1 Modeled black carbon radiative forcing and atmospheric lifetime in

2 AeroCom Phase II constrained by aircraft observations

3 Responses to reviewers

4

5 We thank both reviewers for their positive assessment of our paper, and for their helpful comments.
6 Point-by-point responses and details of the changes made to the paper can be found below (in red).

7 **Reviewer #1:**

8 The following few points may be helpful.

9 Page 20089 line 14: The models are comparing with data collected between 2008 and 2012, however

10 the emissions used in the model are from a decade before (2000). Given that some regions used in

11 the study are subject to rapidly changing emissions, what impact may this have on the results?

12 Page 20093 line 25 to page 20094 line 5: Whilst I agree with the points made, it is also worth pointing

13 out that the A-FORCE measurements do not extend to the elevated altitudes measured in HIPPO and

14 to a lesser extent in the other studies. It should be pointed out that there is a significant model to

15 model variability at altitude in this and other regions but the measurement data is not available to

16 confirm whether upper tropospheric BC values are similar in this region to the remote Pacific and

17 continental north America.

18 We agree with both of these related points. In the text, we have added the following sections:

19 We note, however, that the A-FORCE data do not extend as far up in the atmosphere as HIPPO did,

and that we find significant intermodel variability at p<400hPa also for the near-source A-FORCE and
HIPPO America regions.

- 22 While the aircraft data in the present study were taken over the period 2008-2012, the models used
- 23 emissions from year 2000. BC emissions have increased in the intervening period (e.g. Wang et al.,
- 24 Trend in Global Black Carbon Emissions from 1960 to 2007, Environ Sci Technol, 48, 6780-6787, 2014,
- 25 indicates a global mean increase of ~10%), indicating that any overestimation of concentrations by
- 26 the models would have been strengthened had they used a more recent emission inventory. One
- 27 model (CAM4-Oslo) delivered results for both year 2000 and 2006 emissions, reflecting this increase.

28 In remote regions (e.g. the HIPPO regions in Figure 1), the resulting 20%-30% increase in

29 concentration is found to be evenly distributed throughout the vertical profile, except in the range

30 1000-800hPa where no significant increase was found. It is clear that for future comparisons, model

31 calculations with updated emission inventories are desirable.

32 Page 20099 lines 11-15: This statement is not true close to polluted regions and is contradicted later

33 in the paragraph. I suggest rephrasing.

34 We agree. The start of the conclusions section now reads:

- 35 We have compared recent aircraft based measurements of BC concentration with state of the art
- 36 global aerosol-climate models. In remote regions where BC concentration are dominated by long
- 37 range transport, and at high altitudes, there is a tendency for the models to overestimate the aircraft
- 38 measurements, where and when the effects of fires are small.
- 39 I am not sure how it can be improved, but figure 2 is very hard to read clearly and easily.
- 40 While we agree that the figure is dense with information, we still wish to present the data on a
- 41 unified plot. In the final paper, where the page orientation is standard, the plot will hopefully come
- 42 out better. A number of minor fixes have been made to improve clarity (see e.g. response to
- 43 comment nr. 2 from Reviewer 2).

45 **Reviewer #2:**

- 46 SPECIFIC COMMENTS
- 47 1/ The authors should check the numbering of tables and figures, e.g., Fig. 4 is mentioned right after
 48 Fig. 1 and there is no reference to Table 2 in the text.
- We thank the reviewer for spotting this. The numbering has been updated, and a reference to table 2that had been lost in editing is reinserted.
- 51 2/ Fig. 2 presents average vertical profiles of BC mass concentrations from observations together
- 52 with results from models. Observations are presented as average plus 1 standard deviation. In the
- 53 current form there is only an upper bound for observation data given, while for most of the cases,
- 54 the model BC values are significantly smaller than average observation values. The authors may
- 55 consider plotting the observational data as 25-precentile, median, and 75-percentile values. Then
- also a lower bound of observational data is given in the figures for comparison with model data.
- 57 Median and +1sigma was used for consistency with other studies, however we agree that adding

58 median and percentiles is relevant. In several regions, the measurements vary quite extensively, to

- 59 the point where the mean is at times above the 75^{th} percentile. We added the median and $25^{th}/75^{th}$
- 60 percentiles to the plots, to ensure this information comes across.
- 61 TYPOS
- 1/ Page 20088, line 20: I suggest deleting "and"; then the sentence would read ": : : the atmospheric
 segment from the surface up to 250 hPa.
- 64 Fixed.
- 65 2/ Page 20088, line 22: There is a confusion of past tense and present tense; I suggest rephrasing the
- sentence: "The Polar Airborne : : : campaign consisted of : : :". This would be in accordance with the
 sentences describing the other field campaigns.
- 68 Fixed.
- 69 3/ Page 20089, line 16: I suggest deleting "also"; then the sentence would read "To calculate BC : : :
- 70 mean pressure and temperature fields were used."
- 71 Fixed.
- 72
- 73

74 Full manuscript including TrackChanges:

75 Modeled black carbon radiative forcing and atmospheric lifetime in

- 76 AeroCom Phase II constrained by aircraft observations
- 77 B. H. Samset, Center for International Climate and Environmental Research Oslo (CICERO), Oslo,
- 78 Norway
- 79 G. Myhre, Center for International Climate and Environmental Research Oslo (CICERO), Oslo,
- 80 Norway
- 81 A. Herber, Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association,
- 82 Burgermeister-Smidt-Straße 20, 27568 Bremerhaven, Germany
- 83 Y. Kondo, Department of Earth and Planetary Science, Graduate School of Science, University of
- 84 Tokyo, Tokyo, Japan
- 85 S.-M. Li, Air Quality Research Division, Science and Technology Branch, Environment Canada, 4905
- 86 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada
- 87 N. Moteki, Department of Earth and Planetary Science, Graduate School of Science, University of
- 88 Tokyo, Tokyo, Japan
- 89 M. Koike, Department of Earth and Planetary Science, Graduate School of Science, University of
- 90 Tokyo, Tokyo, Japan
- 91 N. Oshima, Meteorological Research Institute, Tsukuba, IbarakiDepartment of Earth and Planetary
- 92 Science, Graduate School of Science, University of
- 93 Tokyo, Tokyo, Japan
- 94 J. P. Schwarz, Chemical Sciences Division, Earth System Research Laboratory, National Oceanic
- 95 and Atmospheric Administration, Boulder, Colorado, USA and Cooperative Institute for Research in
- 96 Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
- 97 Y. Balkanski, Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, Gif-
- 98 sur-Yvette, France

- 99 S. E. Bauer, NASA Goddard Institute for Space Studies and Columbia Earth Institute, New York, NY,
- 100 USA
- 101 N. Bellouin, Met Office Hadley Centre, Exeter, UK Met Office Hadley Centre, Exeter, UK. Now at

Formatted: English (U.S.)

- 102 Department of Meteorology, University of Reading, Reading, UK
- 103 T. K. Berntsen, Center for International Climate and Environmental Research Oslo (CICERO),
- 104 Oslo, Norway
- **H. Bian**, Joint Center for Earth Systems Technology, University of Maryland Baltimore County, MD,
- 106 USA
- 107 M. Chin, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- 108 **T. Diehl**, NASA Goddard Space Flight Center, Greenbelt, MD, USA and Universities Space Research
- 109 Association, Columbia, MD, USA (now at European Commission at the Joint Research Center, Ispra,
- 110 Italy)
- 111 R. C. Easter, Pacific Northwest National Laboratory, Richland, WA, USA
- 112 S. J. Ghan, Pacific Northwest National Laboratory, Richland, WA, USA
- 113 T. Iversen, Norwegian Meteorological Institute, Oslo, Norway and Department of Geosciences,
- 114 University of Oslo, Oslo, Norway and ECMWF, Shinfield Park, RG2 9AX, Reading, UK
- 115 A. Kirkevåg, Norwegian Meteorological Institute, Oslo, Norway
- 116 J.-F. Lamarque, NCAR Earth System Laboratory, National Center for Atmospheric Research,
- 117 Boulder, CO, USA
- 118 G. Lin, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann
- 119 Arbor, Michigan, USA
- 120 X. Liu, Department of Atmospheric Science, University of Wyoming, Laramie, WY, USAPacific
- 121 Northwest National Laboratory, Richland, WA, USA
- 122 J. E. Penner, Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann
- 123 Arbor, Michigan, USA
- 124 M. Schulz, Norwegian Meteorological Institute, Oslo, Norway
- 125 Ø. Seland, Norwegian Meteorological Institute, Oslo, Norway

126 **R. B. Skeie**, Center for International Climate and Environmental Research – Oslo (CICERO), Oslo,

127 Norway

- 128 P. Stier, Department of Physics, University of Oxford, Oxford, UK
- 129 T. Takemura, Research Institute for Applied Mechanics, Kyushu University, Fukuoka, Japan
- 130 K. Tsigaridis, NASA Goddard Institute for Space Studies and Columbia Earth Institute, New York,
- 131 NY, USA
- 132 K. Zhang, Pacific Northwest National Laboratory, Richland, WA, USA

133 Abstract

134 Atmospheric black carbon (BC) absorbs solar radiation, and exacerbates global warming through exerting positive radiative forcing (RF). However, the contribution of BC to ongoing 135 136 changes in global climate is under debate. Anthropogenic BC emissions, and the resulting 137 distribution of BC concentration, are highly uncertain. In particular, long range transport and 138 processes affecting BC atmospheric lifetime are poorly understood. Here we discuss whether 139 recent assessments may have overestimated present day BC radiative forcing in remote 140 regions. We compare vertical profiles of BC concentration from four recent aircraft 141 measurement campaigns to simulations by 13 aerosol models participating in the AeroCom 142 Phase II intercomparision. An atmospheric lifetime of BC of less than 5 days is shown to be 143 essential for reproducing observations in remote ocean regions, in line with other recent 144 studies. Adjusting model results to measurements in remote regions, and at high altitudes, leads to a 25% reduction in AeroCom Phase II median direct BC forcing, from fossil fuel and 145 146 biofuel burning, over the industrial era. The sensitivity of modeled forcing to BC vertical 147 profile and lifetime highlights an urgent need for further flight campaigns, close to sources 148 and in remote regions, to provide improved quantification of BC effects for use in climate 149 policy.

