (NOx-limited
vs. volatile organic compound (VOC)-limited) over this re-
gion is essential for the establishment of controlling strate-
gies of ozone concentrations. These concentrations are ex-
pected to increase at least in the coming decade over CEC
(e.g., Yamaji et al., 2008) owing to fast economic growth
and the associated increase in the emission rates of ozone
precursors (Ohara et al., 2007). In past modeling studies,
Carmichael et al. (2003a) suggested that ozone production in
the north/central region of CEC (north of 30–35◦ N) is VOC-
limited at 440 m altitude in March, while it is NOx-limited
south of∼30–35◦ N. Luo et al. (2000) similarly suggested
that VOC limitation generally applies in late October–early
November north of the Yangtze Delta. However, the precur-
sor concentrations in the model simulations have not been
validated through observations, making the analysis suscep-
tible to large uncertainty in the emission rates of the precur-
sors in this area (Streets et al., 2003). Martin et al. (2004)
found that HCHO/NO2 column concentration ratios derived
from Global Ozone Monitoring Experiment satellite data are
greater than 1 during summer over eastern China, indicat-
ing NOx-sensitive conditions. In this case, however, the ob-
served column density of HCHO was used as a proxy to infer
the VOC concentrations, which have not been observed di-
rectly. Considering that the regimes could change with sea-
sons owing to variations in the production rates of radicals
that mediate ozone production and in the amount of biogenic
hydrocarbons, knowledge of the regimes over this region in
this heavily polluted month is currently very limited.

In June 2006, we conducted the Mount Tai Experiment
2006 field campaign at the top of Mount Tai and measured
ozone, its precursors (CO, NO, NO2, hydrocarbons, HCHO,
and CH3CHO), and relevant meteorological/radiative param-
eters (J values, temperature, and humidity). Using the ob-
served concentrations and parameters as input to a photo-
chemical box model employing a tropospheric chemistry
mechanism, concentrations of OH, HO2, and RO2 (organic
peroxy) radicals were calculated first and then net in situ pho-
tochemical production rates of ozone were estimated on the
basis of the radical concentrations. We also performed sen-
sitivity model runs where different NOx or VOC concentra-
tions were assumed to study the ozone production regimes at

the location. Another set of model runs including heteroge-
neous loss of HO2 on aerosol surfaces was executed to esti-
mate its impact on the ozone production rate and regimes.

2 Experimental

O3 and CO were measured by commercially available in-
struments based on ultraviolet and nondispersive infrared ab-
sorption (Thermo, models 49C and 48C) on a year-round ba-
sis (Pochanart et al., 2009). Purified air produced by a zero
air generator (Thermo, model 111) was periodically intro-
duced to the CO-measuring instrument to determine the zero
level. NO, NOx, and NOy were sequentially detected by a
customized instrument based on a commercially available in-
strument (Thermo, model 42CTL). An air sample for this in-
strument passed through one of three gas lines: a line with a
molybdenum converter, a line with a blue light (light emitting
diode) converter (Droplet Measurement Technology, USA),
and a line without converters. The two converters were lo-
cated at the entrance of the sampling tube, such that NOy
and NO2 are converted to NO, a relatively inert molecule, at
an early part of the inlet line with minimum loss. The con-
version efficiency of NO2 to NO by the blue light converter
during the campaign was 50%. The sensitivity to NO was
determined against a premixed gas of NO/N2 (2.004 ppmv,
Taiyo Nippon Sanso Corporation). The sensitivity agreed
with that determined with a cylinder with NIST-traceability
to within 2%. The detection limit of the instrument is spec-
ified to be 0.1 ppbv for NO and 0.2 ppbv for NO2 and NOy.
VOC measurements were made with canister samplings (per-
formed on 30 occasions during the campaign) followed by
analysis using gas chromatography-flame ionization detec-
tion (GC-FID) and gas chromatography-mass spectrometry
(GC-MS) (Suthawaree et al., 2009). The sampling was
made typically once per day (typically at 14:40 CST), with
a sampling duration of 2 min. Proton-transfer reaction-mass
spectrometry (PTR-MS) was conducted in the latter part of
the campaign (13–30 June) (Inomata et al., 2008, 2009).
We used concentrations of HCHO, CH3OH, CH3CHO, iso-
prene, methylvinylketone (MVK) + methacrolein (MACR),
methylethylketone (MEK), benzene, and6-monoterpene
measured by PTR-MS for analysis in this paper. The de-
tection limits were estimated to be 0.37–0.83, 0.74, 0.29–
0.35, 0.28, 0.1, 0.08, 0.13, and 0.06 ppbv, respectively. It
was assumed that the signal corresponding tom/z71 in the
PTR-MS was from MACR and MVK with 50% contribu-
tions. The spectral actinic flux was measured by a single-
monochromator/photodiode array instrument (Meteorologie
Consult Inc.) covering a wavelength region from 274 to
698 nm. The instrument was calibrated against a standard
halogen lamp. The uncertainty inJ (O1D) for a similar in-
strument has been estimated to be 14% (Heard et al., 2006).
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Table 1. Hydrocarbons taken into account in the model calculation and their categorization in the RACM.

