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Abstract. Theoretical Stratospheric Aerosol Intervention (SAI) strategies model the deliberate injection of aerosols or their 

precursors into the stratosphere thereby reflecting incident sunlight back to space and counterbalancing a fraction of the 

warming due to increased concentrations of greenhouse gases. This cooling mechanism is known to be relatively robust 

through analogues from explosive volcanic eruptions which have been documented to cool the climate of the Earth. However, 

a practical difficulty of SAI strategies is how to deliver the injection high enough to ensure dispersal of the aerosol within the 15 

stratosphere on a global scale. Recently, it has been suggested that including a small amount of absorbing material in a 

dedicated 10-day intensive deployment might enable aerosols or precursor gases to be injected at significantly lower, more 

technologically-feasible altitudes. The material then absorbs sunlight causing a localised heating and ‘lofting’ of the particles, 

enabling them to penetrate into the stratosphere. Such self-lofting has recently been observed following the intensive wildfires 

in 2019-2020 in south east Australia, where the resulting absorbing aerosol penetrated into the stratosphere and was monitored 20 

by satellite instrumentation for many months subsequent to emission. This study uses the fully coupled UKESM1 climate 

model simulations performed for the Geoengineering Model Intercomparison Project (GeoMIP) and new simulations where 

the aerosol optical properties have been adjusted to include a moderate degree of absorption. The results indicate that partially 

absorbing aerosols i) reduce the cooling efficiency per unit mass of aerosol injected, ii) increase deficits in global precipitation 

iii) delay the recovery of the stratospheric ozone hole, iv) disrupt the Quasi Biennial Oscillation when global mean temperatures 25 

are reduced by as little as 0.1K, v) enhance the positive phase of the wintertime North Atlantic Oscillation which is associated 

with floods in Northern Europe and droughts in Southern Europe. While these results are dependent upon the exact details of 

the injection strategies and our simulations use ten times the ratio of black carbon to sulfate that is considered in the recent 

intensive deployment studies, they demonstrate some of the potential pitfalls of injecting an absorbing aerosol into the 

stratosphere to combat the global warming problem. 30 
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1 Introduction 

Global warming has accelerated swiftly over the last decade with the last seven years being warmer than any preceding years 

in the climatological record (https://climate.nasa.gov/vital-signs/global-temperature/). Global mean near-surface temperatures 

are currently 1.2 °C above pre-industrial levels (IPCC, 2021) and future shared socioeconomic pathway (SSP) projections 

universally showing continued warming for at least the next two decades. Consequently, the global mean temperature target 35 

of the Paris 21st Conference of Parties (COP21) of 1.5°C will very likely be exceeded in the next two decades and even the 

2°C above pre-industrial target will be extremely difficult to achieve under conventional mitigation scenarios (e.g. Rogelj et 

al., 2016; Millar et al, 2017, Tollefson, 2018; IPCC, 2018; 2021). These concerns have led to less conventional mitigation 

strategies being considered including proposals to remove greenhouse gases from the atmosphere (frequently called Carbon 

Dioxide Removal, CDR) and proposals to either block sunlight from reaching the planet or increase the reflectivity of the 40 

planet to reflect more sunlight out to space (frequently called Solar Radiation Management, SRM). Stratospheric Aerosol 

Intervention (SAI) which proposes injecting aerosols, or their precursors, into the stratosphere where the resulting aerosols can 

reflect sunlight back to space thereby cooling the planet (Shepherd, 2009; Lawrence et al., 2018, National Academy of 

Sciences, 2021) is the most prominent of the SRM methodologies. The injection material that has most frequently been studied 

is sulfur dioxide as this builds on the scientific understanding from observing and modelling the climatic impacts of large 45 

volcanic eruptions which periodically inject millions of tonnes of sulfur dioxide into the stratosphere.  

 

The Geoengineering Model Intercomparison Project (GeoMIP; Kravitz et al., 2011) provides a comprehensive multi-model 

assessment of the effects of SRM (e.g. Kravitz et al., 2013; Tilmes et al., 2013; Jones et al., 2013). The latest phase of GeoMIP 

(GeoMIP6; Kravitz et al., 2016) provides policy-relevant simulations where the global mean temperature trend for high-end 50 

warming scenarios is reduced to that of more moderate scenarios (e.g. Jones et al., 2021a; Visioni et al., 2021). These reductions 

in global mean temperature are achieved by injecting sulfur dioxide gas into the stratosphere and the results have been shown 

to differ significantly from simulations that simply reduce the solar constant (e.g. Jones et al., 2021a; Visioni et al., 2021). 

 

Several systems for delivery of millions of tonnes of sulfur dioxide into the stratosphere have been conceptualised including 55 

delivery by high altitude aircraft, tethered balloons, rockets, artillery and rigid towers (Robock et al., 2009; McClellan, et al., 

2012; Davidson et al., 2012), but each of these is hampered by severe technological constraints which become more testing as 

the altitude of delivery increases. Several model simulations have shown that the cooling impact of stratospheric aerosols is 

maximised for aerosol delivered at high altitudes in the tropics (e.g. Jones et al., 2017; Tilmes et al. 2017) and more complex 

injection strategies as a function of latitude, altitude and season have been developed to customise the climate response and 60 

minimise any residual climatic impacts (e.g. Kravitz et al., 2016; Visioni et al., 2020; Lee et al., 2021). However, these studies 

assume that the technological solution for delivery exists while, to date, it does not in any suitably scalable form although 
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development of a fleet of aircraft capable of delivering payloads at 20km altitude using current technologies appears feasible 

(e.g. Smith, 2020). 

