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Abstract. The global carbon cycle is experiencing continued perturbations via increases in atmospheric carbon concentrations, 

which are partly reduced by terrestrial biosphere and ocean carbon uptake. Greenhouse gas satellites have been shown to be 

useful in retrieving atmospheric carbon concentrations and observing surface and atmospheric CO2 seasonal to interannual 

variations. However, limited attention has been placed on using satellite column CO2 retrievals to evaluate surface CO2 fluxes 15 

from the terrestrial biosphere without advanced inversion models at low latency. Such applications could be useful to monitor, 

in near-real time, biosphere carbon fluxes during climatic anomalies like drought, heatwaves, and floods, before more complex 

terrestrial biosphere model outputs and/or advanced inversion modelling estimates become available. Here, we explore the 

ability of Orbiting Carbon Observatory-2 (OCO-2) column-averaged dry air CO2 (XCO2) retrievals to directly detect and 

estimate terrestrial biosphere CO2 flux anomalies using a simple mass balance approach. An initial global analysis of surface-20 

atmospheric CO2 coupling and transport conditions reveals that the Western US, among a handful of other regions, is a feasible 

candidate for using XCO2 for detecting terrestrial biosphere CO2 flux anomalies. Using CarbonTracker model reanalysis as a 

testbed, we first demonstrate that a well-established mass balance approach can estimate monthly surface CO2 flux anomalies 

from XCO2 enhancements in the Western United States. The method is optimal when the study domain is spatially extensive 

enough to account for atmospheric mixing and has favourable advection conditions with contributions primarily from one 25 

background region. While errors in individual soundings partially reduce the ability of OCO-2 XCO2 to estimate more frequent, 

smaller surface CO2 flux anomalies, we find that OCO-2 XCO2 can often detect and estimate large surface flux anomalies that 

leave an imprint on the atmospheric CO2 concentration anomalies beyond the retrieval error/uncertainty associated with the 

observations. OCO-2 is thus useful for low latency monitoring of the monthly timing and magnitude of extreme regional 

terrestrial biosphere carbon anomalies.  30 
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1 Introduction 

With ongoing anthropogenic emissions, atmospheric carbon dioxide concentrations continue to rise and alter the global climate 

system (Friedlingstein et al., 2022). A large contribution to the variability and trends of these CO2 concentrations is the uptake 

of carbon by the terrestrial biosphere (Ahlström et al., 2015; Poulter et al., 2014). The terrestrial biosphere typically acts as a 35 

sink but can become a strong source, or CO2 efflux, under climatic anomalies (Biederman et al., 2017; Zscheischler et al., 

2014). Monitoring such surface CO2 flux anomalies in space and time is therefore essential to understand the drivers of 

atmospheric carbon dioxide concentrations and predict future climatic conditions. 

 

However, observing CO2 fluxes across the terrestrial biosphere is a challenge. Carbon measurement networks are available, 40 

but are spatially biased toward mid-latitude locations with little coverage in the tropics (Schimel et al., 2015a). Atmospheric 

transport model assimilation efforts and land surface models are often used to quantify and monitor global carbon sources and 

sinks (Ott et al., 2015; Peters et al., 2007). However, these datasets typically have a longer latency and complex sources of 

error due to modelling assumptions about uncertain surface CO2 flux drivers, meteorological conditions, among others.  

 45 

Greenhouse gas satellites are now available that can retrieve atmospheric column carbon concentrations, or dry-air column 

carbon dioxide (XCO2), across the globe at low latency. These include satellite instruments such as SCanning Imaging 

Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY), Greenhouse Gases Observing Satellite (GOSAT), 

and the Orbiting Carbon Observatory-2 and 3 missions (OCO-2, OCO-3) (Bovensmann et al., 1999; Eldering et al., 2017b; 

Kuze et al., 2014; Reuter et al., 2011). Since these column retrievals are partly a function of surface CO2 fluxes (Keppel-Aleks 50 

et al., 2012; Parazoo et al., 2016) despite background variability driven partly by atmospheric transport (Basu et al., 2018; 

Hakkarainen et al., 2016; Schuh et al., 2019), previous studies have assimilated these XCO2 retrievals into atmospheric 

inversion model frameworks to improve surface CO2 flux estimates (Basu et al., 2013; Chevallier et al., 2014; Fraser et al., 

2014; Halder et al., 2021; Houweling et al., 2015; Liu et al., 2017; Ott et al., 2015; Zabel et al., 2014). While a primary goal 

of the community has been to enable rapid detection, monitoring, and/or estimation of surface CO2 fluxes using the satellite 55 

XCO2 record, it has proved challenging due to the diversity of carbon sources and sinks as well as the effects of atmospheric 

mixing. 

 

It has not been widely investigated whether satellites like OCO-2 can directly monitor the timing and magnitude of shorter 

monthly timescale climate-carbon feedback events, such as those that evolve in the terrestrial biosphere and generate regional 60 

and short-lived XCO2 enhancements. OCO-2 was designed to observe regional-scale carbon sources and sinks to provide a 

constraint on carbon cycle seasonal and interannual variability (Chen et al., 2021; Crisp et al., 2004; Eldering et al., 2017b; 

Lindqvist et al., 2015). For example, these satellite XCO2 retrievals have been used to evaluate effects of an event averaged 

over seasons or multiple years, such as El Niño Southern Oscillation events and related biomass burning (Byrne et al., 2021; 
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Chatterjee et al., 2017; Eldering et al., 2017b; Hakkarainen et al., 2019; Heymann et al., 2016; Liu et al., 2018; Patra et al., 65 

2017). However, despite concern that the noise level of individual soundings would prevent direct monitoring of surface CO2 

fluxes at finer scales (Chevallier et al., 2007; Eldering et al., 2017a; Miller et al., 2007), there is growing evidence that satellite 

XCO2 retrievals can directly detect and monitor surface CO2 fluxes, especially on smaller spatiotemporal scales. For example, 

satellite XCO2 can detect anthropogenic emission plumes from urban areas using spatially adjacent satellite soundings 

(Hakkarainen et al., 2016; Nassar et al., 2017; Reuter et al., 2019; Schwandner et al., 2017; Zheng et al., 2020). For natural 70 

emission sources, recent studies have interpreted monthly OCO-2 XCO2 anomalies without inversion models to understand 

the time evolution of climatic events (Chatterjee et al., 2017; Yin et al., 2020). As such, satellite XCO2 shows promise for 

directly monitoring the monthly timing and evolution of regional carbon-climate feedbacks from the biosphere at smaller 

spatiotemporal scales without model assimilation frameworks (Calle et al., 2019; He et al., 2018), especially if the signature 

of these anomalies are large, localized over well-defined geographical regions and detectable above the noise and uncertainty 75 

level of the observations.   

 

Within the CO2 flux estimation literature, simple mass balance approaches (also known as differential inversions) were widely 

used in the 1980s and 1990s (Conway et al., 1994; Enting and Mansbridge, 1989; Law, 1999; Siegenthaler and Joos, 1992; 

Siegenthaler and Oeschger, 1987). However, as the need grew for surface flux estimates discretized in space and time, the 80 

community moved from mass-balance techniques to more advanced synthesis inversions based on Green’s functions, advanced 

atmospheric transport models and state-space representations. Enting (2002) lays out other disadvantages of mass-balance 

techniques for estimating fine-scale fluxes, ranging from a failure of being able to resolve spatial detail to missing formalism 

for calculating uncertainty analysis, although the latter can be addressed via a bootstrapping approach (Conway et al, 1994). 

