1 Supplemental information to manuscript:

2

3

4

Suppression of new particle formation from monoterpene oxidation by NO_x

5

- 6 J. Wildt, Th. F. Mentel, A. Kiendler-Scharr, Th. Hoffmann, S. Andres, M. Ehn, E. Kleist, P.
- 7 Müsgen, F. Rohrer, Y. Rudich, M. Springer, R. Tillmann, A. Wahner

8

- 9 This supplement is divided into 6 sections. In section S1 an overview on our treatment of the
- photochemical system is given. Section S2 describes the way to determine P(O₃). Section S3
- 11 gives more details on power law dependencies mentioned in the manuscript. Section S4
- describes determination of [RO₂] from deviation of $\frac{[NO_2]}{[NO]}$ from PSS and section S5 gives
- details on our estimations of relative peroxy radical concentrations at low $[NO_x]_0$ conditions.
- 14 Section S6 aims to confirm that the formation of first generation permutation reaction
- products is not the rate limiting step for new particle formation.

16 17

18

- S1. Basic reactions and considerations regarding the power law dependence observed
- 19 between ozone production rates and new particle formation
- 20 In the absence of volatile organic compounds (VOC) and hydroxyl radicals (OH), nitrogen
- 21 monoxide (NO), nitrogen dioxide (NO₂), and ozone (O₃) reach equilibrium concentrations
- 22 within minutes in a photochemical system. The equilibrium conditions are termed as
- photostationary steady state (PSS, Leighton, 1961):

24

25
$$\frac{[NO_2]}{[NO]} = \frac{k_1 \cdot [O_3]}{J(NO_2)}$$
 (ES1)

26

- 27 $(k_1 = 1.8 \times 10^{-14} \text{ cm}^3 \text{ s}^{-1} = \text{rate constant for the reaction of NO with O}_3, \text{ IUPAC, 2009, J(NO}_2)$
- $= NO_2$ photolysis rate).

- 1 The ratio $\frac{[NO_2]}{[NO]}$ deviates from that in Equation ES1 when the chemical system contains VOC
- and OH. This deviation from PSS is due to reactions of NO with peroxy radicals (RO₂).
- 3 Reactions of NO with RO₂ either form NO₂ in reaction R2a or organic nitrates in reaction
- 4 R2b:

$$6 \qquad NO + RO_2 \rightarrow RO + NO_2 \tag{R2a}$$

$$7 NO + RO_2 \rightarrow RONO_2 (R2b)$$

8

- 9 Reaction R2a is the basic reaction for photochemical ozone formation. The rate of net ozone
- 10 formation $(P(O_3))$ is written as:

11

12
$$P(O_3) = \sum_i ([RO_2^i] \cdot k^i \cdot Y^i(O_3)) \cdot [NO]$$
 (ES2)

13

- In Equation ES2, RO_2^i is the specific peroxy radical, k^i the rate coefficient of RO_2^i with NO,
- and $Y^{i}(O_3)$ is the branching ratio of ozone formation in reaction R2 (reaction R2 = reaction
- R2a + reaction R2b) with the specific peroxy radical RO_2^i . The production rate of organic
- nitrate formation $(P(RONO_2))$ is given by:

18

19
$$P(RONO_2) = \sum_i ([RO_2^i] \cdot k^i \cdot Y^i (RONO_2)) \cdot [NO]$$
 (ES3)

20

- In Equation ES3 $Y^i(RONO_2)$ is the branching ratio of organic nitrate formation in reaction
- 22 R2.

23

For simplification we write Equations ES2 and ES3 in the form:

25

$$P(O_3) = k_2 \cdot [NO] \cdot [RO_2] \cdot Y(O_3)$$
(ES2)

27

28 and

29

$$P(RONO_2) = k_2 \cdot [NO] \cdot [RO_2] \cdot Y(RONO_2)$$
 (ES3)

- 1 $k_2 = k_{2a} + k_{2b}$ is an average rate constant for reaction R2 (9×10⁻¹² cm³ s⁻¹, IUPAC, 2009)
- and $Y(O_3)$ and $Y(RONO_2)$ are average branching ratios. Assuming that reactions R2a and
- R2b are the only pathways of RO₂ + NO reactions, $Y(RONO_2) = 1 Y(O_3)$.

- 5 While reaction R2 is the dominant RO₂ loss at high NO_x conditions, reaction R3 (reaction R3
- = reaction R3a + reaction R3b) is the main loss for RO_2 radicals at low NO_x conditions.