 65 

The use of absorbing aerosols such as black carbon (BC) in stratospheric aerosol injection has also been investigated with 

models (e.g. Kravitz et al., 2012; Jones et al., 2016), but utilising BC alone as a single agent in SAI has been effectively 

discounted. Modelling results suggested that the temperature increases in the stratosphere when using BC injections to offset 

a few degrees of global warming was in the range of 60-80K, depending upon the details of the injection scenario. However, 

recently it has been suggested that including a small amount of black carbon in a tailored intensive injection strategy could 70 

produce ‘self-lofting’ that could at least ameliorate the need for high altitude injection of material directly into the stratosphere. 

The theory is that the heating caused by aerosol absorption would rapidly transfer into the surrounding air which would become 

more buoyant and rise relative to its surroundings. Gao et al. (2021) examine injections at an altitude of 13.5km including both 

2Tg of sulfur dioxide and 0.01Tg of BC as a lofting agent and conclude that, if deployed correctly, the sulfur dioxide and 

resulting sulfate/BC aerosol mixture would rise into the stratosphere resulting in a stratospheric burden as great as if sulfur 75 

dioxide were injected directly into the stratosphere at 20km altitude.  

 

In this study, we focus on the potential impacts on key climate variables of introducing partially absorbing aerosol into the 

stratosphere. Our experiments are based on the GeoMIP G6sulfur experiments (Kravitz et al., 2015) and are performed with 

the UKESM1 climate model (Sellar et al., 2019). Under G6sulfur, the global mean near-surface temperature from the high-80 

end climate change SSP5-8.5 scenario (O’Neill et al., 2014) is reduced to that of a more moderate SSP2-4.5 scenario by 

injecting sulfur dioxide into the stratosphere. We investigate the impacts of including a moderate amount of aerosol absorption 

by adjusting the single scattering albedo of the stratospheric aerosol at 550nm from 1 to 0.95 which is equivalent to assuming 

a stratospheric BC:sulfate mass ratio of around 2%. As such, this is a significantly higher fraction than that assumed in the 

plume rise modelling of Gao et al. (2021) who perform simulations with injections of BC and 2Tg of SO2 over a ten-day period 85 

in the CESM2 model and then downscale the minimum BC injection rate to produce the same lifting impact within a plume 

model, finding a minimum injection of 0.01TgBC. Thus Gao et al. (2021) effectively assumes a BC:sulfate ratio of just 0.3% 

while we assume ratios almost ten times higher. We note not only technological challenges in the plume deployment procedure 

documented in Gao et al (2021) which might increase the BC:sulfate ratio, but also that Gao et al. (2021) suggest that more 

SO2 could theoretically be lifted which might decrease the BC:sulfate ratio. Thus our simulations are not meant to directly 90 

follow, nor challenge the injection scenario of Gao et al. (2021), but rather to establish with current state-of-the-art model 

simulations what the impacts of including a moderate amount of absorption would be upon resulting climate impacts.   

 

Section 2 provides a description of the UKESM1 model set-up and an overview of the G6sulfur simulations and new 

simulations including absorption (denoted G6abs hereafter). Section 3 compares results from the G6sulfur, G6abs and SSP2-95 

4.5 simulations as appropriate, focussing on the spatial distribution of the aerosols, impacts on the induced near-surface 
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regional and global-mean temperatures and the cooling efficiency, and impacts on precipitation and ozone. Section 4 focusses 

on the impact on the positive phase of the North Atlantic Oscillation (NAO; Jones et al., 2021a 2020b) and section 5 focusses 

on the impacts on the Quasi-Biennial Oscillation (QBO; see also Jones et al., 2021b). Section 6 provides a discussion and 

conclusions.   100 

2 The UKESM1 model and model simulations. 

UKESM1 (Sellar et al., 2019) is a fully coupled Earth system model which has contributed to CMIP6 (Eyring et al., 2016) and 

GeoMIP6 (Kravitz et al., 2015). UKESM1 includes an atmosphere model based on the Met Office Unified Model (UM; 

Walters et al., 2019; Mulcahy et al., 2018) with a resolution of 1.25° latitude by 1.875° longitude, with 85 levels up to 

approximately 85 km which is coupled to an ocean model with 1° resolution and  75 levels (Storkey et al., 2018). It also 105 

includes components to model both tropospheric and stratospheric chemistry (Archibald et al., 2020), aerosols (Mann et al., 

2010), sea ice (Ridley et al., 2018), the land surface and vegetation (Best et al., 2011), and ocean biogeochemistry (Yool et al., 

2013). 

