Supplementary Information of

Improving predictability of high ozone episodes through dynamic boundary conditions, emission refresh and chemical data assimilation during the Long Island Sound Tropospheric Ozone Study (LISTOS) field campaign

Siqi Ma^{1,2}, Daniel Tong^{1,3*}, Lok Lamsal^{4,5}, Julian Wang^{6*}, Xuelei Zhang³, Youhua Tang^{3,6}, Rick Saylor⁶, Tianfeng Chai⁴, Pius Lee⁶, Patrick Campbell^{3,6}, Barry Baker^{3,6}, Shobha Kondragunta⁷, Laura Judd⁸, Timothy A. Berkoff⁸, Scott J. Janz⁴, and Ivanka Stajner⁹

Corresponding authors: Daniel Tong (qtong@gmu.edu); Julian Wang (julian.wang@noaa.gov)

¹Department of Atmospheric, Oceanic and Earth Sciences, George Mason University, Fairfax, VA 22030 USA

²National Research Council, hosted by the National Oceanic and Atmospheric Administration Air Resources Lab, College Park, MD 20740 USA

³Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA 22030 USA

⁴Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, MD 20771 USA

⁵Universities Space Research Association, Columbia, MD 21046 USA

⁶National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory, College Park, MD 22030 USA

⁷NOAA National Environmental Satellite Data and Information Service, College Park, MD 20740 USA

⁸NASA Langley Research Center, Hampton, VA, 23681 USA

⁹NOAA National Weather Service National Centers for Environmental Prediction, College Park, MD 20740 USA

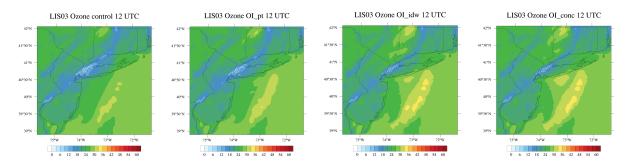


Figure S1: Spatial distributions of ozone simulated by Control, OI-pt, OI-idw and OI-conc at 0:00 and 12:00 UTC August 26, 2018.

Table S1: Regional mean statistical metrics between observed and simulated O₃ and NO₂ during the episode

Ozone	Control	BCON		NOAA		NO_2	Control	BCON		NOAA	
CORR	0.81	0.93	15%	0.91	12%	CORR	0.69	0.71	2%	0.67	3%
RMSE	14.97	8.22	45%	9.26	38%	RMSE	4.12	3.82	7%	4.98	21%
NMB	-0.3	0.14	52%	0.16	48%	NMB	-0.17	-0.06	65%	-0.33	99%
NME	0.34	0.19	45%	0.21	38%	NME	0.35	0.33	4%	0.43	23%

Table S2: Statistical metrics between airborne measured and simulated NO₂ vertical column density on 28 and 29, August 2018

BOE	CORR	NMB	NME	NAQFC	CORR	NMB	NME
28AM	0.56	68.64	87.95	28AM	0.44	47.83	89.48
28PM	0.81	43.74	63.10	28PM	0.79	76.43	80.08
29AM	0.79	25.44	48.53	29AM	0.41	11.91	69.95
29PM	0.78	22.99	45.15	29PM	0.65	43.99	64.60
AVG	0.74	40.20	61.18	AVG	0.57	45.04	76.03