RACM category Hydrocarbons taken into account in the model calculation
Measured by GC, taken into
account in the model by re-
lationship with CO

Measured by GC, taken into
account in the model at
campaign averages

Measured by PTR-
MS, taken into ac-
count in the model by
relationship with CO

Biogenic species mea-
sured by PTR-MS, av-
eraged diurnal vari-
ations used in the
model

ETH ethane

HC3 propane,
i-butane,
n-butane,
acetylene

2,2-dimethylbutane methanol

HC5 i-pentane,
n-pentane,
2-methylpentane,
3-methylpentane,
n-hexane

cyclopentane,
2,3-dimethylbutane,
2,4-dimethylpentane,
2,2,4-trimethylpentane

HC8 methylcyclopentane,
cyclohexane,
2-methylhexane,
n-heptane,
methylcyclohexane,
n-octane,
n-nonane

2,3-dimethylpentane,
3-methylhexane,
2-methylheptane,
3-methylheptane

ETE ethene

OLT propene,
1-butene

3-methyl-1-butene,
1-pentene,
styrene

OLI trans-2-butene,
cis-2-butene,
trans-2-pentene,
cis-2-pentene,
2-methyl-2-butene,
cyclopentene,
trans-2-hexene,
cis-2-hexene

DIEN 1,3-butadiene

ISO isoprene

API alpha-pinene,
beta-pinene,
camphene

LIM limonene

TOL toluene,
ethylbenzene

iso-propylbenzene,
styrene

benzene

XYL p,m-xylene,
o-xylene

HCHO HCHO

ALD acetaldehyde

KET acetone,
MVK,
MEK

MACR methacrolein
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Fig. 1. Averaged diurnal variations in(a) O3, (b) CO, (c) NO, (d) NO2, and(e) NOy concentrations,(f) J (O1D), (g) total NMHC con-
centrations (not including oxygenated VOCs), and(h) summed reactivity of CO, CH4, H2, SO2, and NMHCs toward OH for high-O3 days
(solid circles) and low-O3 days (gray filled squares). In (h), open circles and gray open squares are the reactivity when the contribution from
oxygenated VOCs is added for high- and low-O3 days, respectively. Open triangles and gray open triangles are the reactivity of CO, CH4,
H2, and SO2 for high- and low-O3 days, respectively (shown for reference).

3 Model calculations

The photochemical box model we used is based on the
Regional Atmospheric Chemistry Mechanism (RACM) de-
signed by Stockwell et al. (1997), employing 237 reactions
and 77 chemical species. The model has been outlined else-
where (Kanaya et al., 2007). The observed concentrations of
O3, CO, H2O, NO, NO2, hydrocarbons, HCHO, CH3CHO,
CH3OH, MVK+MACR, and MEK, temperature, andJ val-
ues were averaged or interpolated with a time resolution of

10 min and used as constraints of the model. Data gaps were
basically filled by time interpolation. In the base run, a NO
concentration of 0.05 ppb was assumed when the observation
was below the detection limit. This applied to∼30% of the
midday 6-h periods (09:00–15:00 CST) of the studied period
(3–30 June). Sensitivity runs assuming 0.02 or 0.1 ppb of
NO instead of 0.05 ppb did not change the conclusion of the
study significantly (see Sect. 4.2).

Table 1 shows the categorization of the observed hydrocar-
bons and oxygenated VOCs into lumped species used for the
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RACM. The concentrations of major anthropogenic hydro-
carbons (25 species, second column in Table 1) measured by
GC-FID and GC-MS were taken into account using regres-
sion equations for CO, for which continuous observations
were available. Two regression equations, one for the first
half of the campaign period (3–15 June) and the other for the
latter half (16–30 June), were produced and applied for the
periods. TheR2 values for the correlations between CO and
hydrocarbon concentrations ranged between 0.01 and 0.88.
Some hydrocarbons had different slopes for their concentra-
tion against CO concentration in the two periods; it is likely
that intense biomass burning of crop residues affected the
concentration ratios in the first half period (Suthawaree et
al., 2009).

Other minor hydrocarbons (21 species, third column in Ta-
ble 1) detected by GC-FID and GC-MS were taken as hav-
ing constant concentrations, calculated as mean values over
the campaign period. For HCHO, CH3OH, acetaldehyde
(ALD), acetone, MVK+MACR, and MEK, hourly data from
the PTR-MS instrument were used after 15:00 CST on 12
June, when the measurements began. Regression equations
with CO concentrations were used for each of the oxygenated
species to estimate their concentrations before 12 June.

For benzene, PTR-MS data were used after the measure-
ments began (15:00 CST on 12 June). The benzene con-
centrations before this time were estimated from the rela-
tionship between CO and benzene (GC-FID) observed be-
fore 15 June. Concentrations of isoprene and monoterpenes
were based on hourly data from PTR-MS after 15:00 CST on
12 June. In the case of monoterpenes, averaged fractions
of α-pinene,β-pinene, camphene, and limonene over the
campaign were used to calculate species-specific concentra-
tions. Averaged diurnal variations in isoprene and monoter-
pene concentrations from PTR-MS were applied to estimate
their concentrations for the period prior to 12 June. For ben-
zene, isoprene, and monoterpenes, the PTR-MS data were
scaled to the concentrations determined by GC-FID using the
slopes of their regression lines.