 

The GeoMIP G6sulfur simulations that reduce global mean temperatures from the SSP5-8.5 scenario (O’Neill et al., 2016) to 110 

the SSP2-4.5 scenario are described in detail elsewhere (Kravitz et al., 2015, Jones et al., 2021a). Three ensemble members 

are run for G6sulfur, based on three ScenarioMIP SSP5-8.5 simulations which are themselves continuations of corresponding 

CMIP6 historical simulations initialized from different points in the model’s pre-industrial control simulation. In G6sulfur, the 

stratospheric SO2 injection is continuous between 10° N–10° S along the Greenwich meridian at 18–20 km altitude and is 

adjusted every ten years to provide a decadal global mean temperature that matches that of SSP2-4.5 within +/- 0.2K. In G6abs 115 

the SO2 injection rate (in Tg SO2 yr-1) is identical to that of G6sulfur in terms of mass, but the optical properties of the 

stratospheric sulfate aerosol are adjusted to simulate an internal mixture with BC making up 2% of the aerosol volume 

(assuming volume weighting of refractive indices at all wavelengths). This reduces the single scattering albedo at 550nm from 

around 1 to 0.95 at 550nm, and leads to a 40-fold increase in absorptivity when integrated across the solar spectrum but has 

minimal impact on extinction and aerosol optical depth (~4% increase). Again, a three member ensemble is performed. 120 

 

3 Results: Impacts on key variables 

 

 We predominantly focus our analysis on two aspects. The first of these is the evolution of global mean parameters such as 

temperature and precipitation as a function of time over the period 2020-2100. The second is the difference in the spatial 125 

distribution of key physical and meteorological variables between the G6abs and the G6sulfur simulations (G6abs-G6sulfur) 

or against present day (PD, taken as the period 2016-2025 from the SSP2-4.5 ensemble) conditions (i.e. G6abs-PD or G6sulfur-

PD). For simplicity, we generally make comparisons against the end of the simulations over the twenty year period 2081-2100.  
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3.1 Impact on the vertical distribution of the plume and the resulting stratospheric aerosol optical depth (SAOD) 

Before assessing the impacts of the plume on climate variables such as the cooling efficiency and the impact on global mean 130 

precipitation, we examine the influence that the additional absorption has on the spatial characteristics of the aerosol plume. 

Figure 1a shows the annual mean latitude-altitude cross section of accumulation mode sulfate aerosol concentrations under 

G6sulfur and G6abs and the difference between the two is shown in Figure 1b. 
 

 135 

Figure 1. Showing a) the accumulation mode sulfate aerosol concentrations under G6sulfur (colours) and G6abs (lines) and b) the 

difference in the aerosol concentrations. Simulations are for ensemble means from 2081-2100. Stippling represents areas that are 

not significant at the 5% level using a two-tailed t-test.  

 

In G6abs, the aerosol concentrations are less constrained to the tropics (Fig 1b), reaching higher altitudes and spreading at 140 

higher altitudes to the mid-latitudes. This increased aerosol altitude leads to an increased SAOD of 0.38 for G6abs compared 

to 0.29 for G6sulfur (i.e. an enhancement of a factor of around 1.3). This increased AOD is a result of additional buoyancy 

provided by solar lofting in G6abs which counteracts the gravitational settling of the aerosol and maintains it at higher altitudes, 

so reducing the flux of aerosol across the tropopause and enhancing its lifetime in the stratosphere. 

 145 

3.2 Impacts on the cooling efficiency of the SAI particles 

Figure 2 shows the resulting global mean temperatures from the SSP5-8.5 ensemble, the SSP2-4.5 ensemble, G6sulfur and 

G6abs. 
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  150 

Figure 2. a) The change in the global mean near surface air temperatures from pre-industrial conditions (PI) for a) the SSP5-8.5, 

SSP2-4.55, G6sulfur and G6abs ensembles. Each ensemble is comprised of three members. The spatial distribution of the annual 

mean surface temperature change for (2081-2100) compared to present day (PD) for b) G6sulfur, c) G6abs. All areas in b) and c) 

are significant at the 5% level using a two-tailed t-test 

 155 

Figure 2a shows that, while G6sulfur is successful in reducing the SSP5-8.5 scenario temperatures to those of SSP2-4.5, G6abs 

results in an under-cooling. It is well established that absorbing aerosols lead to an additional heating of the stratosphere (e.g. 

Kravitz et al., 2012, Jones et al., 2017). This leads to an increase in downward terrestrial radiation across the tropopause which 

leads to an additional heating of the troposphere thus reducing the aerosol cooling efficiency in the G6abs simulations. 

 160 
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The ratio of the cooling of G6abs to G6sulfur for the period 2081-2100 is 0.62 indicating a significantly less effective cooling 

efficiency for the absorbing aerosols. Over the period 2081-2100, the injection averages 19.0 Tg SO2 yr-1, yielding a cooling 

of approximately 2.5 K in G6sulfur and a cooling efficiency of 0.13 K per Tg SO2 yr-1, in agreement with the range of 0.04 to 

0.14 K per Tg SO2 yr-1 from other studies performing the G6sulfur simulations (Visioni et al., 2021). For G6abs, the cooling 

efficiency drops to 0.08 K per Tg SO2 yr-1. 165 

 

The cooling efficiency per unit aerosol optical depth (AOD) is reduced even further leading to a cooling efficiency of 8.5 K 

per AOD for G6sulfur, but 4.1 K per AOD for G6abs indicating that under G6abs, although the SAOD is increased, this impact 

is more than offset by the impact of reduced cooling owing to the heating of the stratosphere. These results are summarised in 

Table 1. 170 

 

Experiment Temperature 

Change (K) 

AOD 

(550nm) 

Efficiency per injection 

rate (K per (Tg SO2 yr-1)) 

Efficiency per AOD 

(K per AOD) 

Hydro. Sensitivity 

(% per K) 

Hydro. sensitivity 

(% per AOD) 

G6sulfur -2.49 0.29 -0.13 -8.54 3.01 -25.70 

G6abs -1.54 0.36 -0.08 -4.26 6.20 -26.40 

Table 1. Summarizing the global mean cooling efficiency and hydrological sensitivity for G6sulfur and G6abs compared to SSP5-

8.5 over the period 2081-2100. The metrics shown are derived for injection rates of approximately 19 Tg SO2 yr-1. 