Not surprisingly, recent efforts to estimate surface CO2 fluxes from OCO-2 XCO2 retrievals have involved transport models 85 

and inversions (Byrne et al., 2021; Liu et al., 2017; Palmer et al., 2019; Patra et al., 2017). The few studies estimating surface 

emissions directly from the XCO2 anomalies alone are empirical (rather than physically-based mass balance methods) in using 

statistical or machine learning relationships between XCO2 and surface CO2 fluxes (Heymann et al., 2016; Zhang et al., 2022) 

or are specific to point source plumes at under kilometre scales rather than hundreds of kilometre scale areal sources (Zheng 

et al., 2020). More recently, satellite methane concentration (XCH4) retrievals have been used to rapidly estimate surface 90 

methane fluxes using simple mass balance approaches (Buchwitz et al., 2017b; Pandey et al., 2021). This makes sense given 

that CH4 fluxes are more spatially heterogeneous and have well-defined sources, unlike CO2 fluxes, which are more spatially 

homogeneous. 

 

An equivalent approach using XCO2 in a mass balance may provide an ability to rapidly estimate regional total CO2 flux 95 

anomalies from the terrestrial biosphere. This ability to estimate a total CO2 flux anomaly would provide a rapid carbon cycle 

monitoring capability while waiting for more complex and complete biospheric model runs and atmospheric inversion 

estimates to become available (Ciais et al., 2014). Specifically, such a method could allow near real time monitoring of the 
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duration, magnitude, and spatial extent of CO2 flux anomalies during extreme climatic events (Frank et al., 2015; Reichstein 

et al., 2013). Such applications are especially important for regional climate change hotspots like in the southwestern North 100 

America where droughts and heatwaves are becoming more frequent and intense (Cook et al., 2015; Schwalm et al., 2012; 

Williams et al., 2022). This would also be beneficial for monitoring tropical biospheric fluxes (Byrne et al., 2017) which 

sequester the most global fossil fuel emissions but lack measurement networks (Liu et al., 2017; Schimel et al., 2015b). 

Analogously, a simple approach for estimating ecosystem water fluxes (i.e., triangle method; Carlson, 2007) has a legacy of 

continued use given its relatively sufficient accuracy for many applications compared to more complex land surface model 105 

approaches. Given the ongoing challenges of estimating terrestrial fluxes at large spatial scales, we anticipate that it will be 

similarly useful to develop simple total surface CO2 flux estimation approaches that are rapid, rely on observations alone (from 

remote sensing), do not require many modelling assumptions and ancillary data, and provide an independent estimate to 

evaluate model outputs when they eventually become available.  

 110 

Here, we ask: can satellite retrieved XCO2 be used with mass-balance approaches to directly detect and estimate terrestrial 

surface CO2 flux anomalies, especially from the biosphere? Can surface CO2 flux anomalies be monitored with XCO2 at sub-

seasonal (i.e., monthly) scales? Which meteorological and spatial domain conditions are most favourable for estimating surface 

CO2 fluxes using such simple approaches? OCO-2 is chosen primarily due to its high precision and greater sensitivity to the 

lower atmosphere, which makes it more sensitive to surface CO2 fluxes and their anomalies than other greenhouse gas satellites 115 

(Eldering et al., 2017a). Recent algorithmic updates have also been shown to increase OCO-2 XCO2 retrievals’ representation 

of biospheric CO2 fluxes at subcontinental scales (Miller and Michalak, 2020). Addressing these questions here can help assess 

whether greenhouse-gas satellites like OCO-2 can be used to monitor biosphere carbon responses to climatic anomalies at sub-

seasonal timescales and with low latency (within 1–2-months).  

2 Methodology 120 

 

2.1 Datasets 

The study includes three components to assess the potential for using XCO2 to directly evaluate monthly surface CO2 flux 

anomalies.  

 125 

We first globally evaluated which regions provide favourable conditions to directly assess surface CO2 flux anomalies with 

observed XCO2 between September 2014 and December 2021 from the Orbiting Carbon Observatory 2 (OCO-2) aggregated 

to a one-degree resolution (OCO-2). OCO-2 has an approximate 3 km2 resolution per sounding and 16-day revisit cycle with 

soundings at around 1:30 pm local time. We use OCO-2 level 2, bias-corrected, retrospective reprocessing version 10 of XCO2 
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(OCO-2-Science-Team et al., 2020). Quality flags were used to remove soundings with poor retrievals. Along with OCO-2 130 

XCO2, we also looked at MODIS-based FluxSat gross primary production (GPP) at a 1°x1.25° resolution for the same time 

period (Joiner and Yoshida, 2021, 2020). We additionally evaluated monthly advection conditions using the modern-era 

retrospective analysis for research and applications, version 2 (MERRA2) wind vectors at a 0.5°x0.625° resolution 

(M2T3NVASM) (Gelaro et al., 2017; GMAO, 2015). Transport in the lower troposphere layer directly interacts with surface 

CO2 fluxes (Buchwitz et al., 2017b; Pandey et al., 2021). We thus compute lower troposphere advection by integrating wind 135 

velocities in a consistent number of atmosphere layers nearest to the surface, which at sea level results in integrating between 

the surface and about 700 mb and at higher elevations integrating between the surface and about 600 mb. Here, we assume 

that flux anomalies occurring near the surface have an immediate impact on CO2 concentrations near the surface, and if we 

examine the information content in the retrievals as the anomalies are occurring, we will be able to extract information about 

the flux anomalies before the signal gets diluted by atmospheric mixing. In this study, we refer to advection as the horizontal 140 

transport of air, especially that in the lower troposphere. 

 

Second, we tested the ability of XCO2 to estimate surface CO2 flux anomalies using CarbonTracker model reanalysis 

(CT2019B) as a testbed, which assimilates tower eddy flux and satellite atmospheric observations into an atmospheric transport 

model and outputs hourly XCO2 and total surface CO2 fluxes from 2000 to 2018 (Peters et al., 2007). Tests performed using 145 

this model reanalysis dataset are meant to represent simulated “true” relationships between surface CO2 fluxes and XCO2 

dynamics. However, we acknowledge model errors in this framework. A purely simulated environment with error free 

conditions is not possible here because coupling between surface CO2 fluxes and XCO2 require modelling and assumptions 

about atmospheric transport and emission physics. Therefore, we recognize that error in estimating surface CO2 flux anomalies 

from XCO2 will be partially a function of errors in modelling assumptions beyond that of errors incurred in the simple mass 150 

balance approach.  