The uncertainty in the NMHC concentrations determined
in these ways was roughly estimated to be a factor of 2.
The benzene concentrations estimated by the method men-
tioned above showed similar variation patterns to those di-
rectly observed by PTR-MS after 12 June (see Fig. S1
of the supplement material:http://www.atmos-chem-phys.
net/9/7711/2009/acp-9-7711-2009-supplement.pdf) and the
central 80% of the ratio between the two concentrations was
in a range of 0.80–1.67. Additionally, we found that 84% of
the concentrations of important NMHCs (having large reac-
tivity toward OH) estimated by the method above deviated
from the directly measured concentrations by less than a fac-
tor of 2. The influence of the uncertainty on the estimation
of the ozone production rate will be discussed in Sect. 4.3.

SO2 concentrations were estimated from the equation
[SO2 (ppb)]=0.018×[CO (ppb)]+4.8, as observed at Lin’an
in March 2001 (Carmichael et al., 2003b). CH4 and H2
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Fig. 2. Average diurnal variations in OH, HO2, and RO2 concen-
trations estimated by a photochemical box model for high-O3 days
(circles) and low-O3 days (gray squares).

concentrations were assumed to be constant as 1850 and
550 ppbv, respectively.

The model calculation was made for each day within the
period of 3–30 June (28 days). The time of 00:00 CST was
regarded as the initial time on each day, and integration over
24 h was conducted by 10-min binning of the data. This in-
tegration was conducted ten times in series to stabilize the
concentrations of unconstrained species (e.g., unmeasured
carbonyl and peroxide species). The results for the last 24 h
were used as output for each day. The H2O2 concentrations
did not stabilize even by the 10th day of calculation, but the
effect on the radical concentrations (and thus on the ozone
production rate) was small.

Figure 1 shows averaged diurnal variations in concentra-
tions of O3, CO, NO, NO2, NOy, and6-nonmethane hy-
drocarbons (NMHCs) (not including oxygenated VOCs), the
summed reactivity of CO, CH4, H2, SO2, hydrocarbons, and
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Table 2. Major production and loss processes of OH, HO2, and radical (OH+HO2+RO2) and their fractions as daytime averages (09:00–
15:00 CST)a.

OH production OH loss HO2 production HO2 loss Radical production Radical loss
4.3×107 cm−3 s−1 4.3×107 cm−3 s−1 3.8×107 cm−3 s−1 3.9×107 cm−3 s−1 2.1×107 cm−3 s−1 2.1×107 cm−3 s−1

HO2+NO 0.59 OH+CO 0.27 OH+CO 0.30 HO2+NO 0.65 O1D+H2O 0.43 HC3P+HO2 0.14
O1D+H2O 0.22 OH+ALD 0.12 CH3O2+NO 0.19 HO2+HO2 0.07 HCHO+hν 0.09 HO2+HO2 0.13
O3+HO2 0.05 OH+OP2 0.08 HCHO+hν 0.05 HO2+HO2+H2O 0.07 H2O2+hν 0.09 HO2+HO2+H2O 0.12
H2O2+hν 0.04 OH+HC3 0.06 HC3P+NO 0.05 O3+HO2 0.06 MGLY+hν 0.08 CH3O2+HO2 0.10
OP2+OH 0.04 OH+ISO 0.05 HCHO+OH 0.05 HC3P+HO2 0.04 OP2+hν 0.06 ISOP+HO2 0.06
OP2+hν 0.01 OH+MACR 0.04 ISOP+NO 0.03 CH3O2+HO2 0.03 MACR+OH 0.04 XO2+HO2 0.06
LIM+O3 0.01 OH+HCHO 0.04 OH+SO2 0.03 XO2+HO2 0.02 LIM+O3 0.04 XO2+NO 0.05
OP1+OH 0.01 OH+H2O2 0.03 H2O2+OH 0.03 ISOP+HO2 0.01 ALD+hν 0.03 OH+NO2 0.05
API+O3 0.01 OH+LIM 0.03 HC3+OH 0.03 LIMP+HO2 0.01 API+O3 0.02 LIMP+HO2 0.04
OP1+hν 0.00 OH+SO2 0.03 others 0.24 others 0.05 MACR+hν 0.02 ACO3+HO2 0.04
others 0.01 OH+NO2 0.02 others 0.11 OH+HO2 0.03

others 0.23 others 0.20

a Interconversion between HO2 and HO2NO2 and between RO2 and PANs is omitted.
See Table 1 for LIM, API, HC3, ALD, ISO, MACR. HC3P, ISOP, and LIMP are peroxy radicals formed from HC3, ISO, and LIM, respec-
tively. XO2 and ACO3 are peroxy radicals that account for additional NO to NO2 conversion and saturated acyl peroxy radicals (acetyl
peroxy and higher). OP1, OP2, and MGLY are CH3OOH, organic peroxide higher than CH3OOH, and methylglyoxal and otherα-carbonyl
aldehydes.