 

As expected, the spatial distribution of the annual mean temperature change reveals a greater temperature change at extreme 175 

polar latitudes as the G6sulfur simulations are designed to offset only a fraction of the global mean temperature change under 

the SSP5-8.5 simulations, so polar amplification (e.g. Holland and Bitz, 2003) remains evident (Figs. 2b & 2c). 

 

3.3 Impact on the global mean precipitation response 

As stated in Bala et al (2008), for same surface temperature change, forcings acting in the solar spectrum result in relatively 180 

larger changes in net radiative fluxes at the surface than those from CO2 that acts in the terrestrial spectrum. These larger 

changes are compensated by larger changes in the sum of latent and sensible heat fluxes. While this feature was first noted in 

early experiments that perturbed the solar constant (e.g. Bala 2008, Schmidt et al., 2012, Kravitz et al., 2013, Jones et al., 

2013), SAI via sulfate aerosol has been shown to have an even larger hydrological sensitivity (Neimeier et al., 2013, Visioni 

et al., 2021) with Visioni et al. (2021) diagnosing a multi-model hydrological sensitivity of 3.79 ± 0.76 % by 2081-2100 under 185 

the G6sulfur scenario. Absolute values of the precipitation change with respect to pre-industrial conditions are presented in 

Figure 3. As in other studies, the global mean precipitation is reduced for G6sulfur when compared to SSP2-4.5, but this 

reduction is even more pronounced for G6abs. The higher hydrological sensitivity for G6abs is influenced both by the increased 

absolute reduction in precipitation and the reduced cooling impact (Figure 2, Table 1). Values of hydrological sensitivity of 

3.01 % per K and 6.20% per K are diagnosed for G6sulfur and G6abs over 2081-2100. Table 1 shows that G6abs has an optical 190 
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depth that is approximately a factor of 1.3 greater than G6sulfur and thus the hydrological sensitivity as % per AOD is similar 

between the G6sulfur and G6abs cases.  

 

The results show interesting parallels with results for perturbations to tropospheric BC and sulphate aerosols, though through 

different mechanisms.  In the troposphere, warming in the mid and upper troposphere is known to reduce global precipitation 195 

by countering the balance between longwave cooling and latent heat release through precipitation (Smith et al., 2016). This 

mechanism is particularly strong for tropospheric BC (e.g. Johnson et al., 2019) and leads to a much greater hydrological 

sensitivity compared to tropospheric sulphate perturbations or reductions in the solar constant (Samset et al., 2018).  

 
 200 

  
Figure 3. The mean change in the global mean precipitation from pre-industrial conditions (PI) for the ssp585, ssp245, G6sulfur and 

G6abs ensembles. Each ensemble is comprised of three members. 

 

Figure 4 shows the spatial distribution of precipitation changes over land areas for 2081-2100 compared with PD; while the 205 

global mean precipitation changes only a little from PD conditions, the spatial distribution of precipitation changes is quite 

variable. Both G6sulfur and G6abs show a similar distribution with drying over central N America, central Eurasia, Amazonia, 

and southern and central Africa. While the pattern of precipitation changes is similar, the changes in precipitations are stronger 

for G6abs compared to G6sulfur even though the temperature change is reduced. 
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 210 
 

   
Figure 4. The spatial distribution of the change in the precipitation distribution in the period 2081-2100 compared to PD for a) 

G6sulfur and b) G6abs. Note that the values quoted for the means are for land areas only; global means without the land-mask are 

+0.048 mm/day for G6sulfur and -0.023 mm/day for G6abs. Stippling represents areas that are not significant at the 5% level using 215 

a two-tailed t-test.  

 

 

3.4 Impacts on stratospheric temperatures 

Stratospheric temperatures are strongly impacted by the aerosol injections in both G6sulfur and G6abs. Compared to SSP5-220 

8.5, by 2081-2100 G6sulfur shows a maximum annual mean stratospheric temperature perturbation of 5-10K centred at the 

equator at an altitude of around 22km (Fig 5a). This perturbation to equatorial stratospheric temperatures is much increased to 

25-30K for G6abs (Fig 5b). The difference in the stratospheric temperature between G6abs and G6sulfur (Fig 5c) reveals that 

the maximum temperature perturbation caused by the inclusion of aerosol absorption is shifted to higher altitudes which reflects 

the changes to the vertical distribution of the aerosol concentrations (Fig 1a). 225 
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Figure 5. Showing the perturbation to atmospheric temperatures (2081-2100) under a) G6sulfur compared to SSP5-8.5, b) G6abs 

compared to SSP5-8.5, c) G6abs-G6sulfur. Stippling represents areas that are not significant at the 5% level using a two-tailed t-230 

test.  