 

Third, we assessed the ability of observed OCO-2 XCO2 to detect and estimate surface CO2 flux anomalies using the mass-

balance technique. Observations of total surface CO2 fluxes are only sparsely located in space. We, therefore, independently 

estimated surface CO2 fluxes from a biosphere model, fire reanalysis, and anthropogenic emission repositories as a reference. 155 

The Lund-Potsdam-Jena (LPJ) dynamic global vegetation model was driven with MERRA2 reanalysis forcing to output CO2 

flux from net biome production (NBP) between January 1980 and July 2021 (Gelaro et al., 2017; Sitch et al., 2003; Zhang et 

al., 2018). NBP models carbon fluxes from photosynthesis, respiration, land use change, and fire. Since LPJ only evaluates 

fire dynamics at the annual scale and wildfire can rapidly evolve, fire carbon fluxes were obtained from Quick Fire Emissions 

Dataset (QFED) biomass burning emissions between 2000 and 2021 to account for monthly fire dynamics in the total carbon 160 

fluxes (Koster et al., 2015). Anthropogenic CO2 fluxes were obtained from CarbonMonitor for the Western US region between 

2019 and 2021 (Liu et al., 2020). Though only evaluating photosynthesis and no respiration or disturbance components, 
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FluxSat GPP is also used here because it provides another independent observation-based surface CO2 flux estimate to 

determine coupling between XCO2 anomalies and biospheric flux anomalies. 

 165 

2.2 Region Selection Process 

We first assessed the suitability of a given region for using XCO2 to detect and estimate surface CO2 flux anomalies using two 

different metrics. The first metric is the monthly Pearson’s correlation coefficient between OCO-2 XCO2 and FluxSat GPP 

anomalies. The average climatology and long-term trend were subtracted from the raw time series to create an anomaly time 

series for both XCO2 and GPP. Statistically significant negative correlations show direct coupling between atmospheric CO2 170 

and surface biospheric CO2 flux anomalies, suggesting favourable conditions to directly detect non-anthropogenic surface CO2 

flux anomalies directly with independently observed XCO2. Though such satellite-based vegetation metrics are available at 

low-latency, they are based on photosynthesis-proxies. However, XCO2 can directly detect holistic terrestrial biosphere fluxes 

due to photosynthesis, respiration, and wildfires – we use this simple statistical correlation metric as an indicator of 

geographically where XCO2 observations and biospheric fluxes have strong linkages.  175 

 

The second metric evaluates the atmospheric transport conditions that not only allow direct detection of surface CO2 flux 

anomalies with XCO2, but that also satisfy assumptions of a simple mass balance approach for capturing surface CO2 flux 

anomaly from the XCO2 observations (see Section 2.4). This metric considers the temporal wind angle variability, the spatial 

wind angle variability, and whether there is an upwind water body source. Low spatial and temporal wind angle variability 180 

provide conditions that satisfy assumptions of the mass balance method (see Section 2.4). Additionally, an upwind water body 

source typically has smaller, or less variable surface CO2 flux anomalies with anomalies mainly due to transport, and thus 

makes less surface-influenced background XCO2 conditions. The monthly MERRA2 wind vector angle in the lower 

troposphere is computed using the eastward direction as the zero-angle reference. The temporal wind angle variability is 

computed by taking the standard deviation of the monthly wind angle in each pixel. The spatial wind angle variability is 185 

computed by taking the standard deviation of the annual-averaged wind angle of the 20x20 pixel domain centred on each pixel 

(results are qualitatively similar varying the size of this domain). The temporal and spatial wind angle variability metrics are 

rescaled by dividing all pixels by the respective 95th percentile across the globe for each metric to transform values 

approximately to between zero and one. One minus both metrics is taken so that values nearer to one suggest more favourable, 

lower variability transport conditions. Finally, a water body source is determined by considering a 20x20 pixel domain around 190 

each target pixel, finding if water bodies exist in any of these pixels, and determining if these water bodies are upwind of the 

centre, target pixel. Pixels with an upwind water body are given a value of one, and a value of zero if this condition is not met. 

To create a metric of “wind condition favourability,” these three metrics are objectively summed creating a metric between 

approximately 0 and 3, with higher values indicating the best wind conditions for direct detection and estimation of surface 

CO2 flux anomalies with XCO2. 195 



7 

 

 

2.3 Wind Vector Analysis 

Upon choosing the Western US region (33 N-49 N, 124 W-104 W) for the remainder of the analysis (see Section 3.1), we 

assessed the MERRA2 lower troposphere layer wind conditions to determine the direction, speed, and primary background 

region to consider for the mass balance estimation approach. The spatially averaged wind direction and speed were determined 200 

within the region and at each of its four borders. The percentage of the background region’s lower troposphere air entering the 

domain for each of its four borders was estimated as the ratio of the wind vector component entering the region to the total 

wind velocity.  

 

2.4 XCO2-Based Surface CO2 Flux Anomaly Estimation 205 

First, XCO2 and CO2 surface fluxes in all cases were monthly averaged and spatially averaged, by averaging all pixels within 

the Western US target region (33 N-49 N, 124 W-104 W). For OCO-2, this included averaging all XCO2 soundings in this 

region over a month. Monthly XCO2 and surface CO2 fluxes were deseasonalized by averaging all months in the available 

time series into an average 12-month climatology. Given that XCO2 includes a strong annual increasing trend, each of the 

twelve months were individually, linearly detrended first before deseasonalizing as in Chatterjee et al. (2017). 210 

 

Total surface CO2 flux anomalies were estimated from XCO2 anomalies in the Western US using a simple mass balance 

approach previously applied to methane fluxes (Buchwitz et al., 2017b; Jacob et al., 2016; Varon et al., 2018): 

𝑄 =  (∆𝑋𝐶𝑂2)(𝑉)(𝐿)(𝐶)(𝑀𝑒𝑥𝑝)(𝑀)          (1) 

Q is the surface CO2 flux anomalies in units of TgC/mo. XCO2 (ppm) is the difference in XCO2 between the target domain 215 

and the background region (here, the Western US and Pacific Ocean, respectively). The full column XCO2 is used here which 

accounts for vertical transfer and atmospheric mixing of CO2 for the estimation approach. V is the ventilation wind velocity 

(in m/s units, but converted to km/month), which has been motivated previously to be best represented by lower atmosphere 

horizontal winds (Buchwitz et al., 2017b; Pandey et al., 2021). Thus, while the full column CO2 concentrations were evaluated, 

the wind speeds in the lower atmosphere are considered in the mass balance model given their greater degree of interaction 220 

with the CO2 fluxes at the surface. Here, V is the monthly averaged lower troposphere layer wind speed within the target 

region. L is the effective region length (km) meant to estimate the horizontal pathlength of the ventilation wind passing through 

the region and interacting with the surface flux. L was estimated as the square root of the target region area. The model 

parameter, C, represents assumptions that the CO2 fluxes are spatially homogenous, and the ventilation wind is uniform across 

the region, which results in a linear increase of XCO2 spatially across the region. C is thus equal to 2 (unitless). Mexp (unitless) 225 

is the ratio of the target region’s surface pressure to standard atmospheric pressure. MERRA2 and CarbonTracker surface 
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pressure are used for the observational analysis and reanalysis testbed, respectively. M is 4.2x10-6 TgC/(km2 ppmXCO2), which 

converts the atmospheric carbon dioxide mixing ratio (or its concentration) to a total column mass. 

 

Previous demonstrations of Eq. 1 on methane fluxes evaluated the non-anomaly XCH4 enhancements (Buchwitz et al., 2017b; 230 

Pandey et al., 2021). In our main analysis, we have removed XCO2 seasonality here due to many sources of seasonal 

atmospheric CO2 variability (atmospheric and surface-based) that contribute to XCO2 that hinder causal attribution of XCO2 

variability to surface anomalies. Monthly anomalies of XCO2 can thus be more directly attributed to surface CO2 flux 

anomalies than their raw variations can. However, we also evaluate non-anomaly XCO2 enhancements for comparison. 

