Supplement of

On the Relationship Between Cloud Water Composition and Cloud Droplet Number Concentration

Alexander B. MacDonald et al.

8 Correspondence to: armin@email.arizona.edu

Elements (ICP)	LOD (ppt)	Inorganic ions (IC)	LOD (ppm)
Ag	0.74	Ammonium (NH ₄ ⁺)	0.0424
Al	29.47	Bromide (Br ⁻)	0.0251
As	7.95	Calcium (Ca ²⁺)	0.0452
В	361.83	Chloride (Cl ⁻)	0.0021
Ba	3.70	Fluoride (F ⁻)	a
Br	а	Lithium (Li ⁺)	0.0349
С	а	Magnesium (Mg ²⁺)	0.0369
Ca	543.10	Methanesulfonic acid (MSA)	0.0123
Cd	4.19	Nitrate (NO ₃ ⁻)	0.0089
Cl	а	Nitrite (NO ₂ ⁻)	0.0262
Со	0.72	Potassium (K ⁺)	0.0262
Cr	1.15	Sodium (Na ⁺)	0.0435
Cs	0.73	Sulfate (SO_4^{2-})	0.0120
Cu	1.13		
Fe	1.19		
Ga	а	Organic ions (IC)	LOD (ppm)
Hf	0.96	Acetate	0.0027
Ι	а	Adipate	0.0227
K	10.48	Butyrate	а
Li	103.65	Formate	0.0742
Mg	14.38	Glutarate	0.0063
Mn	1.62	Glycolate	0.0536
Mo	2.26	Glyoxylate	0.9448
Na	7.74	Lactate	а
Nb	0.52	Maleate	0.0070
Ni	2.84	Malonate	0.3915
Р	770.73	Oxalate	0.0123
Pb	0.50	Propionate	а
Pd	1.68	Pyruvate	0.0638
Rb	1.57	Succinate	0.0110
Rh	а		
Ru	1.44		
S	5823.00	Amines (IC)	LOD (ppm)
Sb	а	Diethylamine (DEA) ^b	0.3152
Se	82.39	Dimethylamine (DMA)	0.0527
Si	126.47		
Sn	1.77		
Sr	1.10		
Та	0.20		
Te	65.46		
Ti	39.05		
V	1.35		
W	а		
Y	0.5230		
Zn	5.8800		
Zr	1.0080		

Table S1. Limits of detection (LOD) for the species that were measured in this study. IC = Ion
Chromatography, ICP = ICP-MS or ICP-QQQ.

^a LODs were not available for these species.

^b DEA co-elutes with Trimethylamine (TMA), so this LOD is an overestimate.

- **Table S2.** Summary of the number of regressions that were statistically significant in Figure 4. A
- 13 regression was considered statistical significance if all the p-values for a regression were < 0.05.
- 14 There is a p-value associated to the overall regression, to each predictor, and to the intercept.

		% of regressions
# of	# of	that are
predictors	regressions	statistically
		significant
1	9	100
2	35	66
3	77	22
4	105	10
5	91	8
6	49	0
7	15	0
8	2	0

8 Figure S1. Time series of altitude (top), vertical wind speed (w) (middle), and the standard

19 deviation of vertical wind speed (σ_w) (below) for a representative flight on 9 July 2011. The red

20 trace in the top panel indicates when the aircraft was inside the cloud (i.e., $LWC \ge 0.02 \text{ g m}^{-3}$).

The bold blue lines in the middle and bottom panels are the averages of w and σ_w , over the duration of the shaded blue boxes, respectively. The dashed lines in the bottom panel represent

duration of the shaded blue boxes, respectively. The dashed lines in the bottom panel represent

23 the 33^{rd} percentile and 66^{th} percentile of the data in this study.

25

Figure S2. Scatterplots of four selected species when binning by σ_w . These four species were selected owing to their ability to represent distinct aerosol sources in the study region. Red: top

33rd percentile ($\sigma_w \ge 0.33 \text{ m s}^{-1}$); Blue: bottom 33rd percentile ($\sigma_w \le 0.27 \text{ m s}^{-1}$); Black: between bottom and top percentiles (0.27 m s⁻¹ $\le \sigma_w \le 0.33 \text{ m s}^{-1}$).

30

Figure S3. Scatterplots of four selected species when binning by smoke influence. Red: smoke influence; Blue: no smoke influence.

40 41 Figure S4. Scatterplots of four selected species when binning by normalized in-cloud height.

42 Red: top third; Green: mid third; Blue: bottom third.