 

 

3.5 Impacts on stratospheric ozone and water vapour 

Stratospheric ozone may be impacted by stratospheric aerosols through heterogeneous processes (e.g. Solomon, 1999) and 235 

both ozone and water vapour may be influenced by changes in stratospheric dynamics that are induced by changes to the 

heating rates (e.g. Randall et al., 1995). Tilmes et al. (2022) provide the most comprehensive multi-model assessment of the 

impacts of SAI from the G6sulfur simulations on stratospheric ozone, finding significant ozone depletion during spring-time 

over polar regions, but general increases in total column ozone over mid-latitudes and the tropics. ). Our experimental design 

is unable to assess impacts of any changes to heterogeneous processes between G6sulfur and G6abs because our simulations 240 

simply perturb the optical characteristics of the aerosols. However, the simulations do allow assessment of impacts on ozone 

through changes to the stratospheric dynamics. 

 

We compare ozone concentrations for time period 2081-2100 for both G6sulfur and G6abs against present day (Figure 6). 

Results are similar to those derived when the global mean temperature perturbation is identical (i.e. 2081-2100 for G6sulfur 245 

and 2065-2084 for G6abs against the present day, not shown). Compared to PD, G6sulfur shows an increase in high latitude 

stratospheric ozone as ozone-depleting substances decrease in the future and the ozone hole starts to recover, and a small 

decrease in tropical stratospheric ozone. The G6abs simulations show that the inclusion of absorption effectively cancels out 
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the recovery of the ozone hole at high latitudes and causes additional stratospheric ozone depletion at tropical and mid-latitudes. 

We stress again that our results are applicable only to the impacts of increased solar absorption of the composite aerosols. BC 250 

is not explicitly modelled here, so the impacts of heterogeneous chemistry from inclusion of BC aerosols remain an open 

question.   
 

 

Figure 6. Showing the perturbation to stratospheric ozone for 2081-2100 compared to the present day (PD) for a) G6sulfur, b) G6abs. 255 

The modelled tropopause is marked by the black line. Stippling represents areas that are not significant at the 5% level using a two-

tailed t-test.  

 

The predominant source of stratospheric water vapour is from troposphere-stratosphere transport across the tropopause at 

tropical latitudes (Holton et al., 1995). This transport is limited by the tropopause acting as a “cold trap” (Sherwood and 260 

Dessler, 2001) that dries air to the local saturation vapour pressure as it crosses into the stratosphere leading to condensation 

of water vapour and dehydration of stratospheric air. A secondary source of water vapour is the oxidation of methane (e.g. Le 

Texier et al., 1988). One of consequences of the significant stratospheric heating from G6abs is a very significant increase in 

stratospheric water vapour by an order of magnitude owing to the significant increase in the tropical tropopause temperature, 

which becomes a less effective cold trap. Figure 7 presents the stratospheric humidity (ppmv). Under present day (PD) 265 

conditions, water vapour concentrations are typically in the range 5-10ppmv. By 2081-2100, under SSP5-8.5, stratospheric 

water vapour typically increases by around 5ppmv presumably owing to increases in the oxidation of atmospheric methane. 

Little change from PD is seen in SSP2-4.5 by 2081-2100. Under G6sulfur, water vapour concentrations are higher than both 

SSP2-4.5 and SSP5-8.5 despite the fact that the global mean surface temperature is (by design) the same as that of SSP2-4.5. 

In G6abs, the amount of water vapour in the stratosphere is increased by almost an order of magnitude owing to the reduced 270 
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efficiency of the tropopause cold trap caused by the strong stratospheric heating at tropical latitudes (Figure 5). Note that even 

stronger increases in stratospheric water vapour concentrations have been noted in simulations of nuclear winter scenarios 

through the same mechanistic route (Coupe et al., 2019). As noted by Mills et al. (2014), the photolysis of water vapour in the 

stratosphere exacerbates stratospheric ozone destruction, thus contributing to the ozone loss shown in Figure 6. Our simulations 

are not able to assess the relative contribution of this process to the ozone loss.             275 

 

Figure 7. Showing stratospheric water vapour concentrations for a) present day (PD), b) SSP5-8.5 (2081-2100), c) SSP2-4.5 (2081-

2100), d) G6sulfur (2081-2100), e) G6abs (2081-2100)., f) changes in water vapour concentrations for G6abs-G6sulfur (2081-2100) 

where stippling represents areas that are not significant at the 5% level using a two-tailed t-test.  

 280 
 

4 Results: Impacts on the North Atlantic Oscillation 

In essence, the North Atlantic Oscillation (NAO) is a measure of the perturbation to the pressure difference between the 

Icelandic low pressure and the Azores high pressure systems (e.g. Hurrell, 1995). A positive phase of the NAO during northern 

hemisphere wintertime (DJF) corresponds to a larger than normal pressure difference which is associated with increased 285 
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rainfall in northern Europe and drying of southern Europe. Observational analyses have shown that the majority of devastating 

floods in northern Europe are associated with a positive NAO (Zanardo et al., 2019), while southern Europe and particularly 

the Iberian Peninsula is prone to disruptive droughts and water shortages (Trigo et al., 2004). Recent works have revealed 

potentially damaging impacts of SAI with sulfate aerosols as they can force a positive wintertime NAO phase through the 

following mechanism. Non-negligible absorption of sulfate aerosol at wavelengths greater than approximately 1.3m (Dykema 290 

et al., 2016) combine with differential insolation across the boundary of the wintertime polar night to strengthen the polar 

vortex via thermal wind balance. These features impact the tropospheric winds, causing a strengthening of westerly flow 

leading to drying across Iberia, the Mediterranean countries and the Balkans (Jones et al., 2021a, 2021b, Banerjee et al., 2021). 