7

8
$$RO_2 + HO_2 \rightarrow ROOH + O_2$$
 (R3a)

9 $RO_2 + R'O_2 \rightarrow Alkoxy radicals$, diols, alkylperoxides (R3b)

10

- 11 Reaction R3a forms hydroperoxides. Reaction R3b forms various products including alkoxy
- 12 radicals, diols, ketones (e.g. master chemical mechanism, MCM), and probably also
- alkylperoxides (e.g. Hallquist et al., 2009). We termed the sum of all products of reaction R3
- as permutation reaction products, RPR. Production rates of PRP, P(PRP) can be written as:

15

$$16 P(PRP) = k_3 \cdot [RO_2] \cdot [RO_2] (ES4)$$

17

- where k_3 is an average rate constant for a given RO₂ mix. Note that the term RO₂ is used to
- include HO₂. The ratio of the rates at which reaction R3 and R2 proceed is given by equation
- 20 ES5:

21

$$22 \qquad \frac{k_3 \cdot [RO_2]}{k_2 \cdot [NO]} \tag{ES5}$$

23

24 This ratio is equal to the ratio $\frac{P(PRP)}{P(O_3) + P(RONO_2)}$:

25

26
$$\frac{k_3 \cdot [RO_2]}{k_2 \cdot [NO]} = \frac{P(PRP)}{P(O_3) + P(RONO_2)}$$
 (ES6)

27

The derivative of $\frac{k_3 \cdot [RO_2]}{k_2 \cdot [NO]}$ versus NO is:

30
$$\frac{\partial \left(\frac{k_3 \cdot [RO_2]}{k_2 \cdot [NO]}\right)}{\partial [NO]} = -\frac{\frac{k_3}{k_2} \cdot [RO_2]}{[NO]^2}$$
 (ES7)

- 1
- Hence the derivative of $\frac{P(PRP)}{P(O_3) + P(RONO_2)}$ versus [NO] is also given by the right term in
- 3 Equation ES7.
- 4
- 5 Considering that for a given photochemical system P(O₃) and P(RONO₂) are related by
- 6 $\frac{Y(O_3)}{Y(RONO_2)}$, the sum $P(O_3) + P(RONO_2)$ can be expressed as:
- 7
- 8 $P(O_3) + P(RONO_2) = P(O_3) + \frac{Y(RONO_2)}{Y(O_3)} \cdot P(O_3)$ (ES8)
- 9
- 10 At constant contribution of HO₂ and other RO₂ radicals $\frac{Y(RONO_2)}{Y(O_3)}$ should be constant. If so,
- 11 $P(O_3)$ may serve as a proxy for RO_2 consumption in reaction R2:
- 12

13
$$\frac{P(PRP)}{P(O_3) + P(RONO_2)} = \frac{P(PRP)}{\left(1 + \frac{Y(RONO_2)}{Y(O_3)}\right) \cdot P(O_3)}$$
 (ES9)

- 14
- It thus follows that P(PRP) and $P(O_3)$ in dependence of [NO] is coupled according to:
- 16

17
$$-\frac{\partial \left(\frac{P(PRP)}{P(O_3)}\right)}{\partial [NO]} = \left(1 + \frac{Y(RONO_2)}{Y(O_3)}\right) \cdot \frac{\frac{k_3}{k_2}[RO_2]}{[NO]^2}$$
 (ES10)

- 18
- Branching ratios as well as the rate constants k_3 and k_2 are determined by the peroxy radical
- 20 pattern. The RO₂ pattern itself is controlled by the BVOC mixture, by [OH] and by [NO]. In
- 21 particular contributions of HO₂ are important because Y(RONO₂) is essentially zero for HO₂.
- 22 For simplicity we assume that branching ratios and rate constants were constant from
- 23 experiment to experiment because the same BVOC mixtures were added in all experiments.
- 24 This assumption allowed to express the NO induced changes of the ratio P(PRP)/P(O₃) by
- exchanging $\frac{k_3}{k_2} \cdot \left(1 + \frac{Y(RONO_2)}{Y(O_2)}\right)$ by a constant (*const*):
- 26
- $-\frac{\partial \left(\frac{P(PRP)}{P(O_3)}\right)}{\partial [NO]} = const \cdot \frac{[RO_2]}{[NO]^2}$ (ES11)
- 28

- with const being a proportionality factor. The results of our experiments a posteriori verified
- 2 the validity of the above given assumption.

- 4 In a photochemical system $\frac{P(PRP)}{P(O_3)}$ may change with varying [NO] in a very complicated
- 5 manner because variations of [NO] should result in variations of [RO₂]. Here we distinguish
- 6 two cases:
- 7 (1) The peroxy radical production rate, P(RO₂), stays constant independent of NO. In this case
- 8 increasing [NO] should cause a decrease of [RO₂] and the power law dependence should
- 9 show an exponent below -2.
- 10 (2) [RO₂] is independent of [NO] and nearly constant. It follows that $\frac{\partial \left(\frac{P(PRP)}{P(O_3)}\right)}{\partial [NO]} = const$.
- 11 $\frac{1}{[NO]^2}$ meaning that the ratio $\frac{P(PRP)}{P(O_3)}$ will change with varying [NO] in a way describable by
- power law dependence with an exponent of -2. One mechanism by which [RO₂] can stay
- constant and thus independent of [NO] in an increasing production rate of RO₂ P(RO₂) due to
- increasing steady state [OH].