150 Introduction

151	As an absorber of solar radiation, anthropogenic BC emissions can contribute positively to		
152	global radiative forcing through the aerosol direct effect, they can affect clouds through the		
153	aerosol indirect and semidirect effects, change albedo of snow and ice, and influence		
154	precipitation by changing atmospheric stability and the surface energy balance (Myhre et al.,		Field Code Changed
155	2013a;Ramanathan and Carmichael, 2008;Haywood and Shine, 1995). Presently both the	<	Field Code Changed
156	magnitude of anthropogenic BC emissions and the resulting global distribution of BC		Field Code Changed
157	concentrations are highly uncertain. In particular the vertical profile of BC concentration,		
158	which strongly affects its total impact on the energy balance of the atmosphere, is poorly		
159	constrained (Koffi et al., 2012; Textor et al., 2007; Samset et al., 2013). Comparisons of		Field Code Changed
100	magging moto with model googles with emphasic both on total DC magging anotic temporal	\leq	Field Code Changed
100	measurements with model results, with emphasis both on total BC mass, spatio-temporal		Field Code Changed
161	distribution and vertical structure are therefore essential for constraining estimates of BC		
162	effects on climate.		
163	The IPCC AR5 (Boucher et al., 2013) assessed the direct aerosol effect radiative forcing due		Field Code Changed
164	to anthropogenic BC (defined here as BC from anthropogenic fossil fuel and biofuel sources,		
165	BC FF+BF) to be +0.40 [range: +0.05 to +0.80] W m ⁻² over the period 1750-2010. That		
166	assessment took into account both model based and observational studies. Recently, Phase II		
167	of the AeroCom model intercomparison project (Myhre et al., 2013b) also evaluated BC		Field Code Changed
168	FF+BF radiative forcing (RF), based purely on 15 global aerosol models (Myhre et al.,		Field Code Changed
169	2013b), and found it to be +0.23 [+0.06 to +0.48] Wm^{-2} . The uncertainty ranges (5-95%)		
170	show that BC is still a major contributor to the total uncertainty on anthropogenic radiative		
171	forcing. Further, it has recently been shown that, because the direct radiative forcing per unit		
172	mass BC increases strongly with altitude (Ban-Weiss et al., 2011;Zarzycki and Bond,		Field Code Changed
170	2010: Somet and Mybro 2011) the diversity in modeled vertical profiles of BC concentration		Field Code Changed
173	2010, Samset and Mynne, 2011), the diversity in modeled vertical promes of BC concentration		Field Code Changed

174 in the AeroCom Phase II models may account for up to 50% of the model diversity in

was found for GEOS-Chem, and what contribution to multimodel variability may be due todifferences in modeled BC lifetime.

- 201 In the following, we compare vertical concentration profiles from the AeroCom Phase II
- 202 models to recent aircraft campaigns. The results are used to set multi-model constraints on BC
- 203 lifetime, and to find limits on the possible high bias of AeroCom Phase II BC RF if
- 204 constraining to HIPPO results.

205 Methods

206 Flight data and BC definition

- 207 We have used data from flight campaigns HIAPER Pole-to-Pole Observations (HIPPO) 1-5
- 208 (Schwarz et al., 2013), Arctic Research of the Composition of the Troposphere from Aircraft

Field Code Changed

Field Code Changed

Field Code Changed Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

Field Code Changed

- and Satellites (ARCTAS) SP2 (Jacob et al., 2010), Polar Airborne Measurements and Arctic
- 210 Regional Climate Model Simulation Project (PAMARCMiP) (Herber et al., 2012; Stone et al.,
- 211 2010) and Aerosol Radiative Forcing in East Asia (A-FORCE) (Oshima et al., 2012). (See
- 212 Table 1)
- All flights measured BC concentrations using the single particle soot photometer (SP2)
- 214 instrument (Schwarz et al., 2010). Hence, in the present work, "BC" in relation to measured
- 215 data stands for "refractive BC (rBC)" as quantified by SP2, equivalent to properly measured
- elemental carbon (Kondo et al., 2011).
- 217 HIPPO 1-5 (Schwarz et al., 2013) flew mainly pole-to-pole over the Pacific Ocean at various
- times during 2009-2011. Combining data from all five campaigns yields an approximate
- 219 annual average. The HIPPO data have been screened against contributions from fires, so as to
- 220 be representative of the background concentration of BC over the Pacific. Two of the HIPPO
- 221 campaigns also flew over the North American mainland, allowing also for comparisons closer