By increasing the absorption of stratospheric aerosols, one might expect this impact to be significantly amplified (Simpson et 

al., 2019).  We follow the approach of Stephenson et al. (2006) and Baker et al. (2018) in defining the boreal wintertime NAO 295 

as the mean DJF difference in area-mean sea-level pressure between two regions: one bounded by 90° W - 60° E, 20° N - 55° 

N (for simplicity referred to as Azores), the other by 90° W - 60° E, 55° N - 90° N (for simplicity referred to as Iceland).  

 

Mechanistically, the reasons behind changes to the NAO are identical to those shown in Jones et al (2021a) for G6sulfur, but 

the magnitude of the effect is significantly greater in G6abs. In G6sulfur a strong stratospheric zonal mean DJF wind anomaly 300 

centred over Alaska develops at around 10 hPa at 60–70° N with an increase of more than 15 ms-1 thereby enhancing the 

strength of the polar vortex. In G6abs, the increase is more than 50ms-1 (not shown for brevity). This enhanced westerly flow 

propagates through to lower levels in the troposphere as shown by the DJF zonal mean wind perturbation at 850 hPa (Figure 

8 a&b). 
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 305 
Figure 8. a-b show the spatial distribution (2081-2100 compared to present day, PD) of the perturbation to the 850hPa windspeed 

for DJF for a) G6sulfur, b) G6abs. White areas represent elevated areas where the surface pressure is less than 850hPa. c-d show 

the spatial distribution of the perturbation (2081-2100 vs. PD) to mean sea level pressure (MSLP, hPa) for c) G6sulfur, d) G6abs. 

Stippling represents areas that are not significant at the 5% level using a two-tailed t-test. 

 310 

There is clear evidence of propagation of the enhanced westerly flow to the surface north of around 50°N, with decreased 

westerly flow to the south of that latitude for both G6sulfur and G6abs simulations. The patterns of the response are similar 

for G6sulfur (Fig 8a) and G6abs (Fig 8b), but the magnitude is increased by around a factor of two in G6abs compared with 

G6sulfur. In G6abs, there is evidence that the westerly flow perturbation penetrates deeper into Eurasia stretching across 

Siberia and ‘joins up’ with the perturbation to the westerly flow that is evident over the north Pacific. Thus, in G6abs, the 315 

westerly perturbation over the North Pacific to the east of Kamchatka is enhanced by considerably more than a factor of two 

when compared to G6sulfur. 
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The perturbations to the mean sea level pressure (MSLP) show similar large-scale features between G6sulfur and G6abs (Figs. 

8c & 8d), but again, the response to G6abs is stronger than for G6sulfur leading to a more well-defined polar vortex. The 320 

resulting impact on the temporal evolution of the NAO index is shown in Figure 9 for SSP2-4.5, G6sulfur and G6abs. As 

documented by Jones et al (2021a, 2021b), there is little impact on the NAO index under SSP2-4.5, but a strong impact on the 

NAO index under G6sulfur with the pressure difference between Iceland and the Azores increasing by around 2.5hPa by 2100 

(Figure 9). In G6abs, the increase in the pressure difference is even more dramatic, exceeding 6hPa by 2100. Note that all six 

climate models that have performed G6sulfur simulations to date indicate a clear increase in the NAO for sulfate 325 

geoengineering (Jones et al., 2021b); given our understanding of drivers of the NAO mechanisms (e.g. Shindell et al., 2004, 

Jones et al., 2021a), it is reasonable to assume that all models would also show a similar increase should the aerosols applied 

in SAI be more absorbing, although dedicated multi-model assessments would be needed to prove this assumption.    

 

   330 

Figure 9. Evolution of the NAO, defined as the DJF mean sea-level pressure difference (hPa) between regions bounded by 90° W - 

60° E, 20° N - 55° N  and 90° W - 60° E, 55° N - 90° N for each model in experiments ssp245 (grey), G6sulfur (yellow) and G6abs 

(red). All results are ensemble means and have been smoothed using a 10-year running mean; a least-squares straight line fit to each 

is also plotted. 

 335 
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We now consider the impacts of the strengthening of the NAO on patterns of temperature and precipitation. We have already 

presented the change in the annual mean temperature compared to PD in Figure 2, which showed significantly more warming 

in G6abs compared with G6sulfur, particularly over northern latitudes of Siberia and continental north America. Our focus 

now shifts to the DJF period. To make a meaningful comparison of the changes in patterns in regional temperatures, we assess 

the temperatures in the periods when the global mean perturbation in temperature in G6abs is equivalent to that in G6sulfur. 340 

The periods that are analysed are (2065-2084) for G6abs and (2081-2100) for G6sulfur (Figure 2a). The results are shown in  

(Figure 10). 