 235 

The XCO2 estimated surface CO2 flux anomalies from Eq. 1 were compared with independently determined surface CO2 flux 

anomalies using the mean bias, root mean square difference (RMSD), and Pearson’s correlation coefficient. Two comparisons 

were performed: one in a model reanalysis framework and another with OCO-2 observations. In the model reanalysis 

framework, the surface CO2 flux anomalies were estimated from CarbonTracker-output XCO2, wind velocity, and surface 

pressure using Eq. 1 and were compared against CarbonTracker-output surface CO2 flux anomalies, which represent the total 240 

surface CO2 flux anomalies from both natural and anthropogenic sources. This reanalysis framework presents a testbed where 

the differences in XCO2 and surface CO2 flux outputs provide an estimate of the Eq. 1 model error, without being highly 

sensitive to other sources of error such as satellite XCO2 retrieval error as in the observational analysis. Using this framework, 

the target domain region size is varied to determine domain sizes that are more sensitive to errors. Additionally, horizontal 

wind speed and direction as well as vertical wind speed are related to Eq. 1 estimation errors, all of which are critical 245 

considerations of such pixel source mass balance methods (Varon et al., 2018). 

 

In the observational assessment, OCO-2 XCO2 is used to estimate surface CO2 flux anomalies along with MERRA2 lower 

troposphere wind velocity and surface pressure in Eq. 1. These XCO2-based surface CO2 flux anomalies estimates are 

compared to total surface CO2 flux anomalies, which were estimated using the sum of LPJ NBP model anomalies, QFED 250 

biomass burning anomalies, and CarbonMonitor fossil fuel estimates. As a postprocessing step of the LPJ model outputs that 

does not influence the LPJ simulation itself, LPJ NBP annual fire emissions were subtracted from the total LPJ NBP outputs 

and monthly QFED biomass burning emissions were added, which results in NBP dynamics that include monthly instead of 

only annual fire emission dynamics. Though CarbonMonitor is only available over a short record, we used the record to 

determine that the proportion of anthropogenic flux anomalies in the Western US contribute less than 5% to the surface 255 

anomalies (see Fig. S1). Therefore, we define total flux anomaly estimates of CO2 in the observation-based assessment to be 

the sum of LPJ NBP and QFED biomass burning anomalies, acknowledging that there may be additional smaller deviations 

due to fossil fuel emissions.  
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2.5 XCO2-Based Surface CO2 Flux Anomaly Detection 260 

We estimated the XCO2 flux detection rate of surface efflux anomalies as the percentage of largest surface CO2 efflux 

anomalies (90th percentile) that XCO2 observes a positive anomaly. We evaluate this metric in all one-degree pixels across the 

globe using OCO-2 XCO2 anomalies and FluxSat GPP to determine whether XCO2 anomalies can rapidly detect large surface 

biosphere CO2 flux anomalies from extreme events. 

 265 

Generalizing the above approach, OCO-2-retrieved XCO2’s ability to detect surface CO2 flux anomalies in the Western US is 

evaluated using: 

𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝑅𝑎𝑡𝑒𝑥,𝑦  =  
𝑁∆𝑋𝐶𝑂2>𝑦𝑡ℎ & 𝑄>𝑥𝑡ℎ+𝑁∆𝑋𝐶𝑂2<(1−𝑦𝑡ℎ) & 𝑄<(1−𝑥𝑡ℎ) 

𝑁∆𝑋𝐶𝑂2>𝑦𝑡ℎ +𝑁∆𝑋𝐶𝑂2<(1−𝑦𝑡ℎ) 
∗ 100     (2) 

The detection rate is the percentage of months that XCO2 anomaly enhancements (XCO2) of a specified, y percentile 

magnitude detects surface CO2 flux anomalies (Q) of a specified, x percentile magnitude. N is a count of number of Western 270 

US domain-averaged pairs that satisfy the conditions in Eq. 2. Here, positive surface CO2 flux anomalies are towards the 

atmosphere. This metric provides a measure of information that a given XCO2 anomaly enhancement holds about a 

corresponding surface CO2 flux anomaly. This detection rate was compared to detection rates by chance, which are equal to 

100-x. Eq. 2 was used on both the observation-based and CarbonTracker testbed data, with CarbonTracker tests serving as a 

“potential” or upper bound on performance given expected XCO2 observation error from OCO-2. 275 

2.6 Estimation of Retrieved XCO2 Enhancement Error  

Given known limitations of potentially restrictive greenhouse gas satellite measurement and retrieval errors (Buchwitz et al., 

2021), we estimated the XCO2 anomaly enhancement errors. OCO-2 XCO2 error standard deviation is approximately 0.6 ppm 

for a given observation and errors are assumed to be normally distributed (Eldering et al., 2017a). However, computing the 

XCO2 (used in Eq. 1 estimation) and its error standard deviation involves consideration of monthly temporal averaging of 280 

XCO2, spatial averaging of XCO2 within the study domain, and subtracting two spatiotemporally averaged XCO2 anomalies 

from the target and background domains. We used a bootstrapping approach to randomly generate two vectors of XCO2 error 

values (including 20 observations within the Western US target region and 10 observations in the Pacific Ocean background 

region), which provides a spatially averaged XCO2 error for both the target and background regions. Both values are subtract 

to obtain an enhancement error. 285 

3 Results and Discussion 

3.1 Global Region Selection 

Several regions show both observed coupling between XCO2 anomalies and biospheric surface CO2 flux anomalies (Fig. 1a) 

as well as favourable wind conditions for direct detection and estimation of surface CO2 flux anomalies with XCO2 (Figs. 1b 
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and S2). These include, for example, Southwestern North America (i.e., Western US), portions of North Africa, Southern 290 

Africa, India, and portions of Northern Australia.  

 

The large observed coupling between XCO2 anomalies and biospheric surface CO2 flux anomalies in Fig. 1a in some regions 

suggests that terrestrial biospheric, non-anthropogenic carbon sources (i.e., photosynthesis, respiration, wildfire) influence 

XCO2 over expansive areas and that transport conditions do not obscure this connection between surface and atmospheric CO2. 295 

In these cases, OCO-2 XCO2 retrievals should be able to directly detect biospheric surface CO2 fluxes anomalies. These same 

regions commonly show tractable wind conditions (Fig. 1b): temporal and spatial wind direction variability is low meaning 

that there is typically a single consistent background wind source, rather than multiple background sources or a source that 

changes throughout the year. Furthermore, this background source may be located over water bodies, which tend to have less 

variable monthly CO2 surface fluxes compared to terrestrial sources. Therefore, wind condition favourability (Fig. 1b) partly 300 

supports why there is greater surface CO2 flux anomaly and XCO2 anomaly coupling (Fig. 1a). It also supports use of the mass 

balance model (Eq. 1) which requires consistent boundary layer transport conditions for CO2 flux anomaly estimation. 

However, high wind condition favourability does not always result in coupling between XCO2 and biospheric surface CO2 

flux anomalies. For example, Western Europe has extensive anthropogenic CO2 fluxes, which results in weak coupling of 

XCO2 and biospheric surface CO2 flux anomalies despite tractable wind conditions. Ultimately, we speculate that favourable 305 

transport conditions (with less complex topography near the surface and consistent wind directions throughout the profile), 

high XCO2 retrieval quality, lower human footprint (i.e., from land use change, fossil fuel emissions, etc.), expanses of 

ecosystems with active photosynthesis, among others all contribute to the higher metrics here. While it is unclear which factors 

contribute most, we anticipate that all of these conditions are needed in a region for our methods here to be feasibly applied. 