15 16

17

S2: Determination of $P(O_3)$

- 18 Rates of photochemical ozone production, P(O₃), were determined considering the following
- 19 source and loss terms for O_3 .

20

- 21 Source terms for O_3 :
- 22 a) Net addition to the chamber: $V \cdot \frac{\partial [O_3]}{\partial t} = F \cdot ([O_3]_{in} [O_3])$ (ES12)

23

- with V = volume of the chamber, $F = \text{air flow through the chamber, } [O_3]_{in} =$
- concentration of O_3 in the ingoing and $[O_3]$ = concentration of O_3 in the outgoing air
- stream. The reaction chamber was operated as continuously stirred tank reactor with air
- 27 mixing rates much higher than exchange rates of air. Thus the ozone concentration
- measured at chamber outlet, $[O_3]$, is the average ozone concentration in the chamber.
- Note that in case of photochemical ozone formation $[O_3]$ will be higher than $[O_3]_{in}$.
- Process a) may switch from a source term to a loss term.

1 b) NO₂ photolysis:
$$V \cdot \frac{\partial [O_3]}{\partial t} = V \cdot J(NO_2) \cdot [NO_2]$$
 (ES13)

with $J(NO_2)$ = rate of NO_2 photolysis and assuming that $J(NO_2)$ limits the rate of process

b) because the subsequent reaction: $O^3P + O_2 + M \rightarrow O_3 + M$ is much faster than NO_2

5 photolysis.

6

2

7 Loss terms for O_3 :

8 c) Reactions with NO:
$$V \cdot \frac{\partial [O_3]}{\partial t} = -V \cdot k_1 \cdot [NO] \cdot [O_3]$$
 (ES14)

9

10 d) Ozone photolysis:
$$V \cdot \frac{\partial [O_3]}{\partial t} = -V \cdot J(O^1 D) \cdot [O_3] \cdot f([H_2 O])$$
 (ES15)

11

- with $f([H_2O])$ = branching ratio of $O^1D + H_2O$ reactions over O^1D quenching to O^3P by
- O₂ and N_2 which leads to reformation of O_3 .

14

15 e) Ozone reactions with BVOC:
$$V \cdot \frac{\partial [O_3]}{\partial t} = -V \cdot k_{BVOC} \cdot [O_3] \cdot [BVOC]$$
 (ES16)

16

with k_{BVOC} = average rate constant for BVOC + O₃ reactions.

18

19 f) Ozone reactions with OH:
$$V \cdot \frac{\partial [O_3]}{\partial t} = -V \cdot k_{OH} \cdot [O_3] \cdot [OH]$$
 (ES17)

20

with k_{OH} = rate constant of OH + O₃ reactions.

22

23 g) Ozone reactions with HO₂:
$$V \cdot \frac{\partial [O_3]}{\partial t} = -V \cdot k_{HO2} \cdot [O_3] \cdot [HO_2]$$
 (ES18)

24

with k_{HO2} = rate constant of HO₂ + O₃ reactions.

26

27 h) Wall losses:
$$V \cdot \frac{\partial [O_3]}{\partial t} = v^w \cdot A^w \cdot [O_3]$$
 (ES19)

28

- with v^w = deposition velocity of ozone to the walls of the chamber with the wall area
- A^w .

- 1 Dominant source term is NO₂ photolysis, dominant loss term is reaction of O₃ with NO. If the
- 2 system is in PSS, both rates are equal and cancel out. In the presence of VOC and OH, ozone
- 3 production by NO₂ photolysis exceeds ozone losses in reactions with NO. The difference
- between (b) and (c) is attributed to reaction R2a and termed as ozone production rate:

$$6 P(O_3) = k_2 \cdot [NO] \cdot [RO_2] \cdot Y(O_3) (ES2)$$

7

- 8 Under atmospheric conditions ozone losses due to ozone photolysis and reactions of O₃ with
- 9 OH, HO₂, and BVOC are quite low and can be neglected for estimation of P(O₃). In our
- reaction chamber the situation was different because J(O¹D), [OH], [BVOC] and most
- probably also [HO₂] were much higher than in the atmosphere. To calculate $P(O_3)$ therefore
- required consideration of ozone photolysis (d) and O_3 losses in processes e h:

13

- Ozone photolysis: The branching ratio of $O^1D + H_2O$ reactions in our chamber was: $f([H_2O])$
- 15 ~ 0.09 and ozone mixing ratios ranged between 46 and 85 ppb. At $J(O^1D) = 9 \times 10^{-4} \text{ s}^{-1}$
- photolytic ozone losses ranged between 13 and 24 ppb h⁻¹.