 
 

345 
Figure 10. The difference (G6abs – G6sulfur)  in the DJF near surface temperature between  G6abs (2065-2084) and G6sulfur 

(2081-2100). Stippling represents areas that are not significant at the 5% level using a two-tailed t-test. 

 

 

Although the 20-year annual-mean temperatures are the same, G6abs leads to warmer DJF temperatures than G6sulfur over 350 

northern Europe and cooler temperatures over southern Europe, signals that are consistent with an increase in the NAO index, 

which increases the penetration of mobile weather systems over northern Europe, but enhances blocking over southern Europe. 

It is noticeable that there is enhanced warming over Siberia, but more particularly over much of northern and eastern 

continental north America. A multi-model assessment of model behaviour under G6sulfur suggests that all six models 

experience a DJF warming over Siberia (Jones et al., 2021b, their Figure 3) and it is therefore unsurprising that further 355 

enhancing the positive NAO index further enhances this warming. However, these multi-model results show little consistency 

over continental north America (Banerjee et al., 2021), so any impact over continental north America inferred by this present 

study must be treated with caution. 

 

The most well established impacts of an increased positive phase of the NAO during DJF is the increased precipitation and 360 

flooding over northern Europe and decreased precipitation and drought over southern Europe (e.g. Trigo et  al., 2004; Zanardo 

et al., 2019). Again, these impacts have been clearly demonstrated in multi-model assessments of the G6sulfur simulations 
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(Jones et al., 2021b). We show the differences between both G6sulfur and G6abs for the period 2081-2100 compared to the 

present day in Figure 11.  
 365 

  

Figure 11. The difference in the DJF land precipitation rates in 2081-2100 compared to the present day for a) G6sulfur, b) G6abs. 

Stippling represents areas that are not significant at the 5% level using a two-tailed t-test. 

 

 370 

It is clear that G6abs is associated with a greater positive-NAO-phase enhancement of the disruption of precipitation than 

G6sulfur even though the global-mean cooling impact is less for G6abs over this period. The impacts of such a disruption over 

many countries around the Mediterranean have been highlighted in other studies for sulfate aerosol (e.g. Jones et al., 2021a; 

2021b; Banerjee et al., 2021), with Jones et al. (2021b) showing a multi-model mean precipitation reduction for G6sulfur of 

around 22% for the Iberian Peninsula when comparing 2081-2100 against 2011-2030. Here, UKESM1 suggests a reduction 375 

over Iberia of 10.1% for G6sulfur for a similar time-frame of analysis, but 30.2% for G6abs suggesting that precipitation 

reductions over Iberia are around three times greater under G6abs than G6sulfur. Such reductions in precipitation would be 

very detrimental in terms of water resources (López-Moreno and Vicente-Serrano, 2008). The areal extent and severity of the 

reductions in DJF precipitation become more pronounced in countries surrounding the Black Sea and the areal extent of the 

precipitation reduction under G6abs spreads from Eurasia through to eastern Asia. Reductions in precipitation are widespread 380 
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across China and the Indo-China Peninsula. In much of coastal eastern China, including areas around Beijing and Shanghai, 

the deficits in DJF precipitation translate to reductions of greater than 20% but exceed 40% at the southern tip of the Indo-

China Peninsula across Cambodia, Vietnam and Thailand. In contrast, precipitation in northern Europe is enhanced in G6abs 

with Finland seeing percentage increases of in excess of 60%, while the Baltic States experience precipitation increases in 

excess of 40%. Enhanced precipitation of greater than 60% is also experienced around the Great Lakes areas of North America 385 

although we note the lack of model consensus in G6sulfur noted in Jones et al. (2021b).    

 

5 Results: Impacts on the Quasi-Biennial Oscillation 

Jones et al. (2021b) present multi-model ensemble simulations examining the impact of SAI upon the QBO in the G6sulfur 

simulations. Of the six models analysed, UKESM1 has arguably one of the more realistic representations of QBO frequency 390 

and magnitude throughout the depth of the stratosphere (Richter et al., 2020; Jones et al., 2021b). As in previous studies (Aquila 

et al., 2014, Jones et al., 2016, Jones et al., 2021b), a  shutdown of the QBO is characterised by winds in the lower stratosphere 

becoming locked into a persistent  westerly phase. This behaviour is clearly evident in G6sulfur with the QBO shutdown 

commencing around 2058. In G6abs this shutdown occurs at a much earlier date, around 2033 (Figure 121), when there is 

negligible global-mean cooling impact from G6abs (Figure 2a): the cooling impact of SAI in G6abs at around 2033 is just 395 

0.1K. The cause of such an early shutdown in the QBO appears to be the intense heating of the tropical stratosphere which 

causes an increased positive vertical velocity that opposes downward propagation of zonal wind variation in the tropics. Sulfate 

aerosol only absorbs an appreciable amount of solar radiation at wavelengths longer than 1.3m (Dykema et al., 2016), while 