 310 

For the remainder of the analysis, we primarily focus on the Western US given its feasibility for use of XCO2 to detect and 

estimate biospheric surface CO2 flux anomalies. The Western US has an expanse of natural ecosystems that serve as a carbon 

sink (Biederman et al., 2017). It has also become a hotspot for droughts, including an ongoing decadal-scale megadrought 

(Cook et al., 2015; Schwalm et al., 2012; Williams et al., 2022). As such, any positive XCO2 anomalies are substantial given 

that the mean OCO-2 XCO2 may be higher compared to pre-2000 when there was more nominal biospheric carbon uptake.  315 

 

Given that we wish to use XCO2 anomalies in the Western US with only a simple source pixel mass balance method and not 

an atmospheric transport model and/or assimilation framework to monitor surface CO2 flux anomalies, a detailed 

understanding of the existing advection conditions in the selected domain is highly critical, as emphasized by our analysis that 

follows. More detailed evaluation of the lower atmosphere wind conditions in the Western US confirms tractable conditions 320 

as expected from Figure 1 (see Fig. 2). Namely, monthly averaged winds consistently originate from a single background 

region in the Pacific Ocean and flow steadily and consistently (without greatly changing directions) west-to-east through the 

region (Figs. 2 and S3). Winds along its northern, southern, and eastern borders have little contribution to the Western US 
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region. This suggests that Eq. 1 can be applied more confidently in assuming only one background region contributes advection 

to the Western US. More detailed evaluation of the incoming advection from the Pacific Ocean reveals that incoming winds 325 

at the western border and throughout the region are consistently eastward and of non-negligible magnitude (Fig. S4). The 

exception is spring and summer months when winds in the Pacific Ocean partly shift to the south and the speed of eastward 

winds into and within the region are lower. By contrast, the advection conditions may be more complex in a region like the 

Southeast US which experiences monthly changes in background source of incoming advection (Fig. S3). These variable 

background conditions and inconsistent wind directions may create large errors and lead to erroneous conclusions when 330 

applying Eq. 1. 
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Figure 1. (a) Observed coupling between terrestrial biosphere surface CO2 flux anomalies and atmospheric CO2 concentration anomalies. 335 

Monthly anomaly correlation between observed column CO2 (XCO2) from OCO-2 and observation-based FluxSat GPP (derived primarily 

from MODIS). Pixels that are not statistically significant (p<0.05) are transparent. (b) Wind condition favourability index for application 

of simple mass balance estimation approaches based on mean monthly lower troposphere (surface up to approximately 700 mb) conditions 

from MERRA2. The index is high if the wind direction monthly temporal variability is low, wind direction spatial variability is low, and 

wind originates from water bodies. See Fig. S2 for mapped components contributing to the wind condition favourability metric.  340 

 

 

Figure 2. (a) Annual mean lower troposphere (surface up to approximately 700 mb) wind conditions from MERRA2. The Western US target 

domain is identified with borders. Averaged conditions in each month are shown in Fig. S3. (b) Proportion of wind vector entering region 

from each bordering region. Values do not add to 100% because each border’s wind vector is evaluated individually for its contribution to 345 

the Western US domain.  

 

3.2 Reanalysis Evaluation 

Here, using CarbonTracker (CT2019B) model reanalysis as a testbed, we evaluate by how much the advection conditions 

present limitations for using Eq. 1 to estimate surface CO2 flux anomalies using XCO2 anomalies in the Western US. We tested 350 

the effect of domain area size, wind angle, and wind speed on the mass balance surface CO2 flux anomaly estimation at monthly 

timescales.  

 

Eq. 1 was previously applied to smaller spatial scales (within a kilometre) to estimate emissions of spatially heterogeneous 

natural or urban methane plumes (Pandey et al., 2021). However, CO2 generally has more spatially homogenous surface 355 

sources and sinks and we wish to evaluate fluxes from terrestrial ecosystems that exceed tens of kilometres in spatial scales. 

We find that as our target regions become smaller, there is a decline in ability to estimate surface CO2 flux anomalies with Eq. 

1 (Fig. 3). This reduction in performance of the simple mass balance model is expected because a smaller area will increase 

importance of turbulent mixing, especially from surface sources outside of the domain, compared to effects of mean horizontal 

ventilation wind, as was suggested previously (Varon et al., 2018). For example, with turbulent mixing on smaller spatial 360 
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scales, large CO2 surface effluxes from surfaces adjacent to the region may mix with atmospheric CO2 within the region, 

causing a larger positive XCO2 anomaly than what can be expected from the surface contributions from within the small target 

domain itself. The decorrelation of the XCO2 surface flux anomaly estimates with the modelled surface CO2 flux anomalies 

with smaller surface areas supports this claim where external XCO2 anomaly variations may be contributing to the XCO2 

anomalies within the domain (Fig. 3b). Ultimately, this target region size analysis motivates choosing larger target areas for 365 

application of Eq. 1 on CO2 flux anomaly estimation, especially over monthly timescales. Note that, in other parts of the globe, 

the area of surface-atmosphere CO2 coupling may be smaller (Fig. 1a). Figure 3 indicates that regions a quarter to half the size 

of that of our selected domain may still be feasible with only marginal increases in surface CO2 flux anomaly estimation errors. 

 

There is a general reduction in the mass balance equation’s (Eq. 1) ability to estimate surface CO2 flux anomalies with 370 

increasing wind angle (Fig. 4a). While absolute errors only weakly linearly increase with wind angle (r = 0.12; p-value=0.07) 

(RMSD’s correlation with wind angle is r = 0.53, p-value = 0.16 with eight bin samples), a more frequent occurrence of higher 

errors occurs above absolute angles of 60 degrees from the eastward plane (Fig. 4a). As such, the partial shift to southward 

winds in the Pacific Ocean background during the summer months (Fig. S4b) may be the cause of seasonally increased surface 

CO2 flux anomaly estimation errors (Fig. 4c). This is expected because the advection of air from the Pacific Ocean into the 375 

Western US would be reduced, creating a disconnect between the atmospheric carbon concentrations of the Western US target 

region and Pacific Ocean in these months (Fig. 2). The effect of variations in monthly averaged wind speed appears to have 

less of an influence on errors than wind angle (Fig. 4b). Specifically, there is a correlation of 0.02 (p-value=0.7) between wind 

speed and absolute errors. Wind speed may become a larger error source when investigating shorter time steps or more spatially 

heterogeneous anthropogenic plumes (Jacob et al., 2016; Varon et al., 2018). 380 

 

The method appears robust to variations in vertical wind velocity, in part because XCO2 used here integrates the full 

atmospheric column and any vertical gradients of XCO2 anomalies. However, strong vertical winds toward the surface could 

prevent mixing of the surface CO2 flux with atmospheric CO2 and thus XCO2 may become decoupled from the surface. 

However, our investigation of these effects shows that there are rarely strong vertical monthly winds toward the surface in the 385 

Western US and that months with mean downwelling winds do not necessarily result in higher surface CO2 flux anomaly 

estimations errors with Eq. 1 (Fig. S5). Vertical atmospheric mixing over monthly timescales likely reduces errors related to 

vertical wind velocity and we anticipate vertical wind velocity confounding effects can become more pronounced at shorter 

timescales. 