oxygenated VOCs toward OH, andJ (O1D) values. They
are separately shown for days when hourly [O3] exceeded
100 ppbv at least once (high-O3 days: 2–7, 11–13, 15–16,
18–20, and 27 June) and for the other days with lower ozone
concentrations (low-O3 days: 8–10, 14, 17, 21–26, 28–30
June). The concentrations of CO, NMHCs, and NOy were
higher on high-O3 days, implying a larger influence of pri-
mary emissions on these days. The concentrations of the
precursors had diurnal variations with the daytime maximum
especially for the low-O3 days. This analysis suggests that
the mountain top observations were affected by the develop-
ment of the polluted layer in the daytime. O3 concentrations
had daytime buildup of 34 and 15 ppbv for high-O3 and low-
O3 days, respectively. Differences in the NO andJ (O1D)

levels were small for the two periods, while the NO2 concen-
trations were slightly higher for the high-O3 days. In Fig. 1h,
the magnitudes of contributions of NMHCs and oxygenated
VOCs to the reactivity of OH can be recognized. See Li et
al. (2008a) for the day-to-day variations in the concentrations
of these key precursors.

4 Results and discussions

4.1 Estimated radical concentrations

Figure 2a–c shows diurnal variations in the calculated con-
centrations of OH, HO2, and RO2 radicals. They were
calculated for individual days and then averaged for the
high-O3 and low-O3 days, respectively. The OH concen-
trations for low-O3 days were higher than those for high-

O3 days until 11:00 CST, because higher NO concentrations
for low-O3 days facilitated conversion from HO2 to OH.
In the afternoon, the OH concentrations were quite similar
for the two cases. The midday peak concentrations were
5.4 and 5.7×106 cm−3 for high-O3 and low-O3 days, re-
spectively. The 24-h average concentrations were 1.7 and
1.9×106 cm−3. The daytime HO2 and RO2 concentrations
were always higher on the high-O3 days; daytime peaks were
39 and 52 pptv in comparison with 29 and 34 pptv on the low-
O3 days.

Table 2 lists major production and loss processes of OH,
HO2 and radicals (the group of OH, HO2, and RO2 radi-
cals) and their fractions to the total rates as daytime averages
(09:00–15:00 CST). For OH production, the HO2+NO reac-
tion was more important than ozone photolysis (O1D+H2O).
OH loss was dominated by its reactions with CO, ALD, and
OP2 (organic peroxide higher than CH3OOH). HO2 produc-
tion was dominated by the OH+CO and CH3O2+NO reac-
tions. HO2 loss occurred mainly through its reactions with
NO and HO2 itself. The initial production of the radicals oc-
curred by the photolysis of ozone, HCHO, and H2O2. The ul-
timate loss of the radicals was normally governed by the self
and cross reactions of HO2 and RO2. It should be noted that
conversion between the radicals and HNO4, peroxyacetyl ni-
trate (PAN) and higher saturated PANs, and TPAN (unsatu-
rated PANs) was not included in the production or loss of the
radical to calculate values in Table 2.

The production and loss rates of the radicals were
in balance. The initial radical production rate was
2.1×107 cm−3 s−1 as a daytime average, similar to an av-
erage (2.2×107 cm−3 s−1) for summer in the urban center of

Atmos. Chem. Phys., 9, 7711–7723, 2009 www.atmos-chem-phys.net/9/7711/2009/
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Tokyo (as an average in the period 09:00–15:00 local time)
(Kanaya et al., 2007).

4.2 Photochemical production rate of ozone and its
breakdown

It is known that photochemistry results in both the forma-
tion and destruction of ozone in the troposphere and thus
the difference between the rates of gross formation (F (O3))

and loss (D(O3)), F (O3)–D(O3) (hereafter simply termed
F–D(O3)), is the important quantity describing the net pho-
tochemical production rate. The terms are given by

F(O3)=k1[HO2][NO] + 6k2i[RO2]i[NO]φi, (1)

D(O3) = k3[O
1(D)][H2O] + k4[OH][O3] + k5[HO2][O3]

+6k6j [O3][olefin]j , (2)

F − D(O3)=F(O3)−D(O3), (3)

where k1–k6 are the rate coefficients of the HO2+NO,
RO2+NO, O(1D)+H2O, OH+O3, HO2+O3 and O3+olefin re-
actions, respectively, andφ is the yield of NO2 from the
RO2+NO reaction. F , D, andF–D are calculated on the
basis of the calculated radical concentrations (Sect. 4.1) and
then they are averaged to obtain composite diurnal variations
of the rates for the high- and low-O3 days (Fig. 3a–c).F (O3)

was higher for the high-O3 days during the 10:00–18:00 CST
period. This was because the peroxy radical concentrations
were higher on the high-O3 days as seen in Fig. 2b.F (O3)

for the high-O3 days was slightly lower at 09:00 CST be-
cause the NO concentrations were lower than they were for
the low-O3 days (Fig. 1c), compensating the higher per-
oxy radical concentrations when they are multiplied together.
The gross production of ozone per day was estimated to be
85±43 and 60±32 ppb for high- and low-O3 days, respec-
tively, by integratingF (O3) from morning (05:00 CST) to
evening (20:00 CST).D(O3) was larger for high-O3 days be-
cause it was proportional to the ozone concentration in the
atmosphere. The integrated gross losses per day were 18±5
and 11±3 ppb for the high- and low-O3 days, respectively.
Because of the larger compensation byD(O3) during the
high-O3 days, the difference inF–D(O3) for the two peri-
ods was small. The integrated net production was estimated
to be 67±41 and 49±32 ppb, respectively. As an average
over the campaign period, 58±37 ppb of daily ozone produc-
tion was expected. This value is larger than 32 ppb d−1, the
photochemical production rate of ozone estimated in a model
for the grid surrounding the Mount Tai station (surface area
of 400×400 km with 0–2.5 km altitude range) in June (Li et
al., 2007). This may be because the nighttime loss chemistry
was taken into account and precursor concentrations were not
constrained in Li et al.’s model calculation.