 values up to 100hPa, meaning that its upper range reaches into the lower stratosphere. The ARCTAS SP2 campaign (Jacob et al., 2010) was flown in two separate time periods in Field Code Changed parts of the HIPPO region, and also over the North Polar regions. During summer, flights were conducted over the North American continent, again comparable to HIPPO. Part of the ARCTAS motivation was to study fires, so the measured concentrations can be expected to have a larger contribution from open biomass burning than the HIPPO dataset. ARCTAS data cover the atmospheric segment from the surface and up to 250hPa. The Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP) campaign (Herber et al., 2012;Stone et al., 2010) consisted of a series of Field Code Changed Field Code Cha	222	to anthropogenic BC source regions. HIPPO covers atmospheric pressures from surface	
224 The ARCTAS SP2 campaign (Jacob et al., 2010) was flown in two separate time periods in Field Code Changed 225 2008. During spring, flights were conducted over the northem Pacific Ocean, comparable to 226 parts of the HIPPO region, and also over the North Polar regions. During summer, flights 227 were conducted over the North American continent, again comparable to HIPPO. Part of the 228 ARCTAS motivation was to study fires, so the measured concentrations can be expected to 229 have a larger contribution from open biomass burning than the HIPPO dataset. ARCTAS data 220 cover the atmospheric segment from the surface-and up to 250hPa. 221 The Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project 223 (PAMARCMiP) campaign (Herber et al., 2012;Stone et al., 2010) consisted of a series of 224 trevers a vertical range up to 50hPa, and is partially comparable to both ARCTAS and 225 Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et released code Changed </td <td>223</td> <td>values up to 100hPa, meaning that its upper range reaches into the lower stratosphere.</td> <td></td>	223	values up to 100hPa, meaning that its upper range reaches into the lower stratosphere.	
225 2008. During spring, flights were conducted over the northern Pacific Ocean, comparable to 226 parts of the HIPPO region, and also over the North Polar regions. During summer, flights 227 were conducted over the North American continent, again comparable to HIPPO. Part of the 228 ARCTAS motivation was to study fires, so the measured concentrations can be expected to 229 have a larger contribution from open biomass burning than the HIPPO dataset. ARCTAS data 230 cover the atmospheric segment from the surface-and up to 250hPa. 231 The Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project 232 (PAMARCMIP) campaign (Herber et al., 2012;Stone et al., 2010) consisted of a series of Flete Code Changed Flete Code Changed 233 flights conducted over the North Polar and Northern Pacific regions, from 2009 through 2012. 234 It covers a vertical range up to 500hPa, and is partially affected by biomass burning emissions. 235 Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et Fled Code Changed 235 up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant 236 because it represents a region dominated by outflow from mainland China, one of the main 237 submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., Fleid Code Chan	224	The ARCTAS SP2 campaign (Jacob et al., 2010) was flown in two separate time periods in	Field Code Changed
226 parts of the HIPPO region, and also over the North Polar regions. During summer, flights 227 were conducted over the North American continent, again comparable to HIPPO. Part of the 228 ARCTAS motivation was to study fires, so the measured concentrations can be expected to 229 have a larger contribution from open biomass burning than the HIPPO dataset. ARCTAS data 230 cover the atmospheric segment from the surface-and up to 250hPa. 231 The Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project 232 (PAMARCMiP) campaign (Herber et al., 2012;Stone et al., 2010) consisted of a series of 71 Field Code Changed 723 flights conducted over the North Polar and Northern Pacific regions, from 2009 through 2012. 724 It covers a vertical range up to 500hPa, and is partially offacted by biomass burning emissions. 725 Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et al., 2012) flew over East Asia (southwestern Japan) in spring 2009, covering a vertical range 728 up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant 729 because it represents a region dominated by outflow from mainland China, one of the main 720 sources of anthropogenic BC emissions. 721 AeroCom Phase II models	225	2008. During spring, flights were conducted over the northern Pacific Ocean, comparable to	
 were conducted over the North American continent, again comparable to HIPPO. Part of the ARCTAS motivation was to study fires, so the measured concentrations can be expected to have a larger contribution from open biomass burning than the HIPPO dataset. ARCTAS data cover the atmospheric segment from the surface-and up to 250hPa. The Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project (PAMARCMiP) campaign (Herber et al., 2012;\$tone et al., 2010) consisteds of a series of field Code Changed flights conducted over the North Polar and Northern Pacific regions, from 2009 through 2012. It covers a vertical range up to 500hPa, and is partially comparable to both ARCTAS and HIPPO. As ARCTAS, PAMARCMiP is partially affected by biomass burning emissions. Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et al., 2012) flew over East Asia (southwestern Japan) in spring 2009, covering a vertical range up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant because it represents a region dominated by outflow from mainland China, one of the main sources of anthropogenic BC emissions. AeroCom Phase II models The models results in the present study come from 13 state of the art aerosol models, field Code Changed field Code Changed fiel	226	parts of the HIPPO region, and also over the North Polar regions. During summer, flights	
228 ARCTAS motivation was to study fires, so the measured concentrations can be expected to 229 have a larger contribution from open biomass burning than the HIPPO dataset. ARCTAS data 230 cover the atmospheric segment from the surface and up to 250hPa. 231 The Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project 232 (PAMARCMiP) campaign (Herber et al., 2012,\$tone et al., 2010) consisted of a series of Field Code Changed 233 flights conducted over the North Polar and Northern Pacific regions, from 2009 through 2012. 234 It covers a vertical range up to 500hPa, and is partially comparable to both ARCTAS and 235 HIPPO. As ARCTAS, PAMARCMiP is partially affected by biomass burning emissions. 236 Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant 239 because it represents a region dominated by outflow from mainland China, one of the main 240 sources of anthropogenic BC emissions. 241 AeroCom Phase II models 242 The models results in the present study come from 13 state of the at aerosol models, Field Code Changed 243 submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., Pield Code Changed Field Code Changed 244	227	were conducted over the North American continent, again comparable to HIPPO. Part of the	
229 have a larger contribution from open biomass burning than the HIPPO dataset. ARCTAS data 230 cover the atmospheric segment from the surface and up to 250hPa. 231 The Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project 232 (PAMARCMiP) campaign (Herber et al., 2012; Stone et al., 2010) consisteds of a series of 233 flights conducted over the North Polar and Northern Pacific regions, from 2009 through 2012. 234 It covers a vertical range up to 500hPa, and is partially comparable to both ARCTAS and 235 HIPPO. As ARCTAS, PAMARCMiP is partially affected by biomass burning emissions. 236 Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant 239 because it represents a region dominated by outflow from mainland China, one of the main 240 sources of anthropogenic BC emissions. 241 AeroCom Phase II models 242 The models results in the present study come from 13 state of the art aerosol models, submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., 2013; Schwarz et al., 2013). Participating models are NCAR-CAM3.5 244 2013b; Samset et al., 2013; CAM4-Oslo (Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), 245 [Lamarque et al., 2012), CAM4-Oslo (Kirkevåg et al	228	ARCTAS motivation was to study fires, so the measured concentrations can be expected to	
230 cover the atmospheric segment from the surface-and up to 250hPa. 231 The Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project 232 (PAMARCMiP) campaign (Herber et al., 2012;Stone et al., 2010) consisteds of a series of 71 Field Code Changed 723 flights conducted over the North Polar and Northern Pacific regions, from 2009 through 2012. 234 It covers a vertical range up to 500hPa, and is partially comparable to both ARCTAS and 235 HIPPO. As ARCTAS, PAMARCMiP is partially affected by biomass burning emissions. 236 Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et 237 al., 2012) flew over East Asia (southwestern Japan) in spring 2009, covering a vertical range 238 up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant 239 because it represents a region dominated by outflow from mainland China, one of the main 240 sources of anthropogenic BC emissions. 241 AeroCom Phase II models 242 The models results in the present study come from 13 state of the at aerosol models, 243 submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., 244 2013b;Samset et al., 2013;Schwarz et al., 2013). Participating models are NCAR-	229	have a larger contribution from open biomass burning than the HIPPO dataset. ARCTAS data	
231 The Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project 232 (PAMARCMiP) campaign (Herber et al., 2012;Stone et al., 2010) consisteds of a series of 333 flights conducted over the North Polar and Northern Pacific regions, from 2009 through 2012. 234 It covers a vertical range up to 500hPa, and is partially comparable to both ARCTAS and 235 HIPPO. As ARCTAS, PAMARCMiP is partially affected by biomass burning emissions. 236 Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et al., 2012) flew over East Asia (southwestern Japan) in spring 2009, covering a vertical range 238 up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant 239 because it represents a region dominated by outflow from mainland China, one of the main 240 sources of anthropogenic BC emissions. 241 AeroCom Phase II models 242 The models results in the present study come from 13 state of the art aerosol models, 243 submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., 244 2013br/samset et al., 2013; CAM4-Oslo (Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), 245 [Heid Code Changed] 246 [Lamarque et al., 2012, CAM4-Oslo (Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), <	230	cover the atmospheric segment from the surface-and up to 250hPa.	
 (PAMARCMiP) campaign (Herber et al., 2012;Stone et al., 2010) consisteds of a series of flights conducted over the North Polar and Northern Pacific regions, from 2009 through 2012. It covers a vertical range up to 500hPa, and is partially comparable to both ARCTAS and HIPPO. As ARCTAS, PAMARCMiP is partially affected by biomass burning emissions. Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et al., 2012) flew over East Asia (southwestern Japan) in spring 2009, covering a vertical range up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant because it represents a region dominated by outflow from mainland China, one of the main sources of anthropogenic BC emissions. AeroCom Phase II models The models results in the present study come from 13 state of the art aerosol models, submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., 2013b;Samset et al., 2013;Schwarz et al., 2013). Participating models are NCAR-CAM3.5 (Lamarque et al., 2012), CAM4-Oslo (Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), Field Code Changed 	231	The Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project	
233 flights conducted over the North Polar and Northern Pacific regions, from 2009 through 2012. It covers a vertical range up to 500hPa, and is partially comparable to both ARCTAS and 234 It covers a vertical range up to 500hPa, and is partially comparable to both ARCTAS and 235 HIPPO. As ARCTAS, PAMARCMiP is partially affected by biomass burning emissions. 236 Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et al., 2012) flew over East Asia (southwestern Japan) in spring 2009, covering a vertical range 238 up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant 239 because it represents a region dominated by outflow from mainland China, one of the main 240 sources of anthropogenic BC emissions. 241 AeroCom Phase II models 242 The models results in the present study come from 13 state of the art aerosol models, 243 submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., 244 2013b;Şamset et al., 2013;Schwarz et al., 2013). Participating models are NCAR-CAM3.5 245 (Lamarque et al., 2012), CAM4-Oslo.(Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012),	232	(PAMARCMiP) campaign (Herber et al., 2012;Stone et al., 2010) consisteds of a series of	Field Code Changed
234 It covers a vertical range up to 500hPa, and is partially comparable to both ARCTAS and 235 HIPPO. As ARCTAS, PAMARCMiP is partially affected by biomass burning emissions. 236 Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et al., 2012) flew over East Asia (southwestern Japan) in spring 2009, covering a vertical range 238 up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant 239 because it represents a region dominated by outflow from mainland China, one of the main 240 sources of anthropogenic BC emissions. 241 AeroCom Phase II models 242 The models results in the present study come from 13 state of the art aerosol models, submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., 2013b;\$amset et al., 2013;\$chwarz et al., 2013). Participating models are NCAR-CAM3.5 244 2013b;\$amset et al., 2012; CAM4-Oslo_(Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), Field Code Changed	233	flights conducted over the North Polar and Northern Pacific regions, from 2009 through 2012.	Field Code Changed
 HIPPO. As ARCTAS, PAMARCMiP is partially affected by biomass burning emissions. Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et al., 2012) flew over East Asia (southwestern Japan) in spring 2009, covering a vertical range up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant because it represents a region dominated by outflow from mainland China, one of the main sources of anthropogenic BC emissions. AeroCom Phase II models The models results in the present study come from 13 state of the art aerosol models, submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., Field Code Changed Field Code Chan	234	It covers a vertical range up to 500hPa, and is partially comparable to both ARCTAS and	
 Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et Fleld Code Changed al., 2012) flew over East Asia (southwestern Japan) in spring 2009, covering a vertical range up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant because it represents a region dominated by outflow from mainland China, one of the main sources of anthropogenic BC emissions. AeroCom Phase II models The models results in the present study come from 13 state of the art aerosol models, submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., Pield Code Changed Fleid Code Changed 2013b;Samset et al., 2013;Schwarz et al., 2013). Participating models are NCAR-CAM3.5 (Lamarque et al., 2012), CAM4-Oslo (Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), 	235	HIPPO. As ARCTAS, PAMARCMiP is partially affected by biomass burning emissions.	
 al., 2012) flew over East Asia (southwestern Japan) in spring 2009, covering a vertical range up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant because it represents a region dominated by outflow from mainland China, one of the main sources of anthropogenic BC emissions. AeroCom Phase II models The models results in the present study come from 13 state of the art aerosol models, submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., 2013b;Samset et al., 2013;Schwarz et al., 2013). Participating models are NCAR-CAM3.5 (Lamarque et al., 2012), CAM4-Oslo (Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), 	236	Finally, the Aerosol Radiative Forcing in East Asia (A-FORCE) aircraft campaign (Oshima et	Field Code Changed
 up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant because it represents a region dominated by outflow from mainland China, one of the main sources of anthropogenic BC emissions. <i>AeroCom Phase II models</i> The models results in the present study come from 13 state of the art aerosol models, submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., 2013b;Samset et al., 2013;Schwarz et al., 2013). Participating models are NCAR-CAM3.5 (Lamarque et al., 2012), CAM4-Oslo (Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), 	237	al., 2012) flew over East Asia (southwestern Japan) in spring 2009, covering a vertical range	
 because it represents a region dominated by outflow from mainland China, one of the main sources of anthropogenic BC emissions. AeroCom Phase II models The models results in the present study come from 13 state of the art aerosol models, submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., 2013b;Samset et al., 2013;Schwarz et al., 2013). Participating models are NCAR-CAM3.5 (Lamarque et al., 2012), CAM4-Oslo (Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), 	238	up to 300hPa. It is not regionally comparable to the other campaigns, but is highly relevant	
 sources of anthropogenic BC emissions. AeroCom Phase II models The models results in the present study come from 13 state of the art aerosol models, submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., 2013b;Samset et al., 2013;Schwarz et al., 2013). Participating models are NCAR-CAM3.5 (Lamarque et al., 2012), CAM4-Oslo_(Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), 	239	because it represents a region dominated by outflow from mainland China, one of the main	
 AeroCom Phase II models The models results in the present study come from 13 state of the art aerosol models, submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., 2013b;Samset et al., 2013;Schwarz et al., 2013). Participating models are NCAR-CAM3.5 (Lamarque et al., 2012), CAM4-Oslo_(Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), 	240	sources of anthropogenic BC emissions.	
 The models results in the present study come from 13 state of the art aerosol models, submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., 2013b;Samset et al., 2013;Schwarz et al., 2013). Participating models are NCAR-CAM3.5 (Lamarque et al., 2012), CAM4-Oslo_(Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), 	241	AeroCom Phase II models	
 submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al., 244 2013b;Samset et al., 2013;Schwarz et al., 2013). Participating models are NCAR-CAM3.5 245 (Lamarque et al., 2012), CAM4-Oslo (Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), 	242	The models results in the present study come from 13 state of the art aerosol models,	Field Code Changed
 244 2013b;Samset et al., 2013;Schwarz et al., 2013). Participating models are NCAR-CAM3.5 245 (Lamarque et al., 2012), CAM4-Oslo_(Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), 245 Field Code Changed Field Code Changed Field Code Changed 	243	submitted as part of Phase II of the AeroCom model intercomparison project (Myhre et al.,	Field Code Changed
245 (Lamarque et al., 2012), CAM4-Oslo_(Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012), Field Code Changed	244	2013b;Samset et al., 2013;Schwarz et al., 2013). Participating models are NCAR-CAM3.5	Field Code Changed
	245	(Lamarque et al., 2012), CAM4-Oslo_(Kirkevåg et al., 2013), CAM5.1 (Liu et al., 2012),	Field Code Changed Field Code Changed