17

- 18 Compared to the high photolytic losses, ozone losses in processes e to h were of minor
- importance. The following loss rates (or upper limits of loss rates) were estimated:

20

- e. Ozone losses in reactions with BVOC were estimated to be $< 2 \text{ ppb h}^{-1}$:
- BVOC concentrations in the reaction chamber were very low when the TUV lamp was
- on and OH reactions were dominant. In such cases concentrations of myrcene, (E)- β -
- ocimene exhibiting high reactivity towards OH were near to the detection limit or even
- below. These were also the BVOC with the highest reactivity towards O_3 and thus
- ozone losses due to these reactions were not reliably determinable. We therefore
- estimated an upper limit of O₃ losses assuming that a hypothetical BVOC with a high
- reactivity towards O₃ would be abundant at concentrations of 500 ppt. As rate constant
- $k_{BVOC} = 5.4 \times 10^{-16}$ cm³ s⁻¹ was used (= rate constant of O₃ + (*E*)-β-ocimene reactions,
- 30 Atkinson, 1997).

31

f. Using [OH] = 2.5×10^7 cm⁻³ (see Fig. 6 of the manuscript) and $k_{OH} = 7.3 \times 10^{-14}$ cm³ s⁻¹ (Sander et al., 2006) losses in OH reactions were estimated to ~0.4 ppb h⁻¹.

g. Assuming [HO₂] < 0.3 ppb ($\sim 8 \times 10^9$ cm⁻³) as an upper limit for HO₂ concentrations (compare to Fig. S1) and using $k_{HO2} = 2 \times 10^{-15}$ cm³ s⁻¹ (Sander et al., 2006), O₃ losses in reactions with HO₂ were estimated to < 4 ppb h⁻¹.

4

5

6

7

8

h. As reported before (e.g. Neubert et al., 1993; Fares et al., 2008) wall losses in our chamber were very low. Less than 3% of the O_3 was lost within the residence time of the air in the reaction chamber (~ 63 min.) leading to an upper limit for ozone wall losses of < 2.6 ppb h^{-1} .

9

Compared to photolytic O₃ losses and losses due to higher O₃ concentrations in the outgoing air than in the ingoing air all the other losses (e-h) were low and therefore neglected.

12

- The term of interest, $P(O_3) = k_2 \cdot [NO] \cdot [RO_2] \cdot Y(O_3)$, was determined after setting the
- 14 differential equation for net ozone introduction, photochemical ozone production and ozone
- photolysis to steady state conditions resulting in Equation ES20:

16

17
$$P(O_3) = k_2 \cdot [NO] \cdot [RO_2] \cdot Y(O_3) = \frac{F}{V} \cdot ([O_3] - [O_3]_{in}) + J(O^1D) \cdot [O_3] \cdot f([H_2O])$$
 (ES20)

18

- For comparison with J_7 , $P(O_3)$ was determined for the point in time when new particle formation appeared. For the high $[NO_x]_0$ experiments $P(O_3)$ was thus measured 2 to 5 h after
- switching on the TUV lamp. For the low $[NO_x]_0$ experiments we used the data obtained about
- 22 an hour after switching on the TUV lamp when $[O_3]$ was near to steady state.

23

24

25

S3: power law dependencies

- To check for power law dependencies between J₇ and BNR and between P(O₃) and BNR,
- 27 respectively, logarithmic data of these data were plotted (Fig. S1).
- As result we obtained a slope of: 2.3 ± 0.1 , for the fit of $ln(J_7)$ versus ln(BNR) indicating that
- 29 J₇ increased approximately in a squared manner with increasing BNR. Considering that
- 30 [BVOC]₀ was quite constant and at least did not vary systematically with [NO_x]₀, this
- indicates that J_7 decreased with increasing $[NO_x]_0$ in an approximately squared manner.
- As result of the fit of $ln(P(O_3))$ versus ln(BNR) we obtained -1.28 \pm 0.3 indicating that $P(O_3)$
- increased approximately linear with decreasing BNR. Again, considering that [BVOC]₀ was

1 quite constant, this also indicated an approximately linear increase of P(O₃) with increasing

 $2 \quad [NO_x]_{0.}$

3

5

S4: determination of [RO₂] from deviation from PSS

In a chemical system with photochemical O_3 formation $\frac{[NO_2]}{[NO]}$ is given by:

7

$$8 \qquad \frac{[NO_2]}{[NO]} = \frac{k_1 \cdot [O_3] + k_2 \cdot [RO_2]}{J(NO_2)}$$
 (ES21)