Our value is larger than the production rate (38 ppb day−1)

estimated from the slope of a regression line for the ozone
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Fig. 3. Average diurnal variations inF (O3), D(O3), andF–D(O3)

for high-O3 days (circles) and low-O3 days (gray squares).

concentration observed at the same location in 2004 and the
residence time of the air mass over the Central East China
region based on the backward trajectory analysis (Pochanart
et al., 2009). The difference would be attributed to dilution
and deposition, effective only for the rate estimated using the
residence time.

Our results are relatively insensitive to the assumption that
NO concentrations were set to 0.05 ppb when measurements
were below the detection limit. The average daily net pro-
ductions were estimated to be 53 and 66 ppb when assuming
0.02 and 0.1 ppb of NO instead of 0.05 ppb.

This analysis implies that 67 and 49 ppb of ozone were
produced each day by in situ photochemistry on high- and
low-O3 days, respectively. These amounts were larger than
the daytime increases in the ozone concentration observed at
the mountain top (34 and 15 ppbv), suggesting that the in situ
photochemistry is active enough to explain the ozone buildup
in both cases, while the transportation of polluted air from
lower altitude, as recognized by the daytime buildup of pri-
mary pollutants, may also be important. It should also be
noted that the ratio between the daily production amounts on
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Fig. 4. Breakdown ofF (O3) andD(O3) terms as averages over the
campaign.

the high- and low-O3 days (i.e., 67/49=1.4) was not as large
as the ratio of the daytime increase in the observed ozone
concentrations for the two periods (i.e., 34/15=2.3). This in-
dicates that the observed buildup of ozone concentrations in
the daytime was not merely affected by local chemistry. Li et
al. (2008a, b) revealed the importance of both in situ chem-
istry and region-wide chemistry coupled with transport for
ozone in a three-dimensional regional scale model.

The daytime 6-h averages ofF–D(O3) andF (O3) were
6.4 and 7.9 ppb h−1 for this campaign. The former value
is in rough agreement with the in situ production rate
(∼5 ppb h−1) estimated in a three-dimensional regional scale
modeling study (Li et al., 2008b). The latter value falls into a
range of the rates estimated for the boundary layer over ma-
jor cities in the United Sates; our value is slightly lower than
those over Philadelphia (11.3 ppb h−1 for July and August
1999) and Houston (11.3 ppb h−1 for August and September
2000), but higher than those over Nashville (6.2 ppb h−1 for
June and July 1995), New York City (4.3 ppb h−1 for July
1996), and Phoenix (3.5 ppb h−1 for May and June 1998)
(Kleinmann et al., 2002). The production rates for Mount
Tai are significantly higher than theF–D(O3) values at other
mountain stations: from−0.05 to +0.4 ppb h−1 at Jungfrau-
joch (3590 m a.s.l.) for midday in winter, spring, and sum-
mer (Parker et al., 2009; Zanis et al., 2003), 2–3 ppb d−1 for
Mt. Cimone (2165 m a.s.l.) in June (Fischer et al., 2003), and
from −0.8 to−0.4 ppb d−1 for Mauna Loa (3.4 km a.s.l.) for
four seasons (Cantrell et al., 1996). Forward trajectory anal-
ysis suggests that the air mass leaving the top of Mount Tai
stays 22 h (as median) longer within the boundary layer over
CEC (31–40◦ N, 114–121◦ E, 0–2000 m altitude), producing
a large amount of ozone in this region in the daytime.
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(black) and sensitivity runs (colored).

Figure 4 shows the contribution from each chemical pro-
cess to theF (O3) andD(O3) terms as an average over the
campaign period. The reaction of HO2 with NO domi-
nated theF (O3) term, followed by the reactions of MO2
(CH3O2), ACO3 (CH3COO2 and higher acyl peroxy rad-
icals), and ISOP (isoprene peroxy radicals) with NO. The
dominant term inD(O3) was the O(1D)+H2O reaction.