246	GISS-MATRIX (Bauer et al., 2010), GISS modelE (Koch et al., 2011), GMI (Bian et al.,	
247	2009), GOCART-v4 (Chin et al., 2009), HadGEM2 (Bellouin et al., 2011), IMPACT (Lin et	
248	al., 2012), INCA (Szopa et al., 2012), ECHAM5-HAM (Zhang et al., 2012), OsloCTM2	
249	(Skeie et al., 2011) and SPRINTARS (Takemura et al., 2005). See (Myhre et al., 2013b) and	Field Code Changed
250	individual model references for further descriptions.	
251	All models submitted monthly mean 3D fields of total BC mass mixing ratios, using year	
252	2000 emissions (Lamarque et al., 2010)., yearMeteorological year was 2006 meteorology, or	Field Code Changed
253	model internal present day (PD) climatology. To calculate BC concentrations from mixing	
254	ratios, the models' own monthly mean temperature and pressure fields were also-used. When	
255	discussing modifications to the BC radiative forcing from the direct effect from anthropogenic	
256	fossil fuels and biofuels, the models' own monthly mean 2D forcing fields were used, in	
257	combination with a preindustrial simulation using year 1850 emissions but still year 2006 or	
258	PD meteorology (Myhre et al., 2013b). For consistency with recent literature, forcing results	Field Code Changed
259	are given for 1750-2010, using scaling factors presented in (Myhre et al., 2013b).	Field Code Changed
260	Analysis	
261	To compare flight campaigns and model output, a series of geographical regions were first	
262	selected. See Figure 1. For the flight data, only measurements that fell within the regions were	
263	kept, and for each region an average profile was constructed. For the models, all output within	

- the selected region was averaged into a single profile for each model. However, to take the
- seasonality into account, we produced a model profile for each measurement point or profile
- 266 from the flights. These were then averaged. The result is a set of model profiles that
- correspond to the flight profiles both geographically and temporally.

268 From the concentration profiles, we calculated aerosol burdens for both models and flight data.

269 To ensure comparability, model burdens were calculated only in the same vertical range

270 covered by the flight campaign.

273

271 Further, we used the methodology presented in Samset et al. (2013) to calculate BC RF from

the concentration profiles. Briefly, we use spatially and temporally resolved normalized

forcing efficiency profiles (RF exerted per gram of aerosol at a given altitude) calculated from

a single model (Samset and Myhre, 2011), and multiplied with profiles of BC burden per

275 model layer. This yields comparable estimates for total BC forcing within the selected regions,

276 for the seasons covered by the respective flight campaigns; thus all RF calculations are

277 performed with a consistent method. To distinguish the models' own estimates of RF from the

278 RF calculated by this method, we refer to the two as "native RF" and "recalculated RF"

279 respectively. While using the forcing efficiency from a single model (OsloCTM2) will

280 naturally bias the calculated RF towards the forcing strength predicted by that model, it also

allows for an estimate of differences in vertical profile shape. Since the forcing efficiency for

BC is strongly and monotonically rising with altitude, differences between the overall shape

of measured and modeled profiles will cause the ratio of recalculated forcing per burden to

284 differ from unity.

285 Calculation of RMS values and correlations

To estimate how well a given model reproduces the Pacific HIPPO flight data, as primarily used below, we calculated model bias, root-mean-square (RMS) error values and correlation coefficients. The HIPPO dataset was subdivided into five regions (P1-P5 in Figure 1), and an annual mean profile was constructed for each region as shown in Figure 2. For each model, diagnostics were calculated from the difference between the HIPPO concentration profile at Field Code Changed

Field Code Changed

each of its given altitude levels, and the regionally averaged model concentration value

interpolated to the corresponding altitude, according to the following equations:

$$Mean \ bias = \frac{1}{N} \sum_{Reg=P1}^{P5} \sum_{Alt=Surf}^{TOA} [C_{HIPPO}(Reg, Alt) - C_{Model}(Reg, Alt)]$$

Normalized mean bias =
$$\frac{1}{N} \sum_{Reg=P1}^{P5} \sum_{Alt=Surf}^{TOA} \frac{[C_{HIPPO}(Reg, Alt) - C_{Model}(Reg, Alt)]}{0.5 \times [C_{HIPPO}(Reg, Alt) + C_{Model}(Reg, Alt)]}$$

$$RMS \ Error = \sqrt{\frac{1}{N} \sum_{Reg=P1}^{P5} \sum_{Alt=Surf}^{TOA} [C_{HIPPO}(Reg, Alt) - C_{Model}(Reg, Alt)]^2}$$

Here C denotes a concentration value and N is the total number of data points. In the present
case, this value is 72, determined by the number of altitude bins where HIPPO reported
measurements. Further, we calculated the Pearson sample correlation coefficient based on the
same dataset.

297 Derivation of scaled forcing estimates

298 Two scalings were applied in the present work to assess the potential impact of adjusting 299 models to measured BC concentrations. These scalings were derived by altering the 3D 300 concentration fields of total BC (fossil fuel, biofuel and biomass burning) provided by the 301 AeroCom models, and then applied to the BC FF+BF forcing fields supplied. This method is 302 used to ensure that intermodel variability in RF due to differences in optical parameters of BC, 303 cloud distributions and other factors related to the host model are kept unchanged. 304 For the "remote ocean" scaling, the concentration fields were altered within the grey boxes 305 shown in Figure 1. Between the surface and 500hPa concentrations were reduced to 1/3, then 306 to 1/8 up to 200hPa, and then to 1/15 up to TOA. These factors were derived from the

307 comparison between AeroCom Phase II and HIPPO 1-5 presented in Schwarz 2013 (Schwarz Field Code Changed 308 et al., 2013). 309 Using the forcing efficiency profile method (Samset and Myhre, 2011), we then calculated Field Code Changed 310 global, annual mean BC RF from both scaled and unscaled concentration fields. The ratio of 311 these forcing values is taken as the scaling factor for that particular model. 312 Finally, we constructed the multi-model median BC FF+BF for all 13 models used for the 313 present study, based on their original 2D forcing fields. These forcing values were scaled with 314 the derived scaling factors, to produce the revised model median forcing-estimates presented 315 in Figure 4. 316 For the "high altitude" scaling the same procedure was followed, except that the concentration 317 fields were scaled to 1/20 at altitudes between 200hPa and TOA globally. 318 For the "all scaled" analysis both scalings were applied to the concentration fields, i.e. the 319 fields were scaled to 1/20 at altitudes between 200hPa and TOA globally, and then as 320 described above in the grey marked regions at altitudes below 200hPa. **Results and discussion** 321 322 Comparisons of flights and models 323 Here, we constrain the model range of global, annual mean direct radiative forcing by 324 anthropogenic BC, by comparing AeroCom Phase II vertical profiles from 13 models, to 325 recent aircraft campaigns. Figure 1 shows the flight tracks of the four campaigns, the AeroCom multimodel median anthropogenic BC forcing field, and the regions selected for 326

327 analysis.

328	Table 2 shows individual model BC RF, recalculated using the forcing efficiency profile	
329	method, globally and for the regions in Figure 1. We also show the fraction of exerted above	
330	<u>5km (500hPa),</u>	
221	Figure 2 compares flight campaign data with AeroCom Phase II model output. Panels a f	
227	show the HIPP Ω_{1-5} campaigns (Schwarz et al. 2013) for five regions in the remote Pacific	Field Code Changed
332	Show the fift FOT-5 campaigns (Schwarz et al., 2015) for five regions in the femote Facture	
333	Ocean and for western North America, overlain with AeroCom Phase II results. A common	
334	pattern is that the models strongly overpredict the HIPPO measurements. Further, the	
335	overprediction is more pronounced at high altitudes. Comprised of five campaigns distributed	
336	throughout the year, HIPPO represents an approximate annual average. As recently noted	
337	(Schwarz et al., 2013), its Pacific measurements indicate that at the highest altitudes studied,	Field Code Changed
338	BC concentrations converge towards a common background value, here found to be	
339	approximately 0.1 ng m ⁻³ , with very low seasonality. Here we also find (Figure 2f) the same	
340	background value above western North America.	
244	Developed of Elever 2 shows the ADCTAS (Joseph et al. 2010) compaised which as east	
341	Panels g-1 of Figure 2 show the ARCTAS (Jacob et al., 2010) campaign, which reports	Field Code Changed
342	significantly higher concentrations than HIPPO. The models mainly underpredict these	
343	observations, linked to the fact that ARCTAS encountered biomass burning BC from episodic	
344	forest fires (Wang et al., 2011), which HIPPO did not encounter in this region. A notable	Field Code Changed
345	feature is that above the fire dominated segments, the ARCTAS profiles show a strong decline	
346	with altitude. In the P1 (Northern Pacific) region upper tropospheric ARCTAS concentrations	
347	are similar to those measured in HIPPO.	
240	Danala i Labour DAMADCMID (Harbor at al. 2012) Stone at al. 2010), data first over the	
548	raileis J-i show rAwARCWIF (neider et al., 2012, stolle et al., 2010) data, hist over the	Field Code Changed
349	North Pacific region, and then over two North Polar regions. While the altitude range covered	
350	by PAMARCMiP is limited compared to ARCTAS and HIPPO, the concentrations found in	
351	the lowest few kilometers of the troposphere are consistent with ARCTAS. Over the NP1 and	

352	NP2 region, north of America and Greenland, models underpredict the measurements. As for	
353	ARCTAS, this is at least partly due to episodic fires. The Arctic region may however have	
354	further sources of BC not adequately represented in the emission inventories used by the	
355	models (Stohl et al., 2013).	Field Code Changed
356	Panel m shows A-FORCE (Oshima et al., 2012) data in the sea areas around Japan. Here we	Field Code Changed
357	find good agreement between models and measured concentrations, both in absolute values	
358	and in the shape of the vertical profile. The variability between models is also much lower in	
359	this region than for the others. The aerosol in the A-FORCE region is mainly sensitive to	
360	outflow from mainland China, Korea and Japan. This indicates that in AeroCom Phase II,	
361	East Asian BC emissions and outflow are either well represented or, if emissions are still	
362	underestimated as discussed for AeroCom Phase I in recent literature (Bond et al.,	Field Code Changed
363	2013; Chung et al., 2012), the atmospheric lifetime of BC must be compensatingly long in the	Field Code Changed
364	models to allow enough BC to be transported into the region sampled by A-FORCE. We note,	
365	however, that the A-FORCE data do not extend as far up in the atmosphere as HIPPO did, and	
366	that we find significant intermodel variability at p<400hPa also for the near-source A-FORCE	
367	and HIPPO America regions.	
368	While the aircraft data in the present study were taken over the period 2008-2012, the models	
369	used emissions from year 2000. BC emissions have increased in the intervening period (Wang	Field Code Changed
370	et al., 2014b), indicating that any overestimation of concentrations by the models would have	
371	been strengthened had they used a more recent emission inventory. One model (CAM4-Oslo)	
372	delivered results for both year 2000 and 2006 emissions, reflecting this increase. In remote	
373	regions (e.g. the HIPPO regions in Figure 1), the resulting increase in concentration is found	
374	to be evenly distributed throughout the vertical profile, except in the range 1000-800hPa	
375	where no significant increase was found. It is clear that for future comparisons, model	
376	calculations with updated emission inventories are desirable.	