 390 

Overall, the mass balance estimation of surface CO2 flux anomalies with XCO2 (Eq. 1) is possible in the Western US (Fig. 5). 

XCO2 anomaly enhancements are positively correlated with surface CO2 flux anomalies (Fig. S6a), which extends to the 

positive correlation when estimating surface CO2 flux anomalies with Eq. 1 (Fig. 5). The comparison improves when 

consideration of winds that have a wind angle from the eastward reference of less than 60 degrees, which mainly removes 
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summer months when Pacific Ocean winds shift toward the south (Fig. 5). However, an RMSD of ~20 TgC per month suggests 395 

that the approach should be used mainly as a rapid, first estimation of surface CO2 flux anomalies.  

 

We additionally show that the method can estimate surface CO2 fluxes using the non-anomaly XCO2 enhancements, especially 

when winds have a substantial eastward component (Fig. S6b). However, using the XCO2 anomalies removes seasonal XCO2 

enhancement variability that may not be attributed to surface CO2 fluxes, which collapses the data pairs more along the 1:1 400 

line (compare Figs. 5 and S6b). 

 

Therefore, our tests with CarbonTracker model reanalysis reveal that XCO2 can indeed be used to viably estimate monthly 

surface CO2 flux anomalies with simple mass balance approaches over spatial extents of natural ecosystems. However, the 

method requires favourable transport conditions. Namely, the region size must be large enough to account for atmospheric 405 

mixing that could dominate transport in smaller domains over monthly timescales. Additionally, based on Figures 4 and 5 and 

assumptions of the mass balance model, winds must flow consistently through the region with a similar direction. Given the 

need for XCO2 enhancements, the transport should originate from the same background source region within a given month 

rather than from multiple background regions. We speculate that the method may additionally work well in the Western US 

given the upwind ocean region (i.e., Pacific Ocean) tends to have relatively lower surface CO2 flux variability. Thus, the XCO2 410 

enhancement variability will likely not be dominated by the background region’s XCO2 variability. Finally, it is also critical 

that the OCO-2 retrieval availability in the target domain is representative enough to capture the flux anomalies occurring near 

the surface within a given month. 

 

While the simple mass balance approach appears suitable for use based on a model reanalysis framework, repeating the 415 

procedure with observations such as with OCO-2 presents additional challenges, such as due to observation error and 

spatiotemporal coverage/gaps. As such, CarbonTracker performance here effectively serves as an upper bound on predicting 

XCO2’s ability to be coupled to surface CO2 flux anomalies, acknowledging modelling sources of error. We address these 

issues in the following section.  

 420 
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Figure 3. Performance of the XCO2-based CO2 flux anomaly estimation varying the target domain area. (a) Domain locations and sizes 

shown where their domain border colours match the dot symbol colours in panels b-d. (b) Correlation, (c) root mean square error, and (d) 

bias between the CO2 flux anomaly estimation with Eq. 1 based on XCO2 from CarbonTracker and the CarbonTracker monthly surface CO2 

flux anomaly outputs, which is considered here as the reference. 425 
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Figure 4. Effect of monthly averaged horizontal ventilation wind conditions on CO2 flux anomaly estimation using CarbonTracker outputs. 

CO2 flux anomaly estimation error with respect to lower troposphere (a) wind angle and (b) wind speed. (c) CO2 flux anomaly estimation 

error averaged over each month of year. Relative error is unitless and is the difference between each pair of CarbonTracker XCO2 flux 

anomaly estimates using Eq. 1 and reference CarbonTracker surface CO2 flux anomaly outputs, and is divided by the standard deviation of 430 

the reference CarbonTracker surface CO2 flux anomaly outputs.  

 

 

Figure 5. CarbonTracker XCO2 flux anomaly estimation overall performance in the Western US considering a spatially expansive target 

domain (latitude = 33 N - 49 N, longitude = 124 W - 104 W as shown in Fig. 2). Relationship between CarbonTracker surface CO2 flux 435 

anomaly outputs and mass balance-based surface CO2 flux anomaly estimates based on CarbonTracker XCO2 anomaly enhancements. Only 

CarbonTracker data was used here where its XCO2, wind velocity, and pressure outputs were used to estimate surface CO2 flux anomalies 

with Eq. 1, which are compared to CarbonTracker total surface CO2 flux anomaly outputs. Legend shows correlations and root mean square 

differences between the CarbonTracker XCO2-based flux anomaly estimates (Eq. 1) and CarbonTracker surface CO2 flux anomaly outputs. 

“Eastward Wind Only” includes only data pairs when the incoming wind direction from the Pacific Ocean is between -60o and 60o angles 440 

from eastward reference direction.  

3.3 Observations Evaluation 

3.3.1 OCO-2 XCO2 Coupling to Surface CO2 Flux Anomalies 

As expected from Fig. 1a, the spatially averaged XCO2 anomaly time series is negatively coupled to LPJ simulated net biome 

production and satellite-derived gross primary production anomalies (Fig. 6a). Observed XCO2 thus shows promise for directly 445 

detecting and estimating large-scale biospheric surface CO2 flux anomalies at low latency without the use of land surface and 

atmospheric transport assimilation models. Furthermore, the XCO2 coupling tends to increase when Pacific Ocean background 
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XCO2 is subtracted from Western US XCO2 to account for transport conditions (Fig. 6a) (i.e., when XCO2 anomaly 

enhancements are used). This removes cases when the Western US XCO2 anomalies covary with Pacific Ocean background 

XCO2 anomalies like in 2015 to 2016 suggesting that Western US XCO2 variations were dominated by atmospheric transport 450 

rather than surface CO2 flux anomalies in this period (Fig. 6c). XCO2 anomaly enhancements remove these confounding effects 

(Fig. 6d). The coupling further increases when only months with mainly eastward flowing winds into the region are considered, 

at least for the total CO2 flux anomaly estimates (Fig. 6a) as expected from CarbonTracker model reanalysis tests (Fig. 5). This 

is because some large anomaly enhancements may occur in months that advection was not consistently flowing through the 

region (examples can be seen in late 2017 in Figs. 6c and 6d), thus requiring conditioning on wind angles.  455 

 

Even after isolating the effects of background Pacific Ocean XCO2 and abnormal advection conditions, the magnitude of these 

observation-based correlations of 0.32 (Fig. 6a) are lower than that of CarbonTracker reanalysis tests at a correlation of 0.54 

(Fig. S6a). Indeed, the total CO2 flux anomalies are estimated by LPJ NBP and QFED burning biomass which include model 

estimations and assumptions with their own sets of errors. However, the surface-atmosphere carbon coupling is similar 460 

considering only photosynthesis fluxes from independently estimated GPP (Fig. 6a), which suggests a large role of the 

biosphere on the CO2 fluxes and that LPJ model error may not be the main contribution to the correlation reduction. We 

ultimately expect that a main source of reduction in coupling originates from OCO-2 retrieval error as well as gaps in the data, 

both spatially (due to cloud cover, aerosols, etc.) and temporally (due to the 16-day revisit frequency). 