4.3 Estimation of regimes

We performed sensitivity model runs, where NOx concentra-
tions were artificially multiplied by factors of 0.5, 1.1, 2, or
4 while NMHCs concentrations were kept unchanged from
the base run, and runs where NMHCs concentrations were
conversely multiplied by factors of 0.5, 1.1, or 2 while NOx
concentrations were unchanged. Together with the changes
in NMHCs concentrations, CO and CH4 concentrations were
also scaled by the same factors but with consideration of their
background concentrations. The background concentration
of ethane was also taken into account. The results of the
averaged diurnal variations inF–D(O3) from the sensitivity
runs are summarized in Fig. 5a. The analysis suggested that
F–D(O3) was much more sensitive to NOx concentrations
than to NMHCs, clearly indicating that ozone production was
NOx-limited. The analysis also implied that the ozone pro-
duction should have been more efficient when the air mass
was fresh and the NOx/NOy ratios (and thus the NOx con-
centration for a given NOy concentration for that air mass)
was higher than that observed on the mountain (∼0.18 as
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Fig. 6. Backward trajectories on 10 June 2006 with different start-
ing time (separated by 6 h). Tick marks on the trajectories indicate
the hourly position of the air mass. Major cities in China are shown
by red open circles.

an average over the campaign period). Additionally, the im-
portance of the NOx-limited regime indicates that the ozone
pollution will be severer in the future owing to stronger NOx
emission anticipated in CEC (Yamaji et al., 2008; Ohara et
al., 2007). Our result suggesting a NOx-limited condition
in June for this region is consistent with that of Martin et
al. (2004) based on satellite observations. Because of the
dominance of the NOx-limited condition, the uncertainty in
the NMHC concentrations of a factor of 2 propagated to the
uncertainty in the daily production of ozone (on the basis of
F–D(O3)) of a factor of only 1.15 (Fig. 5a).

We found that the morning of 10 June was an excep-
tional period, whenF–D(O3) was sensitive to NMHC con-
centrations rather than to the NOx concentration (Fig. 5b).
We calculated 10-day kinematic backward trajectories us-
ing the CGER-METEX program (http://db.cger.nies.go.jp/
metex/) for 6-h intervals during the campaign period, us-
ing the National Centers for Environmental Prediction me-
teorological reanalysis field as input. The starting altitude of
the trajectories was 1500 m. The analysis showed that the
air mass on 10 June quickly intruded from the north to the
Mt. Tai region and passed over Jinan (the capital of Shan-
dong Province, with a population of 3 million and located
∼60 km north of the observatory) only 1 or 2 h before the ar-
rival of the air mass at the observatory (Fig. 6). Consistently,
the NOx/NOy ratio during the period (Fig. 7a) was excep-
tionally high, suggesting that fresh air pollution affected the
observed air mass. The analysis suggests the possibility that
the ozone production regime in the city tended to be VOC-
limited and changed to being NOx-limited during the travel
of the air mass, with conversion of NOx to NOz (HNO3 and
PANs) occurring more rapidly than the oxidation of NMHCs
did. There were other periods on 8, 9, 11, 15, 23, and 24 June
when ozone was produced under VOC-limited conditions, as
marked by open squares in Fig. 7a. Here our definition of
VOC-limited is that multiplying a factor of 1.1 to NMHC
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Fig. 7. Temporal variations in(a) the NOx/NOy ratio, (b) the
NMHCs/NOx ratio, (c) the reactivity/NOx ratio, and (d) the
LN /L(radical) ratio during the campaign. The data points associ-
ated with VOC-limited conditions are marked with open squares.

concentrations results in higherF–D(O3) values than multi-
plying the same factor to the NOx concentrations does. VOC-
limited conditions mostly occurred during the morning and
were interestingly associated with high NOx/NOy ratios in
all cases, similar to the case for the morning of 10 June. It
should be noted that the observed NOy concentrations used
in this analysis were neither the input nor the output of the
model calculations.

The VOC-limited periods were associated with lower
NMHCs/NOx ratios (Fig. 7b), as past studies have found.
From Fig. 7b, it is deduced that transition from the NOx-
limited regime to the VOC-limited regime occurred at an
NMHC/NOx ratio of ∼10 ppbC/ppb. Although not shown,
if NMHC + oxygenated VOC concentrations are used for
the vertical axis instead of the NMHC concentration, the
(NMHC + oxygenated VOC)/NOx ratio of ∼25 ppbC/ppb
corresponded to the transition. The critical NMHCs/NOx
ratio falls into the range suggested by Sillman (1999) (10–
20 ppbC/ppb) for summer at mid-latitude and is also roughly
in agreement with the value for summertime Tokyo at ground
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level (around 20 ppbC/ppb) determined using the same tro-
pospheric chemistry mechanism (Kanaya et al., 2008). We
also conducted similar analysis using the sum reactivity of
CO, CH4, H2, SO2, NMHCs, and oxygenated VOCs to-
ward OH (which propagate radical chain reactions) instead
of using the concentrations. The results (Fig. 7c) suggest
that the transition between the two regimes occurred around
2 s−1 ppb−1. This is slightly higher than 1 s−1 ppb−1 sug-
gested by Kleinman et al. (2005) for the boundary layer
over cities in the United States. The fraction of the radi-
cal + NOx reaction rates (LN ) to the total radical termination
rate (L(radical)) was greater than 0.5 for the VOC-limited
data points (Fig. 7d). In this case, the OH+NO2+M and
XO2 (peroxy radicals that account for additional NO to NO2
conversion)+NO reactions contributed largely toLN . This
is qualitatively consistent with the results of Kleinman et
al. (2005), in which the contribution from the NOx-related
processes to the radical termination increased under VOC-
limited conditions.