Consequences for BC atmospheric lifetime 377

378	In the following, we assess the implications of the flight observations on modeled BC lifetime	
379	and RF. Episodic biomass burning emissions from fires, even though represented in the model	
380	emissions, pose challenges when comparing flight campaigns to monthly mean model data.	
381	Arguably fires are also difficult to characterize as anthropogenic. Below, we therefore	
382	constrain our discussion to the HIPPO dataset, which was less influenced by episodic fires,	
383	reached the highest altitudes, covers the largest geographical area, and represents an	
384	approximate annual mean.	
385	Figure 2 shows that some models more closely reproduce the measurements than others, both	
386	in magnitude and shape. Several studies have suggested that to reproduce HIPPO data, a low	
387	modeled atmospheric lifetime, or a short ageing timescale, of BC is required (Bauer et al.,	Field Code Changed
388	2013; Wang et al., 2014a). Here we can test this supposition for a larger set of models.	Field Code Changed
389	Quantifying the difference between models and data requires care, as absolute concentrations	
390	range over several orders of magnitude. Common diagnostic variables include model bias and	
391	RMS error. Of these, RMS error and model mean bias (see Methods) will be dominated by	
392	high absolute concentrations, i.e. low altitudes in the present case. Model mean normalized	
393	bias avoids this, but will be more sensitive to model and measurement uncertainties in high	
394	altitude, low concentration ranges. In Figure 3, RMS error and biases are plotted as function	
395	of the modeled BC lifetime. Lifetime, also referred to as atmospheric residence time, is here	
396	defined as modeled global, annual mean emissions divided by burden (Table 3).	
397	Figure 3 shows that, independent of diagnostic variable, a low BC lifetime is a requirement	
398	for good reproduction of absolute modeled concentrations. Regressing bias or RMS error	
399	versus lifetime (black, dashed line in Figure 3) gives an intercept at 3 days for RMS error and	
400	model mean bias. This value is in line with indications from other recent studies, e.g. (Bauer	Field Code Changed

401	et al., 2013). In the present dataset, a single model with high lifetime (HadGEM2) represents a	
402	significant outlier. That model did not include BC ageing and transition to a hydrophilic state,	
403	with the consequence that both BC lifetime and burdens over remote areas become high	
404	(Bellouin et al., 2011). To test the impacts of single models on the result, Figure 3 also shows	Field Code Changed
405	regressions with one model removed (grey lines). For the normalized mean bias, which is less	
406	sensitive to high concentrations, the regression with this particular model removed is	
407	consistent with the results from RMS error and mean bias.	
408	Bias and RMS error give information on absolute deviations, but less on any covariance in	
409	shape. The Pearson correlation coefficient, however, is sensitive to the shape of the BC	
410	profiles. In Figure 3, correlation is indicated by symbol size. (See also values in Table 3.)	
411	Several models with low lifetimes also yield low correlations. Regressing only the models	
412	with correlation coefficients ρ >0.8 gives similar slopes and intercepts to what we find using	
413	all models (red, dashed line). We note that 12 out of 13 models show correlation with the	
414	Pacific HIPPO data at significance p>0.05.	
44 5	Low DC lifetime emposes recorders, but not sufficient to describe the date. Only three models	
415	Low BC metime appears necessary, but not sufficient, to describe the data. Only three models	
416	(IMPACT, GMI, GISS-MATRIX) exhibit both a low bias or RMS error and a high	
417	correlation, with no single obvious factor linking their aerosol treatments. AeroCom Phase II	
418	models use a wide variety of microphysics schemes (Mann et al., 2013). Meteorology and	Field Code Changed
419	treatment of BC aging and wet scavenging also vary, and will impact the vertical profiles	
420	(Kipling et al., 2013; Bauer et al., 2013). Further model experiments, in line with the single	Field Code Changed
171	model study in (Wang at al. $2014a$) are required to address the reasons behind the	Field Code Changed
421	moder study in (wang et al., 2014a), are required to address the reasons benind the	Field Code Changed
422	relationship found in Figure 3.	

423 Consequences for modeled BC FF+FB RF

424	However, the three models that best reproduce HIPPO in the Pacific all report consistent and	
425	relatively low BC FF+BF forcing, exerted close to emission sources as expected from the low	
426	lifetime. In these three models very little BC reaches remote ocean regions, or gets lifted	
427	above 500hPa, relative to the other models in the ensemble. While the correspondence to	
428	HIPPO cannot be used to extract information close to emission sources, it does suggest that	
429	scaling down the average modeled forcing aloft and in remote ocean regions has merit.	
430 431	Compared with HIPPO, the current model ensemble overestimates BC concentrations at all altitudes in remote regions. The overestimation increases with altitude, and is particularly	
432	significant at pressures below 200hPa. Further, (Schwarz et al., 2013) suggest that the	Field Code Changed
433	minimum concentration consistently observed by HIPPO in the upper troposphere, lower	
434	stratosphere and tropical transition layer may be a global feature. Interestingly, the models	
435	shown here do, on average, reproduce the general feature of a common background level, but	
436	with a concentration that is approximately 20 times higher than indicated by HIPPO.	
437	The HIPPO dataset allows us to test the possible implications of these observations on the	
438	multimodel BC RF from AeroCom Phase II, a key basis for BC forcing recently assessed in	
439	the IPCCs AR5. We attempt two scalings of the modeled BC concentration fields, to align	
440	them with the HIPPO observations. The first assumes that the vertically resolved ratio	
441	between models and observations in the Pacific holds for all remote ocean regions, shown as	
442	grey shaded areas in Figure 1. The second assumes that the supposition of a globally uniform	
443	high altitude BC concentration from (Schwarz et al., 2013) is true. While the present dataset is	Field Code Changed
444	insufficient to determine if such a supposition is true, it is nevertheless interesting to assess its	
445	potential impact to see if efforts to measure high altitude BC concentrations should be	
446	prioritized.	

447	Figure 4 shows the implications of these scalings on the multimodel direct RF due to BC from	
448	fossil fuel and biofuel burning (BC FF+BF). Unscaled, the multimodel median RF found here	
449	is +0.24 [+0.17 to +0.47] W m ⁻² . (See Table 3) Applying the remote region scaling reduces	
450	the global, annual median BC FF+BF RF to +0.22 [+0.16 to +0.39] W m ⁻² . The high altitude	
451	scaling reduces it to +0.19 [+0.15 to +0.33] W m ⁻² . Applying both simultaneously, while	
452	ensuring that we do not doubly scale in remote, high altitude regions, yields a BC FF+BF RF	
453	of +0.17 [+0.13 to +0.28] W m ⁻² , or a reduction of 25% from the AeroCom Phase II value	
454	combined with a strong reduction in the model spread.	
455	A 25% reduction in the direct radiative forcing of BC would have significant implications,	
456	placing the entire model based 5-95% range below the central BC RF value recently reported	
457	in IPCC AR5 (Boucher et al., 2013). Presently, the remaining uncertainty in BC forcing is	Field Code Changed
458	heavily driven by scalings such as the ones attempted above. The IPCC AR5 assessment took	
459	input both from AeroCom Phase II and other studies. One of these studies (Bond et al., 2013)	Field Code Changed
460	reported a significantly stronger forcing of 0.51 Wm ⁻² from fossil fuel and biomass burning.	
461	That estimate includes both a gross 15% global downscaling of BC forcing efficiency due to	
462	overestimation of BC aloft, and a differentiated regional upscaling of emissions derived by	
463	comparing aerosol absorption optical depth from AeroCom Phase I with that from AERONET	
464	ground based remote sensing. Their downscaling, based on recent model studies (Bond et al.,	Field Code Changed
465	2013;Samset and Myhre, 2011;Zarzycki and Bond, 2010) and evaluation of AeroCom Phase I	Field Code Changed
466	results (Schwarz et al., 2010), is comparable to our 25% reduction in forcing, though our	Field Code Changed Field Code Changed
467	reduction is attributed to remote ocean areas. For near source and remote regions covered in	
468	the present study we here find no need for an emission bias related upscaling; however the	
469	present data do not cover the regions where the upscaling in that analysis (Bond et al., 2013)	Field Code Changed
470	was most pronounced. Also, the median anthropogenic BC RF in AeroCom Phase II is	
471	already a factor of 2 stronger than in Phase I, in part due to differences in emissions and	

Field Code Changed

Field Code Changed

474 represented in the present dataset (Wang et al., 2014a). It is clear that further observations of

475 BC concentrations, vertically resolved and both in situ and remote, are imperative for

476 constraining the radiative forcing of black carbon.

477 Applicability of scaling factors derived from total BC to BC FF+BF fields

A question raised by the scaling analysis is whether we bias the results by deriving scaling factors based on total BC fields, and subsequently applying them to BC FF+BF forcing. At present, no measurement exists that can determine systematic differences between the global distributions of total BC and BC from fossil fuel and biofuel burning. However four of the models participating here (OsloCTM2, CAM3, CAM5 and IMPACT) also supplied full 3D concentration fields from BC FF+BF only, and we have used these to test the applicability of the method.