 465 
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Figure 6. (a) Pearson correlation coefficients between the XCO2 anomalies and model-based total surface CO2 flux anomalies (LPJ model 

and QFED biomass burning) as well as with observation-based FluxSat (** p-value<0.05; * p-value<0.1). (b) Map of Western US and 

background Pacific Ocean background domain definitions. (c) Spatially averaged OCO-2 XCO2 anomalies in the Western US and 470 

background Pacific Ocean. (d) Western US XCO2 anomaly enhancements from the background Pacific Ocean OCO-2 XCO2 anomalies. 

Red symbols are months when the incoming wind direction from the Pacific Ocean was between -60o and 60o angles from eastward reference 

direction. 

3.3.2 OCO-2 XCO2 Estimation of Monthly Surface CO2 Flux Anomalies 

Surface CO2 flux anomaly estimates from OCO-2 XCO2 using Eq. 1 weakly co-vary with modelled and observation-based 475 

surface CO2 flux anomalies (Fig. 7). In general, the simple mass balance method increases its ability to estimate surface CO2 

flux anomalies when conditioning on the “best” atmospheric transport conditions as shown across correlation, mean bias, and 

RMSD statistics (Fig. 7). However, the performance of the flux estimation method is reduced overall when using OCO-2 
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observations compared to CarbonTracker model reanalysis tests (shown for comparison in Fig. 7). This is expected for reasons 

mentioned above and here we specifically investigate the role of OCO-2 XCO2 retrieval error on this reduction in performance.  480 

 

We first estimate the error standard deviation of Western US XCO2 anomaly enhancements to be around 0.2 ppm based on a 

bootstrapping approach. This is a reduction from the 0.6 ppm error standard deviation for a given OCO-2 XCO2 retrieval (due 

to instrument and algorithmic error). This reduction is mainly due to averaging of 20 to 30 XCO2 retrievals a month within the 

study region. Note that using smaller domains with fewer XCO2 retrievals to average can result in XCO2 enhancement errors 485 

greater than a single XCO2 retrieval error due to subtracting two noisy XCO2 retrievals (subtracting two noisy XCO2 retrievals 

results in error of 0.8 ppm). The existence and magnitude of spatial autocorrelation is unknown, but weak spatial 

autocorrelation of errors could result in a potentially higher error standard deviation depending on the degree of spatial relation 

of errors; spatial autocorrelation of XCO2 errors removes some noise reduction benefits when averaging within a region, but 

partially cancels errors because of spatial relation of errors of background and target regions. Ultimately, our conclusions 490 

remain the same over a range of XCO2 enhancement error estimates.  

 

We show that reduced simple mass balance flux anomaly estimation performance can largely be attributed to OCO-2 XCO2 

retrieval error. Specifically, adding an approximate random 0.2 ppm XCO2 enhancement error standard deviation to 

CarbonTracker XCO2 outputs before applying Eq. 1 results in comparison statistics that approach the estimates based on the 495 

real OCO-2 observations (Fig. 7b-7d). Other error sources likely also explain the reduced comparison between OCO-2-based 

estimates and surface modelled estimates including limited and/or inconsistent XCO2 spatiotemporal coverage, MERRA2 

wind vector error, reference surface CO2 flux error (from LPJ biosphere model and QFED fire estimate error), and Eq. 1 mass 

balance model errors. However, our test reveals that greenhouse gas satellite retrieval error is a dominant component of the 

overall error in estimating surface CO2 flux anomalies, even with reduced errors with spatiotemporal averaging. Ultimately, 500 

the retrieval error in OCO-2 XCO2 hinders reliable estimation of nominal monthly surface CO2 flux anomalies using rapid 

mass balance approaches, as expected based on previous studies (Chevallier et al., 2007).  
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Figure 7. (a) Spatially averaged OCO-2 XCO2 flux anomaly estimates compared to total CO2 flux estimate anomalies (LPJ model and QFED 

biomass burning) and FluxSat gross primary production anomalies. Positive anomalies of all metrics are fluxes away from the surface (note 505 

that GPP’s sign was changed). Comparison statistics between OCO-2 flux anomaly estimates and LPJ NBP anomalies over 2014 to 2021 

with (b) correlation (** p-value<0.05; * p-value<0.1), (c) mean bias, and (d) root mean square difference (RMSD). CarbonTracker 

comparisons are shown for reference as repeated from Fig. 5, but for 2000 to 2018. “CarbonTracker+XCO2 Error” includes simulated error 

added to CarbonTracker XCO2 anomaly outputs on the order of 0.2 ppm. The statistics are computed for all data pairs as well as only those 

considering “Eastward Wind Only” months when the incoming wind direction from the Pacific Ocean was between -60o and 60o angles from 510 

eastward reference direction.  

3.3.3 OCO-2 XCO2 Detection of Extreme Surface CO2 Flux Anomalies 

Although OCO-2 measurement noise limits estimation of smaller monthly surface CO2 flux anomalies using XCO2, OCO-2 

XCO2 retrievals show promise in directly detecting the largest surface CO2 flux anomalies. Despite OCO-2 noise levels (of 0.2 

ppm to 0.6 ppm depending on averaging of individual soundings), large XCO2 anomalies above the noise are likely indicative 515 

of a large surface CO2 flux anomaly.  

 

In the context of terrestrial biosphere extremes (i.e., droughts and heatwaves), we evaluate whether extreme surface biospheric 

CO2 efflux anomalies create a positive XCO2 anomaly in each global pixel (Fig. 8a, see section 2.5). As expected from the 
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global monthly correlation between biospheric CO2 flux and XCO2 anomalies (Fig. 1a), the same locations with a strong 520 

surface-atmospheric CO2 link are also those with the greatest detection rate of large CO2 effluxes (>90th percentile) with 

positive XCO2 anomalies. These XCO2 detection rates in these same regions exceed 50% meaning OCO-2 will detect the 

surface CO2 flux signal as a positive XCO2 anomaly under extreme biosphere conditions, beyond only by chance. In the 

Western US, with increased satellite instrument accuracy, the detection rate could increase to 80%, a detection rate potential 

estimated from CarbonTracker (Fig. 8b). Additionally, other regions like Morocco, Southern Africa, and Northern portions of 525 

Australia have detection rates of 80% and above (Fig. 8b).  

 

A more detailed assessment reveals that OCO-2 XCO2 anomaly detection rates of surface CO2 flux anomalies are greater than 

by chance, especially for the most extreme surface CO2 flux anomalies (Fig. S7). As expected from correlations between 

surface CO2 flux anomalies and XCO2 anomaly enhancements, larger XCO2 anomaly enhancements are better able to detect 530 

surface CO2 flux anomalies than smaller XCO2 anomaly enhancements (Fig. S7a-S7c). CarbonTracker XCO2 anomaly 

enhancements can detect surface CO2 flux anomalies of at least the same percentile greater than by chance in nearly all cases 

without XCO2 observation-based noise (Fig. S7f). However, only the largest of OCO-2 XCO2 anomaly enhancements (>90th 

percentile) can detect surface CO2 flux anomalies greater than by chance, demonstrating how OCO-2 retrieval error largely 

removes the surface CO2 flux information content of smaller magnitude XCO2 anomalies (Fig. S7d-S7e).  535 

 

Ultimately, when a climatic event is ongoing and model outputs of surface CO2 fluxes are not yet available, OCO-2 XCO2 

anomalies can be rapidly consulted. If a large XCO2 anomaly is detected, it can be used to motivate a more detailed 

investigation and/or monitoring campaign of the climatic event. This OCO-2 XCO2 anomaly detection potential has been 

recently realized (Hakkarainen et al., 2019), and at longer timescales where regional declines in fossil fuel emissions were 540 

detected with OCO-2 XCO2 anomalies on the order of 0.25-0.5 ppm during the COVID-19 pandemic (Weir et al., 2021), 

noting caveats of limited anomaly detection on the lower end of this range (Buchwitz et al., 2021; Chevallier et al., 2020). 