Although the ozone production rates and regimes deter-
mined in this study are based on the point measurement at
the top of Mt. Tai, they would be representative for a wider
background region without strong influence of fresh pollu-
tion, assuming the concentrations of ozone precursors are
relatively uniform and our data are representative. Consid-
ering that more than half of the 10-day-long backward tra-
jectories arriving at the top of Mt. Tai for June 2006 did not
travel over any Chinese large cities (91 cities with popula-
tions more than 500 000), the regional production of ozone
under the NOx-limited condition and its accumulation over
multiple days can be one of the major causes for the high O3
levels at a regional scale. See Li et al. (2008a) for detailed
analysis based on a 3-dimensional model that combines the
regional-wide ozone production and vertical and horizontal
transport for this campaign period.

4.4 Other sensitivity studies

We made additional sensitivity runs where (1) the CO con-
centrations were constrained to 90 ppb for all time, (2) the
ALD concentrations were scaled down by a factor of 3,
(3) concentrations of biogenic hydrocarbons (isoprene and
monoterpenes) were set to zero, and (4) the heterogeneous
loss of HO2 radicals on aerosol surfaces was taken into ac-
count.

4.4.1 CO

One of the significant features of atmospheric composition
over China is that the CO concentration is very high (the
monthly mean was 560 ppb on average during the campaign).
Therefore, we examined the role of CO in the photochem-
istry. Constraining the CO concentration to 90 ppb (min-
imum concentration observed during the campaign) for all
time resulted in a daily production of ozone of 58 ppb, which

was the same as the value for the base run (58 ppb). This
run suggests that the other hydrocarbons were present at suf-
ficiently high concentrations to cycle OH to RO2 (HO2), and
thus CO itself was not necessarily important. This analysis
implies that the reduction in CO emission does not readily
result in a reduction in ozone concentrations if not accompa-
nied by a reduction in emission of other precursors.

4.4.2 ALD

PTR-MS showed that the CH3CHO concentrations were nor-
mally higher than the HCHO concentrations during the cam-
paign period (1.8 and 3.2 ppb respectively for HCHO and
CH3CHO concentrations as midday 6-h averages (09:00–
15:00 CST)). This magnitude relationship has rarely been re-
ported, and thus it could be another feature specific to the
atmospheric composition over China. However, we cannot
dismiss the possibility that the ALD signal atm/zof 45 in the
PTR-MS was affected by other compounds. Thus, we con-
ducted an additional sensitivity run with the ALD concentra-
tion reduced by a factor of 3. The daily production of ozone
reduced to 52 ppb in this run from 58 ppb in the base run.
This reduction would be because 1) the initial radical pro-
duction rate from the photolysis of ALD was reduced, 2) the
OH+ALD reaction, forming a relatively efficient catalytic cy-
cle of ozone production, slowed, and because 3) PAN forma-
tion decreased, making ozone formation inefficient.

4.4.3 Biogenic hydrocarbons

The average isoprene and6-monoterpene concentrations
observed at midday are 0.28 and 0.19 ppb. The observed
air mass might have been affected by the emission of bio-
genic hydrocarbon from nearby trees or the local biosphere
on the mountain slopes, over which the air masses have
traveled as the daytime upslope wind. The CO2 concen-
trations measured at the site has a regular daytime drop
(nighttime average (21:00–03:00 CST) – daytime average
(09:00–15:00 CST)=3.8 ppb (Komazaki et al., unpublished
data, 2006)), suggesting the possibility that the air mass is
influenced by the vegetation. Thus we made an additional
sensitivity run in which isoprene and monoterpene concen-
trations were set to zero to calculate the representative ozone
production rate for the altitude level (1.5 km) without influ-
ence from vegetation. In this case, the daily production of
ozone decreased to 49 ppb from the 58 ppb of the base run.
The analysis suggests that biogenic hydrocarbons make some
but limited contribution to ozone production. Thus, we con-
clude that the determined ozone production rate was mostly
representative for the altitude in the middle of CEC, even
when the biogenic hydrocarbon concentrations had some
variability.
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4.4.4 Heterogeneous loss of HO2

Although the heterogeneous loss of HO2 on aerosol surfaces
has been suggested in recent studies (e.g., Morita et al., 2004;
Taketani et al., 2008), it is rarely incorporated in a model
exploring ozone production. The loss rate of HO2 (kγ ) was
calculated using the following Fuchs–Sutugin equation and
incorporated in our box model.

kγ =

∫
4πDr

1 + Kn

(
1.333+0.71K−1

n

1+K−1
n

+
4(1−γ )

3γ

)Ndr, (4)

where Kn is the Knudsen number,r is the radius of the
aerosol, andN is the number density of the particles. The
gas phase diffusion coefficientD of HO2 was assumed to
be 0.247 cm2 s−1 (Mozurkewich et al., 1987). The uptake
coefficient γ employed in this run was the central value
in the range of our laboratory measurements, 0.25±0.09
(n=10), which were determined using aerosol flow tube-
chemical conversion-laser-induced fluorescence (Taketani et
al., 2008). In the experiment, aerosol particles were gen-
erated in an aerosol flow tube in the laboratory by atomiz-
ing the water extract of total suspended particles collected
on quartz filters (10 samples) using a high-volume sampler
during the field campaign. The relative humidity during the
laboratory experiment was 75±2%, close to the campaign
average (68%). Details of the experiments will be described
elsewhere (Taketani et al., 2009).