485 For this subset of models, which spans the range of predicted BC burdens, we found the ratio 486 of modeled anthropogenic BC FF+BF to total BC concentrations to be approximately constant 487 with altitude in the regions defined as remote. While trends exist for individual models in 488 single regions, for the remote regions as a whole the ratio changes by less than 10% through 489 the atmospheric column. Hence any alteration of the BC vertical profile should equally affect 490 both fields. Further, the fraction of the total global mean forcing found to be exerted at 491 altitudes above 200hPa was, for these models, found to be comparable for total BC and BC FF+BF. (See Table 2.) 492

These two observations lead us to conclude that we do not strongly bias our results byapplying scaling factors derived from total BC fields to BC FF+BF forcing.

495 Forcing pattern from models with low RMS and good correlation with HIPPO

We have shown that of the models participating in the present comparison, there are three
(GMI, GISS-MATRIX, IMPACT) that both show a low RMS error and a good correlation
with the Pacific HIPPO data. These three models all have low global mean atmospheric
lifetimes of BC, and report among the lowest BC FF+BF RF values in the AeroCom Phase II
ensemble.

501 Figure 5 shows the zonal mean BC FF+BF RF, and total BC forcing density (RF per unit 502 height) vertical profile, from the full model ensemble, and from the three HIPPO-503 corresponding models only. Total BC is used for the vertical profile as not all models 504 provided full 3D concentration fields, as outlined above. The obvious feature is that for these 505 three models, forcing is exerted primarily closer to the sources, and at lower altitudes, than in 506 the full ensemble. Very little is exerted in the southern ocean, or above 200hPa. 507 Figure 6 shows the results from the scaling analysis above, compared with results for the three 508 HIPPO-corresponding models only. From the outset they have low forcing, and the scaling 509 exercise does not significantly affect them as there is already very little forcing in the scaled

regions. The final model median, however, is consistent with that from the scaled full model
ensemble. This gives a separate indication that a reduction of 25% in anthropogenic BC RF
relative to the AeroCom Phase II value is reasonable if we take the HIPPO Pacific

513 measurements as guidance.

514 **Conclusions**

In conclusion, when<u>We have</u> compareding recent aircraft based measurements of BC
concentration with state of the art global aerosol-climate models. In remote regions where BC
concentration are dominated by long range transport, and at high altitudes, there is a tendency
for the models to overestimate the aircraft measurements, where and when the effects of fires
are small. This overestimation is most pronounced in remote regions, where BC

520	concentrations are dominated by long range transport, as well as at high altitudes. For a region
521	sensitive to Asian emission sources, models reproduce the aircraft measurements remarkably
522	well, with no indication of an underestimation in BC emissions. In remote ocean regions, an
523	atmospheric lifetime of anthropogenic BC of less than 5 days seems crucial, but not sufficient,
524	to be able to reproduce measurement data. Scaling the multimodel results to HIPPO
525	measurements, remotely and aloft, and assuming a globally uniform high altitude BC
526	concentration, leads to a reduction of 25% in anthropogenic BC direct RF, relative to the
527	models native values. The revised median of 0.17 Wm ⁻² stands in stark contrast to recent
528	assessments, which report up to 2-3 times stronger present day BC forcing, but is in line with
529	recent single-model studies (Wang et al., 2014a;Bauer et al., 2013). This discrepancy
530	underlines the impact of combining measured BC concentration data with model estimates.
531	To resolve these differences, and better constrain the climate impact of BC, there is an urgent
532	need for further flight campaigns to provide BC vertical concentration profiles over both
533	source regions, and regions where anthropogenic BC concentrations are dominated by
534	transport and wet scavenging.

535

Field Code Changed Field Code Changed

536 Acknowledgements

537	B. H. Samset, G. Myhre and M. Schulz were supported by the Research Council of Norway, through
538	the grants SLAC, AEROCOM-P3 and EarthClim, and the EC Seventh Framework Programme under
539	grant agreement FP7-ENV-2011-282688 (ECLIPSE). R.C. Easter S.J. Ghan, X. Liu and K. Zhang
540	were supported by through Scientific Discovery through Advanced Computing (SciDAC) program
541	funded by U.S. Department of Energy Office of Advanced Scientific Computing Research and Office
542	of Biological and Environmental Research. The Pacific Northwest National Laboratory (PNNL) is
543	operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RLO 1830. P. Stier's
544	research has been supported by the European Research Council under the European Union's Seventh
545	Framework Programme (FP7/2007-2013) / ERC grant agreement no. FP7- 280025 and by the UK
546	NERC project GASSP (NE/J022624/1). S. E. Bauer was supported by the NASA MAP program
547	(NN-H-04-Z-YS-008-N and NN-H-08-Z-DA-001-N). Resources supporting this work were provided
548	by the NASA High-End Computing (HEC) Program through the NASA Center for Climate Simulation
549	(NCCS). T. Iversen, A. Kirkevåg and Ø. Seland were supported by the Research Council of Norway
550	through the EarthClim (207711/E10) and NOTUR/NorStore projects, CRAICC, and through the EU
551	projects PEGASOS and ACCESS. A. Kirkevåg also received funding from the Norwegian Space
552	Center through the PM-VRAE project, The National Center for Atmospheric Research is operated by
553	the University Corporation for Atmospheric Research under sponsorship of the National Science
554	Foundation. N. Bellouin was supported by the Joint DECC/Defra Met Office Hadley Centre Climate
555	Programme (GA01101).
556	

Formatted: English (U.S.)

558 Figure captions

_	Formatted	Fnalish	(11S)
-	Formatteu.	LIIGIISII	(0.3.)

560 Figure 1: Flight tracks and regions selected for the analysis. Dots represent either single measurements (ARCTAS, A-

561 FORCE, PAMARCMIP) or pre-averaged profiles (HIPPO) from the flight campaigns. Blue: HIPPO. Green: ARCTAS. Red:

562 PAMARCMIP. Black: A-FORCE. Green boxes show the geographical regions where model data was averaged for

563 comparison to the flight profiles. Grey boxes show the areas defined as "remote ocean". The background map shows the

median, annual mean RF due to fossil fuel and biofuel burning from the 13 models used in the present study.

565

566	Figure 2: Comparison of measurements and model data for all selected regions. For each panel, the left box shows an	
567	overlay of the observed total BC concentration profiles (<u>black lines:</u> mean (solid), median (dotted) and mean-and-+1	
568	standard deviation (dashed), and-25 th -75 th percentile range (grey band)-black) with the mean BC concentration profiles	Formatted: Superscript
569	from individual AeroCom Phase II models (colored lines, see legend). The three middle boxes show, from left to right, the	Formatted: Superscript
570	BC burden (mg/m2), direct radiative forcing (W/m2) and forcing efficiency (W/g) for observations (black) and models	
571	(red). The colored diamonds show the individual AeroCom Phase II models. Finally, the rightmost box shows the ratio of	
572	models to observations for the burden (green), radiative forcing (blue) and forcing efficiency (red) within the selected	
573	region.	
F7 4		
574		
575		
576	Figure 3: Modeled global black carbon lifetime plotted versus root-mean-square error, mean bias and normalized mean	
577	bias, between model prediction and observations for the five HIPPO regions (P1-P5). Each RMS or bias calculation is	
578	based on 72 data points. The symbol size indicates the corresponding Pearson correlation coefficient. The black dashed	
579	line shows a least-squares regression line with all models included. The grey lines show regressions with one model	
580	removed. The red dashed line shows a regression using only models with ρ >0.8.	
581		
001		
582		
502		
583	Figure 4: Model median and 5%-95% range for BC FF+BF forcing, for 1/50-2010, with various scalings applied. The yellow	
584	bar shows the AeroCom Phase II result (Myhre et al., 2013b). The grey bar shows unscaled values from the present work,	Field Code Changed
585	then with remote scaling (pink) and high altitude scaling (blue) applied. The khaki bar shows the lower limit on BC FF+BF	
586	forcing from the present work, with both scalings applied. Below we compare with the recent estimate in IPCC WG1's	
587	AR5.	
588		
589	Figure 5: Zonal mean and altitude forcing profiles for AeroCom Phase II models. a) BC FF+BF forcing, zonal mean, for all	
590	13 models in the present study (black, solid), and the three models selected based on RMS and correlation vs HIPPO (red,	
591	solid). Dotted lines show only forcing over land, dashed show forcing over ocean. b) As a, except total BC (FF+BF+BB)	

- 592 forcing, and global, annual mean vertical profile. Forcing is shown per altitude meter (unit Wm⁻³), to avoid dependence
- 593 on model vertical structure.
- 594
- 595 Figure 6: As Figure 4, except also showing the BC FF+BF forcing from the three models selected based on RMS and
- 596 correlation vs HIPPO (hatched boxes).

598 Supplementary tables:

Campaign	Region	Time	Data/web site
HIPPO 1	Pacific	January 2009	http://hippo.ucar.edu/
HIPPO 2	Pacific	November 2009	
НІРРО З	Pacific	March/April 2010	
HIPPO 4	Pacific	June 2011	
HIPPO 5	Pacific	August 2011	
A-FORCE	Japan	March/April 2009	
ARCTAS Spring	Northern Pacific, North	April 2008	http://wwwair.larc.nasa.gov/
	Polar		missions/
ARCTAS Summer	Continental North	July 2008	arctas/dataaccess.htm
	America		
PAMARCMIP 2009	Northern Pacific, North	April 2009	
	Polar		
PAMARCMiP 2011	Northern Pacific, North	April 2011	
	Polar		
PAMARCMIP 2012	North Polar	March - April	
		2012	

599 Table 1: The flight campaigns included in the present work, and the times when they flew.

600

Table 2: Modeled mean forcing and fractions for the regions used in the present analysis (see Figure 1). Mean RF is the

603 forcing within that region. Fraction of global RF is defined as the fraction of energy deposited, on annual mean, within

604 that region. "Remotes" represents the total of all grey marked regions in Figure 1.