9

- The difference between measured $\frac{[NO_2]}{[NO]}$ and $\frac{[NO_2]}{[NO]}_{PSS}$ (Equation ES1) is: $\frac{k_2 \cdot [RO_2]}{J(NO_2)}$. The
- concentration of $[RO_2]$ can thus be estimated by using an average rate constant k_2 . In two of
- our experiments it was possible to obtain data for [RO₂] from observed deviation of $\frac{[NO_2]}{[NO]}$
- 13 from PSS. We used $k_2 = 9 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ (IUPAC, 2009) and J(NO₂) = $4.3 \times 10^{-3} \text{ s}^{-1}$ as
- measured in the chamber with VOC free air and in the absence of O₃ photolysis by the TUV
- 15 lamp.

16

- 17 Figure 9 of the manuscript shows the result obtained from the experiment with the highest
- 18 NO_x addition (first row of Table 1 in the manuscript). Figure S2 shows the result of the
- second example where such estimation was possible (BNR = 3.2 ppbC/ppb, $[NO_x]_0 = 39.4$
- ppb, [OH] increasing from 5.4×10^6 to 2.2×10^7 cm⁻³, third row in Table 1 of the manuscript).

21

- 22 With respect to the temporal development of the photochemical system, the same result was
- obtained in both experiments. With proceeding photochemistry the deviation of observed
- $\frac{[NO_2]}{[NO]}$ from PSS increased, indicating that peroxy radical concentrations increased with time.

- In the experiment shown in Figure S2, new particle formation became observable about 2
- 27 hours after starting OH production. At that time [NO] had decreased from ~9 ppb to ~0.85
- ppb and estimated RO₂ concentrations had increased to ~200 ppt. In the experiment shown in
- 29 Figure 9 of the manuscript NPF became observable about 5 hours after starting OH
- 30 production. At that time [NO] had decreased from ~20 to ~1 ppb and estimated RO₂
- 31 concentrations had increased to ~ 300 ppt.

3

2 While absolute concentrations of [RO₂] depend critically on k₂, and therefore have large

systematic errors, the relative comparison of [RO₂] for the two experiments is less error

4 prone. In both experiments the chemical system, especially BVOC composition was similar.

5 Thus also yields of organic nitrate formation should have been similar and similar RO₂

 6 radicals should have been produced. Both make errors in k_2 less important for comparison.

We therefore concluded that [RO₂] was similar in both experiments. The observed difference

in J_7 as measured in both experiments ($J_7 = 0.46 \text{ cm}^{-3} \text{ s}^{-1}$ for [RO₂] ~ 200 ppt and $J_7 = 0.02 \text{ cm}^{-1}$

9 3 s⁻¹ for [RO₂] ~ 300 ppt) shows that J₇ was not related to the concentrations of the bulk of

10 first generation peroxy radicals.

11

8

12

13

S5: Estimation of [RO₂] for low NO_x conditions

As the squared relationship between J_7 and $P(O_3)$ was valid in the whole range 1.1 < BNR <

15 10, it was necessary to compare [RO₂] for all these experiments. Because it was impossible to

use deviation from PSS in the medium to low NO_x experiments, relative data were

determined. Reference case was the experiment with the highest [NO_x]₀ addition (Figure 9 in

the manuscript).

19 Relative RO₂ concentrations were estimated assuming steady state conditions for peroxy

20 radicals: Due to the high reactivity the lifetime of peroxy radicals is on the order of seconds.

21 This is very short compared to the temporal changes of [OH], [O₃], [NO] in the chamber (see

Figs. 4 and 9 in the manuscript and Fig. S2). As production and loss rates changed on time

23 scales of hours, assumption of steady state conditions for [RO₂] was justified. This

assumption allowed expressing $[RO_2]$ as ratio of RO_2 production rates $P(RO_2)$ over a loss rate

25 $L(RO_2)$:

26

$$[RO_2] = \frac{P(RO_2)}{L(RO_2)}$$
 (ES22)

28

29 with

30

31
$$L(RO_2) = k_2 \cdot [NO] + k_3 \cdot [RO_2]$$
 (ES23)

1 At the conditions in the chamber, BVOC oxidation was dominated by OH reactions. Thus

2 $P(RO_2)$ could be written as:

3

$$4 P(RO_2) = [BVOC] \cdot [OH] \cdot k_4 \cdot Y(RO_2) (ES24)$$

5

In Equation ES24, k_4 is an average rate constant for BVOC + OH reactions and $Y(RO_2)$ is the

- 7 yield of peroxy radical formation from the BVOC mix. The BVOC mixtures during the
- 8 respective experiments were similar. Therefore also k_4 and $Y(RO_2)$ were similar allowing
- 9 expressing the ratio of peroxy radical production rates P(PRP) according to Equation ES25.