The particle size distribution was not observed during
the campaign and thus it was roughly estimated from the
summed observed mass concentrations of major chemical
species. In detail, the estimation was made separately for
9 size bins segregated at 0.43, 0.65, 1.1, 2.1, 3.3, 4.7, 5.8,
and 9.0µm. First, the total mass concentration for each bin,
as estimated by adding mass concentrations of water-soluble
ions, organics, elemental carbon, and water (assumed as 20%
of dry mass), was converted to volume density by assuming
a constant density of particles (1.4 g cm−3). In this step, it
was assumed that the size distributions of elemental carbon
and organic carbon were similar to those of sulfate particles
and that the mass concentrations of organic aerosols were 1.6
times the observed OC mass concentration. Next, the volume
distribution was converted to a number distribution. For the
smallest bin (less than 0.43µm), a typical size distribution
for the “background and aged urban plume case” (accumula-
tion mode diameter (0.12µm) withσg=1.84 and coarse mode
diameter (0.83µm) with σg=2.12) reported by Whitby and
Sverdrup (1980) was assumed for converting the volume to a
number density distribution. For the other size bins, diame-
ters representative of the bins (0.5, 0.8, 1.5, 3.0, 4.0. 5.0, 6.0,
and 10µm) were roughly estimated and used to convert vol-
ume to number density. The median number density of parti-
cles integrated over the full size range was 4.4×103 cm−3 for
30 filter samples covering the whole campaign period. The
typical surface area concentration was 6.3×102 µm2 cm−3.
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Fig. 8. Average diurnal variations in OH, HO2, and RO2 concentra-
tions estimated by a photochemical box model for the case without
heterogeneous loss of HO2 (gray triangles) and the case with het-
erogeneous loss of HO2 (crosses).

The mediankγ value calculated from Eq. (4) using the
number density size distributions was 0.014 s−1. Con-
sidering that the HO2 loss rate due to self reaction was
8.0×10−3 s−1, the heterogeneous loss had a large influence
on the HO2 concentration and hence on ozone production.

With this heterogeneous loss of HO2, the daytime maxi-
mum HO2 concentration averaged over the campaign period
reduced from 34 pptv to 20 pptv (Fig. 8). The OH and RO2
maximum concentrations also indirectly reduced from 5.0 to
3.7×106 cm−3 and from 43 to 39 pptv, respectively. In gen-
eral, the impact of heterogeneous loss would be large when
the OH+NO2+M reaction does not play a significant role in
the radical termination reaction. The upper part of the bound-
ary layer in CEC, where the number density of aerosol parti-
cles is still high and the role of the OH+NO2+M reaction is
limited (Table 2), is one of the regions where the impact of
the heterogeneous loss is large.
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The daily production of ozone decreased to 39 ppb from
58 ppb with the inclusion of the heterogeneous loss of HO2.
The daytime 6-h average of the net ozone production rate
decreased to 4.3 ppb h−1 from 6.4 ppb h−1 in the base run.
However, these values are still large enough to explain the
observed buildup of ozone concentration.

Additional model sensitivity runs with the NOx or NMHC
concentrations multiplied by a factor of 1.1 in the presence
of heterogeneous loss suggested that the main conclusion
of this paper (that production is normally NOx-limited) re-
mains unchanged; that is, inclusion of the heterogeneous loss
of HO2 made the situation more NOx-limited because more
NOx is needed to increase the radical termination rate of the
OH+NO2+M reaction to a level that can compete with the
rate of heterogeneous loss of HO2.

It should be noted that this sensitivity analysis is rough be-
cause the size distribution of particles was only estimated and
because it is assumed that the effect of the ambient aerosol
particles is similar to that of the regenerated particles in the
laboratory. However, this is the first time to indicate that
the heterogeneous loss of HO2 can be very important to the
ozone production rate from the kinetic experiments using
aerosol particles collected in the ambient atmosphere.

5 Summary

The net photochemical production rate of ozone at the top of
Mount Tai, China, was estimated using a photochemical box
model on the basis of a tropospheric chemistry mechanism
constrained by simultaneous measurements of ozone and its
precursors. It is estimated that 58±37 ppb of ozone can be
produced in one day, suggesting that the local photochem-
istry is active and is an important factor controlling ozone
concentration. Normally, NOx-limited ozone production is
suggested from sensitivity model runs. Considering that the
NOx emission is anticipated to increase in CEC at least until
2020 (Ohara et al., 2007), the regional ozone production will
become severer in the future. Sensitivity runs indicated that
reductions in the concentrations of CO (to 90 ppb), CH3CHO
(by a factor of 3), and biogenic hydrocarbons (to zero) re-
sulted in 0%, 10%, and 16% reductions in the daily produc-
tion of ozone. Heterogeneous loss of HO2 is potentially im-
portant in that it possibly reduces production by 33%. How-
ever, the conclusion of there being a NOx-limited condition
did not change with the inclusion of heterogeneous loss.
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