605

Region	Mean RF	Fraction of global area	Fraction of global RF	Fraction of RF above 20	0hPa
	[Wm-2]	[1]	[1]		[1]
Global	0.26	1.00	1.00		0.24
America	0.32	0.01	0.01		0.30
Japan	0.98	0.01	0.04		0.20
P1	0.28	0.01	0.01		0.31
P2	0.39	0.02	0.03		0.28
P3	0.17	0.03	0.02		0.32
P4	0.06	0.03	0.01		0.43
Р5	0.06	0.02	0.01		0.47
NP1	0.26	0.003	0.003		0.30
NP2	0.25	0.003	0.003		0.31
Remotes	0.17	0.26	0.15		0.35

606

608 Table 3: BC FF+BF RF and BC atmospheric lifetime of BC for the models used in the present study. Bias, RMS error and

609 correlation coefficients are for comparisons of each model with HIPPO data for all Pacific regions (P1-P5). Each

610 calculation is based on 72 data points.

Model	BC FF+BF RF	BC Lifetime	RMS error	Correlation	Mean bias	Normalized bias
	[Wm ⁻²]	[days]	[ngm⁻³]	[1]	[ngm⁻³]	[1]
INCA	0.18	7.1	5.6	0.12	0.002	0.79
GOCART	0.18	7.2	13.3	0.86	0.010	1.34
OsloCTM2	0.28	6.0	4.7	0.64	0.003	0.87
CAM4-Oslo	0.37	8.2	15.9	0.72	0.014	1.44
SPRINTARS	0.21	6.7	4.4	0.62	0.002	0.78
ECHAM-HAM	0.14	5.5	4.5	0.39	-0.002	0.01
HadGEM2	0.19	17.1	34.1	0.84	0.025	1.56
GISS-modelE	0.21	5.9	6.1	0.67	0.004	0.87
ΙΜΡΑCΤ	0.14	3.8	2.7	0.82	0.000	0.10
GMI	0.17	4.4	4.1	0.86	0.003	0.68
CAM5	0.2	3.8	4.6	0.37	-0.001	0.15
NCAR-CAM3.5	0.15	5.8	4.1	0.80	0.002	0.71
GISS-MATRIX	0.19	3.5	2.9	0.87	-0.001	-0.49

611

612

614 **References**

615 Ban-Weiss, G. A., Cao, L., Bala, G., and Caldeira, K.: Dependence of climate forcing and response on 616 the altitude of black carbon aerosols, Climate Dynamics, 38, 897-911, 10.1007/s00382-011-1052-y, 617 2011. Bauer, S. E., Menon, S., Koch, D., Bond, T. C., and Tsigaridis, K.: A global modeling study on 618 619 carbonaceous aerosol microphysical characteristics and radiative effects. Atmos Chem Phys. 10. 7439-7456, DOI 10.5194/acp-10-7439-2010, 2010. 620 Bauer, S. E., Bausch, A., Nazarenko, L., Tsigaridis, K., Xu, B. Q., Edwards, R., Bisiaux, M., and 621 McConnell, J.: Historical and future black carbon deposition on the three ice caps: Ice core 622 measurements and model simulations from 1850 to 2100, J Geophys Res-Atmos, 118, 7948-7961, Doi 623 624 10.1002/Jgrd.50612.2013. 625 Bellouin, N., Rae, J., Jones, A., Johnson, C., Haywood, J., and Boucher, O.: Aerosol forcing in the 626 Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of 627 ammonium nitrate, J Geophys Res-Atmos, 116, Artn D20206 628 Doi 10.1029/2011jd016074, 2011. Bian, H., Chin, M., Rodriguez, J. M., Yu, H., Penner, J. E., and Strahan, S.: Sensitivity of aerosol optical 629 thickness and aerosol direct radiative effect to relative humidity, Atmos Chem Phys, 9, 2375-2386, 630 631 2009 Bond, T. C., Doherty, S. J., Fahey, D. W., Forster, P. M., Berntsen, T., DeAngelo, B. J., Flanner, M. G., 632 Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P. K., Sarofim, M. C., Schultz, M. G., Schulz, 633 M., Venkataraman, C., Zhang, H., Zhang, S., Bellouin, N., Guttikunda, S. K., Hopke, P. K., Jacobson, M. 634 Z., Kaiser, J. W., Klimont, Z., Lohmann, U., Schwarz, J. P., Shindell, D., Storelvmo, T., Warren, S. G., and 635 Zender, C. S.: Bounding the role of black carbon in the climate system: A scientific assessment, 636 Journal of Geophysical Research: Atmospheres, 118, 5380-5552, 10.1002/jgrd.50171, 2013. 637 Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, 638 Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds 639 and Aerosols. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I 640 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. 641 Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley 642 (eds.)], Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA., 2013. 643 Chin, M., Diehl, T., Dubovik, O., Eck, T. F., Holben, B. N., Sinyuk, A., and Streets, D. G.: Light 644 645 absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation 646 with AERONET measurements, Ann Geophys-Germany, 27, 3439-3464, 2009. 647 Chung, C. E., Ramanathan, V., and Decremer, D.: Observationally constrained estimates of carbonaceous aerosol radiative forcing, P Natl Acad Sci USA, 109, 11624-11629, DOI 648 10.1073/pnas.1203707109, 2012. 649 650 Flanner, M. G.: Arctic climate sensitivity to local black carbon, J Geophys Res-Atmos, 118, 1840-1851, 651 Doi 10.1002/Jgrd.50176, 2013. Haywood, J. M., and Shine, K. P.: The Effect of Anthropogenic Sulfate and Soot Aerosol on the Clear-652 653 Sky Planetary Radiation Budget, Geophys Res Lett, 22, 603-606, 1995. Herber, A. B., Haas, C., Stone, R. S., Bottenheim, J. W., Liu, P., Li, S.-M., Staebler, R. M., Strapp, J. W., 654 655 and Dethloff, K.: Regular airborne surveys of Arctic sea ice and atmosphere, Eos, Transactions 656 American Geophysical Union, 93, 41, 10.1029/2012eo040001, 2012. 657 Hodnebrog, O., Myhre, G., and Samset, B. H.: How shorter black carbon lifetime alters its climate 658 effect, Nature Communications (Accepted, in press.), 2014. 659 Jacob, D. J., Crawford, J. H., Maring, H., Clarke, A. D., Dibb, J. E., Emmons, L. K., Ferrare, R. A., 660 Hostetler, C. A., Russell, P. B., Singh, H. B., Thompson, A. M., Shaw, G. E., McCauley, E., Pederson, J. R.,

661 and Fisher, J. A.: The Arctic Research of the Composition of the Troposphere from Aircraft and

Formatted: English (U.S.)

662 Satellites (ARCTAS) mission: design, execution, and first results, Atmos Chem Phys, 10, 5191-5212,
663 10.5194/acp-10-5191-2010, 2010.

Kipling, Z., Stier, P., Schwarz, J. P., Perring, A. E., Spackman, J. R., Mann, G. W., Johnson, C. E., and
Telford, P. J.: Constraints on aerosol processes in climate models from vertically-resolved aircraft
observations of black carbon, Atmos Chem Phys, 13, 5969-5986, DOI 10.5194/acp-13-5969-2013,
2013.

Kirkevåg, A., Iversen, T., Seland, Ø., Hoose, C., Kristjánsson, J. E., Struthers, H., Ekman, A. M. L., Ghan,
S., Griesfeller, J., Nilsson, E. D., and Schulz, M.: Aerosol–climate interactions in the Norwegian Earth

- 670 System Model NorESM1-M, Geosci. Model Dev., 6, 207-244, 10.5194/gmd-6-207-2013, 2013.
- Koch, D., Bauer, S. E., Del Genio, A., Faluvegi, G., McConnell, J. R., Menon, S., Miller, R. L., Rind, D.,
 Ruedy, R., Schmidt, G. A., and Shindell, D.: Coupled Aerosol-Chemistry-Climate Twentieth-Century
 Transient Model Investigation: Trends in Short-Lived Species and Climate Responses, J Climate, 24,
 2693-2714, Doi 10.1175/2011jcli3582.1, 2011.
- Koffi, B., Schulz, M., Breon, F. M., Griesfeller, J., Winker, D., Balkanski, Y., Bauer, S., Berntsen, T., Chin,
- 676 M. A., Collins, W. D., Dentener, F., Diehl, T., Easter, R., Ghan, S., Ginoux, P., Gong, S. L., Horowitz, L.
- 677 W., Iversen, T., Kirkevag, A., Koch, D., Krol, M., Myhre, G., Stier, P., and Takemura, T.: Application of
- the CALIOP layer product to evaluate the vertical distribution of aerosols estimated by global models:
 AeroCom phase I results, J Geophys Res-Atmos, 117, Artn D10201
- 680 Doi 10.1029/2011jd016858, 2012.
- Kondo, Y., Sahu, L., Moteki, N., Khan, F., Takegawa, N., Liu, X., Kolke, M., and Miyakawa, T.:
 Consistency and Traceability of Black Carbon Measurements Made by Laser-Induced Incandescence,
 Thermal-Optical Transmittance, and Filter-Based Photo-Absorption Techniques, Aerosol Sci Tech, 45,
 295-312, Doi 10.1080/02786826.2010.533215, 2011.
- Lamarque, J. F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D., Liousse, C., Mieville, A.,
 Owen, B., Schultz, M. G., Shindell, D., Smith, S. J., Stehfest, E., Van Aardenne, J., Cooper, O. R.,
 Kainuma, M., Mahowald, N., McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical
 (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols:
 methodology and application, Atmos Chem Phys, 10, 7017-7039, DOI 10.5194/acp-10-7017-2010,
 2010.
- Lamarque, J. F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E.
 A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.: CAM-chem: description and
 evaluation of interactive atmospheric chemistry in the Community Earth System Model, Geosci
 Model Dev, 5, 369-411, DOI 10.5194/gmd-5-369-2012, 2012.
- Lin, G., Penner, J., Sillmann, S., Taraborrelli, D., and Lelieveld, J.: Global modeling of SOA formation
 from dicarbonyls, epoxides, organic nitrates and peroxides, Atmos Chem Phys, 12, 4743-4774,
 10.5194/acp-12-4743-2012, 2012.
- Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J.-F., Gettelman, A., Morrison,
- 699 H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., Ekman, A. M. L., Hess, P., Mahowald, N., Collins,
- W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal representation
 of aerosols in climate models: description and evaluation in the Community Atmosphere Model
 CAM5, Geosci Model Dev, 5, 709-739, 10.5194/gmd-5-709-2012, 2012.
- Mann, G. W., Carslaw, K. S., Reddington, C. L., Pringle, K. J., Schulz, M., Asmi, A., Spracklen, D. V.,
- Ridley, D. A., Woodhouse, M. T., Lee, L. A., Zhang, K., Ghan, S. J., Easter, R. C., Liu, X., Stier, P., Lee, Y.
- H., Adams, P. J., Tost, H., Lelieveld, J., Bauer, S. E., Tsigaridis, K., van Noije, T. P. C., Strunk, A., Vignati,
- Figuralis, Figuralis, Figuralis, Figuralis, Figuralis, K., Van Holje, Financi, Figuralis, K., Van Holje, K., Van Holje, Figuralis, K., Van H
- 707 Petzold, A., Heintzenberg, J., Clarke, A., Ogren, J. A., Gras, J., Baltensperger, U., Kaminski, U., Jennings,
- 708 S. G., O'Dowd, C. D., Harrison, R. M., Beddows, D. C. S., Kulmala, M., Viisanen, Y., Ulevicius, V.,
- 709 Mihalopoulos, N., Zdimal, V., Fiebig, M., Hansson, H. C., Swietlicki, E., and Henzig, J. S.:
- 710 Intercomparison and evaluation of aerosol microphysical properties among AeroCom global models
- of a range of complexity, Atmospheric Chemistry and Physics Discussions, 13, 30841-30928,
- 712 10.5194/acpd-13-30841-2013, 2013.