BC absorbs solar radiation across the entire solar spectrum, resulting in much stronger heating rates and perturbations to 

stratospheric temperatures by around a factor of five (Figure 5). Thus, the intrinsic absorption of the aerosol particles, rather 400 

than any changes to the AOD appear to be the leading cause of the breakdown of the QBO which locks into a westerly phase 

for around thirty years until around 2060-2065. Subsequently, a further change in the characteristics of lower stratospheric 

tropical dynamics is noted with a transition to annually alternating easterly-westerly winds at around 10 hPa with persistent  

easterlies below. Simulations with the CESM2-WACCM6 climate model of volcanic ‘super-eruptions’ (Brenna et al., 2021), 

where a pulse of 1000MtSO2 was injected into the tropical stratosphere, cause a peak tropical lower stratospheric warming of 405 

around 30K (see also our Figure 5). Brenna et al. (2021) report a similar breakdown of the QBO to that reported here, with 

persistent easterlies that switch to persistent westerlies that evolve into a more recognisable QBO structure as the stratospheric 

temperatures reduce. That the CESM2-WACCM6 model performs in a similar way to UKESM1 for these extreme 

stratospheric temperature changes lends confidence to our results. 

 410 

We emphasise again here that the simulations for both G6sulfur and G6abs inject aerosol only at tropical latitudes (10°N-

10°S). Simulations using SO2 injection positioned in the sub-tropics (e.g. 15°N, 30°N, 15°S, and 30°S) in other models appear 

to prevent significant locking of the QBO into the westerly phase (e.g. Richter et al., 2017, 2018; Kravitz et al., 2019).  
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 415 

 

Figure 12. The QBO diagnosed from one of the three ensemble members (all ensemble members show similar behaviour) for a) 

G6sulfur and b) G6abs. Plots consist of time-pressure cross-sections of 5° N - 5° S mean zonal stratospheric winds (m s-1) from a 

single ensemble member. Positive values indicate westerly winds and negative values indicate easterlies; the black contour is at 

0 m s-1.  420 

 

6 Discussion and Conclusions 

 

There is growing evidence to support the hypothesis that ‘self-lofting’ can aid the transport of absorbing aerosols into the 

stratosphere. Many observational studies have shown intrusions of biomass burning smoke from intense pyrocumulus events 425 

that have ascended and persisted in the stratosphere for weeks or months (e.g. Fromm and et al., 2000; 2005; Peterson et al., 

2018; Christian et al., 2019; Osborne et al., 2021). For instance, plumes of absorbing biomass burning smoke from the Pacific 

Northwest fires of 2017 (Peterson et al., 2018; Yu et al., 2019) were detected at altitudes of 23km in the stratosphere. An even 

stronger injection of smoke into the stratosphere has been documented from the intense fires of December 2019-January 2020 

in SE Australia, after which smoke aerosol was observed at altitudes in excess of 30km (Khaykin et al., 2021). The progressive 430 

ascent of the smoke was clearly evident in satellite retrievals of stratospheric aerosol (Kloss et al., 2021). Thus, there is little 

doubt that the absorption-lofting mechanism is physically plausible and could raise the altitude of partially absorbing aerosols 

released in theoretical SAI scenarios.  

 

We stress again that in the suggestion by Gao et al. (2021) a smaller amount of BC aerosol was proposed to lift sulfate into the 435 

stratosphere, which assumed a ratio of BC to sulfate around ten times less than that modelled here. It would be critical to assess 

whether the assumed BC amounts used in such proposals could achieve the efficacy of lofting that is stated. In addition, there 
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are certainly other caveats that need to be considered in our modelling study. Under the G6sulfur protocol, the injection strategy 

is not optimised in terms of the injection latitudes (e.g. Kravitz et al., 2016; Tilmes et al., 2017) or seasons (Lee et al., 2021); 

both could help to ameliorate the impacts on the QBO and the NAO. 440 

 

The simulations presented here investigate the influence of moderately absorbing aerosol in the stratosphere by adjusting the 

absorption properties of aerosols in UKESM1 simulations of the GeoMIP G6sulfur scenario. A moderate level of absorption 

(with an aerosol single scattering albedo of 0.95 at 0.55m) is chosen to provide a suitable signal:noise ratio in resulting 

physical and dynamical changes. Our results suggest that inclusion of absorption:-   445 

i) reduces the cooling efficiency per unit mass of aerosol injected 

ii) increases deficits in global precipitation 

iii) delays the recovery of the stratospheric ozone hole 

iv) disrupts the Quasi Biennial Oscillation when applying moderately absorbing aerosols to combat a warming of 

just 0.1K. 450 

v) enhances the positive phase of the wintertime North Atlantic Oscillation,  associated with floods in North Europe 

and droughts in Southern Europe. 

 

We believe that the scientific understanding of the impacts of absorbing aerosols is sufficient to provide an informed scientific 

discourse on some of the potential pitfalls of absorbing aerosols in the stratosphere. Where the main uncertainties arise are not 455 

in the climatic response of global mean temperatures, precipitation patterns, or the impacts on dynamical features such as the 

QBO and NAO and their subsequent impacts on regional climate, but in uncertainties around the effectiveness of the physical 

deployment of such strategies (Gao et al., 2021). A quantitative uncertainty analysis of physical and logistical factors that 

could reduce (or enhance) the efficiency of such deployment strategies would seem like an essential first step in assessing 

whether such technologies could theoretically be used to combat global climate change. Besides scientific and technological 460 

factors, there are a host of other moral, philosophical, and political questions that would need to be addressed (e.g. Lawrence 

et al., 2018); while of critical importance, such factors are beyond the scope of this work. 
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