10

11
$$\frac{P(RO_2)_R}{P(RO_2)_D} = \frac{[OH]_R \cdot [BVOC]_{0,R}}{[OH]_D \cdot [BVOC]_{0,D}}$$
 (ES25)

12

In Equation ES25, the index R represents the reference case, and the index D represents the

- data set for which [RO₂] had to be determined. In all calculations we used [OH] as measured
- during the onset of new particle formation. For the low NO_x experiments these were the OH
- 16 concentrations measured during the first hour of the experiments (see Table 1 in the
- manuscript). For the high NO_x experiments these were the OH concentrations measured 2-5
- 18 h after the TUV lamp was switched on.

19

The ratio of RO_2 concentrations could be written as:

21

$$\frac{[RO_2]_D}{[RO_2]_R} = \frac{P(RO_2)_D \cdot ([k_2 \cdot [NO]_R + k_3 \cdot [RO_2]_R)}{P(RO_2)_R \cdot ([k_2 \cdot [NO]_D + k_3 \cdot [RO_2]_D)}$$
(ES26)

23

24 Rearrangement of Equation ES26 leads to Equation ES27:

25

$$[RO_2]_D^2 + [RO_2]_D \cdot \frac{k_2}{k_3} [NO]_D - \frac{P(RO_2)_D}{P(RO_2)_R} \cdot [RO_2]_R \cdot \left(\frac{k_2}{k_3} [NO]_R + [RO_2]_R\right) = 0 \quad (ES27)$$

- 28 $[RO_2]_R$ was ~300 ppt (see Figure 9 in the manuscript), and $[OH]_R$ was ~ 2.6×10^7 cm⁻³ (see
- red square in Fig. 6 of the manuscript). $[OH]_D$ was measured and k_2 was set to 9×10^{-12} cm³ s⁻¹
- 30 (IUPAC, 2009) i. e. identical to the value used in the estimations of [RO₂] from deviation
- 31 from PSS.

- 1 Most uncertain quantities in Equation ES27 were $[NO]_D$ and k_3 . Thus, we used upper and
- lower limits for each of these quantities. As upper limit for $[NO]_D$ the NO concentration
- 3 estimated for PSS from the measured [NO_x] and [O₃] was used. As lower limit,
- 4 $[NO]_D$ was set to zero.
- To estimate an upper limit for k_3 , it was assumed that [HO₂] contributed to 90 % to [RO₂];
- 6 to estimate a lower limit for k_3 , it was assumed that [HO₂] contributed to 10 % to [RO₂]. As
- 7 can be seen from data given in the master chemical mechanism (MCM) for monoterpenes,
- 8 rate constants for reactions of first generation RO₂ radicals with HO₂ are much higher than
- 9 those of other $RO_2 R'O_2$ reactions $(RO_2 + HO_2 \sim 3.1 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}, RO_2 + R'O_2 \sim 6.5 \times 10^{-15} \text{ m}^{-1}$
- -8.8×10^{-13} cm³ s⁻¹). This allows neglecting RO₂+R'O₂ reactions as important loss terms for
- peroxy radicals. The relative abundance of HO₂ in the RO₂ mix is the main determining factor
- for RO₂ loss rates at low NO_x conditions. We therefore assumed $k_3 = 2.8 \times 10^{-11}$ cm³ s⁻¹ (for
- 13 [HO₂] ~ 90% of [RO₂]) to be an upper limit for k_3 and $k_3 = 3.1 \times 10^{-12}$ cm³ s⁻¹ (for [HO₂] ~
- 14 10% of [RO₂]) to be a lower limit for k_3 .
- 15
- Table S1 lists [RO₂] estimated for the three combinations: $k_3 = 2.8 \times 10^{-11}$ cm³ s⁻¹ and
- 17 $[NO]_D$ from PSS termed as $[RO_2]_{rel}^a$, $k_3 = 3.1 \times 10^{-12}$ cm³ s⁻¹ and $[NO]_D$ from PSS termed as
- 18 $[RO_2]_{rel}^b$, and for $k_3 = 2.8 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$ and $[NO]_D = 0 \text{ termed as } [RO_2]_{rel}^c$. As obvious from
- Equation ES27 the fourth of the possible combinations: $k_3 = 3.1 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$ and $[NO]_D = 0$
- gives the same result as $[RO_2]_{rel}^c$ because k_3 cancels out. For better comparison, Table S1
- 21 also lists the range of minimum and maximum relative [RO₂] compared to the reference case
- 22 (~ 300 ppt).
- 23
- 24 Comparing maximum and minimum values for [RO₂] for individual experiments it is obvious
- 25 that the data differ by roughly a factor of two. Hence the uncertainty in [RO₂] caused by the
- uncertainties in k_3 and in [NO] had no substantial impact of results for individual
- experiments. As the variations of $[NO]_D$ and k_3 were quite large, we believe that the
- estimations on the ranges of relative [RO₂] are realistic.
- 29 Comparing relative RO₂ concentrations between experiments starting at high [NO_x]₀
- 30 conditions and at low [NO_x]₀, respectively, it is obvious that also these numbers show
- variability of roughly a factor of 2. Independent of the combination of k_3 and [NO] used for
- 32 the estimations there was no systematic variation from high to low NO_x experiments (compare
- 33 numbers in columns).