- Myhre, G., Myhre, C., Samset, B. H., and Storelvmo, T.: Aerosols and their Relation to Global Climate
 and Climate Sensitivity, Nature Knowledge Project, 4, 2013a.
- 715 Myhre, G., Samset, B. H., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N.,
- 716 Chin, M., Diehl, T., Easter, R. C., Feichter, J., Ghan, S. J., Hauglustaine, D., Iversen, T., Kinne, S.,
- 717 | Kirkevåg, A., Lamarque, J. F., Lin, G., Liu, X., Luo, G., Ma, X., Penner, J. E., Rasch, P. J., Seland, Ø., Skeie,
- 718 R. B., Stier, P., Takemura, T., Tsigaridis, K., Wang, Z., Xu, L., Yu, H., Yu, F., Yoon, J. H., Zhang, K., Zhang,
- H., and Zhou, C.: Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations,
 Atmos Chem Phys, 13, 1-25, doi:10.5194/acp-13-1-2013, 2013b.
- Oshima, N., Kondo, Y., Moteki, N., Takegawa, N., Koike, M., Kita, K., Matsui, H., Kajino, M., Nakamura,
 H., Jung, J. S., and Kim, Y. J.: Wet removal of black carbon in Asian outflow: Aerosol Radiative Forcing
- 723 in East Asia (A-FORCE) aircraft campaign, Journal of Geophysical Research, 117,
- 724 10.1029/2011jd016552, 2012.
- Ramanathan, V., and Carmichael, G.: Global and regional climate changes due to black carbon, Nat
 Geosci, 1, 221-227, Doi 10.1038/Ngeo156, 2008.
- Samset, B. H., and Myhre, G.: Vertical dependence of black carbon, sulphate and biomass burning
 aerosol radiative forcing, Geophys Res Lett, 38, Artn L24802
- 729 Doi 10.1029/2011gl049697, 2011.
- 730 Samset, B. H., Myhre, G., Schulz, M., Balkanski, Y., Bauer, S., Berntsen, T. K., Bian, H., Bellouin, N.,
- Diehl, T., Easter, R. C., Ghan, S. J., Iversen, T., Kinne, S., Kirkevag, A., Lamarque, J. F., Lin, G., Liu, X.,
 Penner, J. E., Seland, O., Skeie, R. B., Stier, P., Takemura, T., Tsigaridis, K., and Zhang, K.: Black carbon
 vertical profiles strongly affect its radiative forcing uncertainty, Atmos Chem Phys, 13, 2423-2434,
 DOI 10.5194/acp-13-2423-2013, 2013.
- Samset, B. H., Myhre, G., and Schulz, M.: Upward adjustment needed for aerosol radiative forcing
 uncertainty, Nat Clim Change, 4, 230-232, 10.1038/nclimate2170, 2014.
- Schwarz, J. P., Spackman, J. R., Gao, R. S., Watts, L. A., Stier, P., Schulz, M., Davis, S. M., Wofsy, S. C.,
 and Fahey, D. W.: Global scale black carbon profiles observed in the remote atmosphere and
 compared to models, Geophys Res Lett, 37, 2010.
- Schwarz, J. P., Samset, B. H., Perring, A. E., Spackman, J. R., Gao, R. S., Stier, P., Schulz, M., Moore, F.
 L., Ray, E. A., and Fahey, D. W.: Global-scale seasonally resolved black carbon vertical profiles over
 the Pacific, Geophys Res Lett, 40, 5542-5547, Doi 10.1002/2013gl057775, 2013.
- Skeie, R. B., Berntsen, T., Myhre, G., Pedersen, C. A., Strom, J., Gerland, S., and Ogren, J. A.: Black
 carbon in the atmosphere and snow, from pre-industrial times until present, Atmos Chem Phys, 11,
 6809-6836, 10.5194/acp-11-6809-2011, 2011.
- Stohl, A., Klimont, Z., Eckhardt, S., Kupiainen, K., Shevchenko, V. P., Kopeikin, V. M., and Novigatsky, A.
 N.: Black carbon in the Arctic: the underestimated role of gas flaring and residential combustion
 emissions, Atmos Chem Phys, 13, 8833-8855, DOI 10.5194/acp-13-8833-2013, 2013.
- Stone, R. S., Herber, A., Vitale, V., Mazzola, M., Lupi, A., Schnell, R. C., Dutton, E. G., Liu, P. S. K., Li, S.
 M., Dethloff, K., Lampert, A., Ritter, C., Stock, M., Neuber, R., and Maturilli, M.: A three-dimensional
 characterization of Arctic aerosols from airborne Sun photometer observations: PAM-ARCMIP, April
 2009, Journal of Geophysical Research, 115, 10.1029/2009jd013605, 2010.
- Szopa, S., Balkanski, Y., Schulz, M., Bekki, S., Cugnet, D., Fortems-Cheiney, A., Turquety, S., Cozic, A.,
 Déandreis, C., Hauglustaine, D., Idelkadi, A., Lathière, J., Lefevre, F., Marchand, M., Vuolo, R., Yan, N.,
 and Dufresne, J. L.: Aerosol and ozone changes as forcing for climate evolution between 1850 and
 2100, Climate Dynamics, 40, 2223-2250, 10.1007/s00382-012-1408-y, 2012.
- 757 Takemura, T., Nozawa, T., Emori, S., Nakajima, T. Y., and Nakajima, T.: Simulation of climate response
 758 to aerosol direct and indirect effects with aerosol transport-radiation model, J Geophys Res-Atmos,
 759 110, Artn D02202
- 760 Doi 10.1029/2004jd005029, 2005.
- 761 Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher,
 762 O., Chin, M., Dentener, F., Diehl, T., Feichter, J., Fillmore, D., Ginoux, P., Gong, S., Grini, A., Hendricks,

- 763 J., Horowitz, L., Huang, P., Isaksen, I. S. A., Iversen, T., Kloster, S., Koch, D., Kirkevag, A., Kristjansson, J.
- 764 E., Krol, M., Lauer, A., Lamarque, J. F., Liu, X., Montanaro, V., Myhre, G., Penner, J. E., Pitari, G., Reddy,
- 765 M. S., Seland, O., Stier, P., Takemura, T., and Tie, X.: The effect of harmonized emissions on aerosol
- properties in global models an AeroCom experiment, Atmos Chem Phys, 7, 4489-4501, 2007.
 Wang, Q., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, E. M., Carouge, C. C., Le Sager, P., Kondo,
- Yung, G., Jacob, D. J., Fisher, J. A., Mao, J., Leibensperger, L. M., Carouge, C. C., Le Sager, F., Kondo,
 Y., Jimenez, J. L., Cubison, M. J., and Doherty, S. J.: Sources of carbonaceous aerosols and deposited
- black carbon in the Arctic in winter-spring: implications for radiative forcing, Atmos Chem Phys, 11,
 12453-12473, 2011.
- 771 Wang, Q. Q., Jacob, D. J., Spackman, J. R., Perring, A. E., Schwarz, J. P., Moteki, N., Marais, E. A., Ge, C.,
- 772 Wang, J., and Barrett, S. R. H.: Global budget and radiative forcing of black carbon aerosol:
- 773 Constraints from pole-to-pole (HIPPO) observations across the Pacific, J Geophys Res-Atmos, 119,
- 774 195-206, Doi 10.1002/2013jd020824, 2014a.
- 775 Wang, R., Tao, S., Shen, H. Z., Huang, Y., Chen, H., Balkanski, Y., Boucher, O., Ciais, P., Shen, G. F., Li,
- 776 W., Zhang, Y. Y., Chen, Y. C., Lin, N., Su, S., Li, B. G., Liu, J. F., and Liu, W. X.: Trend in Global Black
- 777 Carbon Emissions from 1960 to 2007, Environ Sci Technol, 48, 6780-6787, 2014b.
- Zarzycki, C. M., and Bond, T. C.: How much can the vertical distribution of black carbon affect its
 global direct radiative forcing?, Geophys Res Lett, 37, L20807, Artn L20807
- 780 Doi 10.1029/2010gl044555, 2010.
- 781 Zhang, K., O'Donnell, D., Kazil, J., Stier, P., Kinne, S., Lohmann, U., Ferrachat, S., Croft, B., Quaas, J.,
- 782 Wan, H., Rast, S., and Feichter, J.: The global aerosol-climate model ECHAM-HAM, version 2:
- 783 sensitivity to improvements in process representations, Atmos. Chem. Phys., 12, 8911-8949,
- 784 10.5194/acp-12-8911-2012, 2012.