- 1 Again, we put not too much attention to the absolute numbers. But the photochemical systems
- 2 were very similar from experiment to experiment allowing reliable comparison between
- 3 experiments. We therefore concluded that [RO₂] at the onset of NPF was quite constant in all
- 4 experiments. Contrary, J_7 varied by 3 orders of magnitude over the whole BNR range. In the
- 5 rage 1.1 < BNR < 10 where comparison of J_7 and $P(O_3)$ was possible J_7 still varied by 2
- orders of magnitude allowing the conclusion that J_7 was not related to P(PRP).

8 9

S6 Sensitivity tests and general considerations

- 10 Based on the similarity of [RO₂] estimated for the high and low [NO_x]₀ experiments,
- 11 respectively, we conclude that production rates of first generation PRP were not the rate
- 12 limiting step for NPF. We further test the validity of this conclusion with the following
- 13 hypothesis. We assume that first permutation reactions of first generation RO₂ radicals are the
- rate limiting step for NPF and estimate how high [RO₂] should have been in that case during
- the low $[NO_x]_0$ experiments:
- 16 If reaction R3 is the rate limiting step in new particle formation, J₇ should be proportional to
- the rate of reaction R3:

18

$$19 J_7 = x \cdot k_3 \cdot [RO_2] \cdot [RO_2] (ES28)$$

20

with x = a proportionality factor.

22

- As base we again use the high NO_x experiment as shown in Fig. 9 of the manuscript. When
- particle formation started, RO₂ was estimated to be around 300 ppt and J₇ was in the range of
- 25 $0.02 \text{ cm}^{-3} \text{ s}^{-1}$. As typical value for J₇ at low NO_x conditions we use J₇ = 42 cm⁻³ s⁻¹ (average of
- J_7 without NO_x addition, see Table 1 in the manuscript). Assuming the proportionality factor x
- 27 to be constant would mean that threshold RO₂ concentrations should increase with the square
- root of J_7 . Using $J_7 = 42$ cm⁻³ s⁻¹ leads to a threshold RO₂ concentration of 13.7 ppb. This is an
- 29 unrealistic high concentration even when considering that the absolute numbers for RO₂ as
- shown in Fig. 9 may be an order of magnitude too high.
- 31 The strong variations in J_7 cannot at all be explained by variations of [RO₂].

- From our estimations in sections S4 to S6 we conclude that permutation reactions of first
- 34 generation RO₂ radicals cannot be the rate limiting step for new particle formation.

2

References to supplemental information

- 3 Atkinson, R.: Gas-phase tropospheric chemistry of volatile organic compounds: 1. Alkanes
- 4 and alkenes. J. Phys. Chem. Reference Data, 26, (2), 215-290, 1997.

5

- 6 Fares, S., Loreto, F., Kleist, E., and Wildt, J.: Stomatal uptake and stomatal deposition of
- ozone in isoprene and monoterpene emitting plants. Plant Biology, 10, 44 54, 2008.

8

- 9 Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M.,
- Dommen, J., Donahue, N. M., George, C., Goldstein A. H., Hamilton J. F., Herrmann,
- H., Hoffmann, T., Iinuma, Y., Jang M., Jenkin M. E., Jimenez, J. L., Kiendler-Scharr, A.,
- Maenhaut, W., McFiggans, G., Mentel Th. F., Monod A., Prévôt, A. S. H., Seinfeld, J.
- H., Surratt, J. D., Szmigielski R., and Wildt, J.: The formation, properties and impact of
- secondary organic aerosol: current and emerging issues. Atmos. Chem. Phys., 9, 5155–
- 15 5236, 2009.

16

- 17 IUPAC Subcommittee for Gas Kinetic Data Evaluation, http://www.iupac-
- 18 kinetic.ch.cam.ac.uk/, 2009.

19

- 20 Leighton, P. A.: Photochemistry of Air Pollution. Academic Press, San Diego, CA, USA,
- 21 1961.

22

Master Chemical Mechanism, MCM: http://mcm.leeds.ac.uk/MCM/roots.htt

- Neubert, A., Kley, D., Wildt, J., Segschneider, H. J., and Förstel, H.: Uptake of NO, NO₂ and
- O₃ by sunflower and tobacco: dependence on stomatal conductivity. Atmos. Environm.
- 27 27A, 2137-2145, 1993.
- Sander, S. P., Friedl, R. R., Golden, D. M., Kurylo, M. J., Moortgat, G. K., Keller-Rudek, H.,
- Wine P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie,
- R. E., and Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in
- 31 Atmospheric Studies, Evaluation Number 15, JPL Publication 06-2,
- 32 http://jpldataeval.jpl.nasa.gov/, 2006.

- Table S1: Results from estimations of relative peroxy radical concentrations. Data for [RO₂]
- obtained for the experiment at BNR = 1.1 were taken as reference.
- $[RO_2]_{rel}^a$: $k_3 = 2.8 \times 10^{-11} \text{ cm}^3 \text{ s}^{-1}$, $[NO]_D$ from PSS,
- $[RO_2]_{rel}^b$: $k_3 = 3.1 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$, $[NO]_D$ from PSS, $[RO_2]_{rel}^{c,d}$: $k_3 = 2.8 \times 10^{-11} / 3.1 \times 10^{-12} \text{ cm}^3 \text{ s}^{-1}$, $[NO]_D = 0$.
- The last column lists the minimum and maximum [RO₂] compared to 300 ppt, i.e. the
- reference case.

		[OH]					
BNR	$[BVOC]_0$	$[cm^{-3}]$	$[RO_2]_{PSS}$	$[RO_2]^a_{rel}$	$[RO_2]_{rel}^b$	$[RO_2]_{rel}^{c,d}$	Range
[ppbC]/[ppb]	[ppbC]	$\times 10^7$	[ppt]	[ppt]	[ppt]	[ppt]	%
1.1	119	2.58	300	-	-	-	-
1.8	122	2.50	#	169	150	299	50 - 100
3.2	124.5	2.20	200	164	136	283	45 - 94
4.3	98.5	*		*	*	*	*
8.9	109.5	1.68		149	95	232	31 - 77
10.2	104.3	1.89		164	102	240	34 - 80
12.8	105	*		*	*	*	*
14.4	106.3	1.91		181	115	244	38 - 81
18.0	88.3	1.83		168	98	218	33 - 73
24.4	79.8	1.71		162	91	200	30 - 67
25.4	124.5	1.47		183	111	232	37 - 77
28.6	117	1.71		200	124	242	41 - 81
29.8	97.5	1.68		182	108	219	36 - 73
61.1	100	1.40		181	112	203	37 - 68
62.0	101.5	*		*	*	*	*
79.2	129.5	0.99		172	104	194	35 - 65
255.8	76.8	*		*	*	*	*
277.5	83.3	1.58		192	164	196	54 - 65
300.0	90	1.59		201	172	205	57 - 68
326.7	98	1.06		170	140	175	47 - 58
329.2	98.8	*		*	*	*	*
345.8	103.8	1.16		183	155	188	51 - 63
363.8	109	*		*	*	*	*
412.5	124	*		*	*	*	*
414.2	124.3	1.11		197	168	201	56 - 67
415.0	124.5	*		*	*	*	*

^{-- [}NO] too low to allow reliably determination of deviation from PSS

[#] no $[RO_2]_{PSS}$ due to failure of NO_x analytics

^{*} no data due to failure of OH measurement

Figure S1

Fig. S1: double logarithmic plots of J_7 versus BNR (left scale, red circles) and of $P(O_3)$ versus BNR (blue squares, right scale). The red and blue lines show the results from the respective least square fits. Data used for the fit of $ln(J_7)$ versus ln(BNR) were restricted to data points where impacts of NO_x were obvious (BNR < 30 [ppbC]/[ppb]). Data used for the fit of $ln(P(O_3))$ versus ln(BNR) were restricted to reliable data for $P(O_3)$ ($P(O_3) > 2.5$ ppb h^{-1}). Note the different scales at both y-axes.

Figure S2

Fig. S2: Estimated $[RO_2]$ (= $\Sigma[RO_2^i]$) using deviation from PSS and an average rate constant $k_2 = 9 \times 10^{-12}$ cm³ s⁻¹ for reaction R2. The open squares (right hand y-scale) show the original data; the red line shows the five point moving average of the $[RO_2]$ data (right hand y-scale). The brown line shows NO concentrations measured during that experiment, the blue bars show OH concentrations divided by 2×10^6 for clarity, and the blue line shows the ozone concentrations divided by 4 for clarity (all data on left hand y-scale). New particle formation started about 2 h after the TUV lamp was switched on. At that point in time [NO] had decreased to ~ 0.8 ppb and $[RO_2]$ had increased to ~ 200 ppt.