Most XCO2 anomalies attributed to the most extreme surface perturbations are below 1 ppm (Chatterjee et al., 2017; Crisp et 

al., 2017; Miller et al., 2007; Weir et al., 2021), which OCO-2 uncertainty may be able to detect as supported by our study 

(Eldering et al., 2017b; Wunch et al., 2017). However, other satellites like GOSAT and SCIAMACHY have estimated XCO2 545 

retrieval uncertainty over 1 ppm (Buchwitz et al., 2017a; Butz et al., 2011), which may limit their ability to interpret even the 

strongest monthly XCO2 anomalies. As such, OCO-2 may provide an ability to monitor the monthly evolution of anomalous 

regional surface sources and sinks of CO2 more precisely than the earlier generation of spaceborne greenhouse gas instruments. 
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 550 

Figure 8. OCO-2 XCO2 anomalies alone can detect extreme CO2 flux anomalies. OCO-2 detection rate of extreme surface CO2 flux 

anomalies (or positive XCO2 anomalies when surface CO2 efflux anomalies are the largest) (a) across the globe in each pixel and (b) within 

specific regions. The legend in (b) shows the datasets used to estimate the detection rate including pairs of OCO-2 XCO2 anomalies and 

total CO2 flux anomaly estimates from LPJ and QFED, pairs of CarbonTracker XCO2 anomalies and CarbonTracker total CO2 flux anomaly 

estimates, and pairs of OCO-2 XCO2 anomalies and photosynthesis flux anomaly estimates from FluxSat GPP.  555 

 

3.3.4 OCO-2 XCO2 Estimation of Extreme Surface CO2 Flux Anomalies 

We show that the mass balance method (Eq. 1) approximately estimates the most extreme fluxes (>90th percentile based on 

LPJ outputs) in the Western US (Fig. 9). The 2021 fluxes in March and June were part of an extreme Western US drought and 

heatwave event (Philip et al., 2021; Williams et al., 2022). The LPJ model and QFED wildfire estimates indicate that these 560 

total CO2 efflux anomalies increased to a peak in Spring 2021 (Fig. 7a). In June 2021, the OCO-2-based CO2 flux anomaly 

estimate is 122 TgC/mo, while the independent total CO2 flux anomaly estimate from LPJ and QFED is 140 TgC/mo (Fig. 9). 

Note that GPP anomalies are shown for comparison but are expected to be underestimates of the total effluxes in not including 

respiration and fire emissions. Therefore, the mass balance method provides a viable method to rapidly estimate the extreme 

CO2 flux anomalies from a satellite observation source compared to more complex bottom-up biogeochemical modelling and 565 

advanced top-down inversion methods. In the months when XCO2-based CO2 flux anomalies did not compare with that 
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estimated in 2020, especially in September 2020, the total CO2 flux anomaly estimate (from LPJ and QFED) potentially was 

positively biased when FluxSat GPP did not indicate a large biosphere CO2 flux anomaly (Figs. 7a and 9). Therefore, the 

extreme CO2 flux anomaly estimates from the biosphere model may have had model related errors that resulted in the reduced 

comparison. However, OCO-2 flux estimation error is expected given the imperfect anomaly detection rates shown in Fig. 8. 570 

This is especially the case in May 2020 when both modelled NBP and satellite-based GPP indicated an efflux in May 2020 

that OCO-2 did not detect.  

 

While a simple mass balance approach does not supplant a rigorous flux estimate from inverse modelling and data assimilation 

methods, it serves as a rapid estimation approach that can be used within one to two months latency. This is a significant 575 

capability given that total surface CO2 flux anomaly estimates from biosphere model ensemble implementations or inverse 

modelling projects are often multi-month or multi-year efforts. As such, greenhouse gas satellites can be consulted for rapid 

monitoring and attribution to determine whether an ongoing extreme climatic anomaly (i.e, the Western US 2020-2021 

drought) is creating substantial carbon cycle anomalies.  

 580 

 

Figure 9. OCO-2 can roughly estimate extreme surface CO2 flux anomalies. OCO-2 estimation of extreme surface CO2 flux anomalies in 

the Western US target domain. Total CO2 flux anomaly estimates are estimated from a combination of a dynamic global vegetation model 

(LPJ) and wildfire model reanalysis estimates. Error bars are determined from bootstrapped error estimates (see Section 3.3.2). Fossil fuel 

anomalies are negligible in magnitude compared to the biosphere and fire sources (see Fig. S1).  585 

4 Conclusions 

We demonstrate that OCO-2 satellite retrieved XCO2 can be used with simple, yet effective mass balance frameworks to detect 

and estimate large biospheric CO2 flux anomalies at monthly timescales. The application tested here ultimately requires 
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aggregating XCO2 over regional domains with careful consideration of transport conditions. Namely, the surface CO2 flux 

estimation mass balance method using XCO2 improves when using larger spatial domains, when wind conditions are from the 590 

same background location, and wind flows consistently through the target domain. The larger spatial domain reduces errors 

due to turbulent atmospheric mixing of widespread surface CO2 sources that would otherwise hinder use of a source pixel mass 

balance method at smaller spatial scales. Additionally, use of the larger area inherently requires aggregation of several XCO2 

soundings which reduces the magnitude of XCO2 errors. While the Western US domain is evaluated here, our global regional 

assessment shows that these methods here are feasible for other locations with observed surface-atmosphere CO2 coupling and 595 

favourable wind conditions like portions of North Africa, Southern Africa, India, and Northern Australia. 

 

Satellite-observed XCO2 anomalies from OCO-2 are mainly useful for evaluating more extreme CO2 flux anomalies. While 

OCO-2 XCO2 retrieval error and observation gaps in space and time may hinder capturing smaller CO2 flux anomalies, we 

show that the timing and magnitude of extreme CO2 flux anomalies can be monitored with judicious use of the satellite data. 600 

In the absence of this error, the performance of these methods greatly improves as suggested by CarbonTracker reanalysis. 

Therefore, any improvement in XCO2 measurement and retrieval accuracy as well as improved coverage in space and time 

with upcoming greenhouse gas satellite missions (for example, GeoCarb) may extend the ability to globally monitor the timing 

and magnitude of biosphere anomalies at shorter timescales. Furthermore, even if advection conditions prevent use of the 

simple pixel source mass balance method, extreme CO2 flux anomalies at least can be detected using only the observed monthly 605 

XCO2 anomaly within the target domain. In addition to the Western US study domain here, we show that this anomaly-only 

approach is feasible in other domains like Southern Africa, Morocco, and Northern Australia, thus enhancing the capability of 

the satellite data to contribute towards a notional carbon monitoring system.  

 

The value of such a means to monitor and estimate total surface CO2 flux anomalies with satellite XCO2 is manifold: (1) it is 610 

simple in requiring few assumptions and ancillary datasets. (2) It is rapid and therefore can be used as a first estimate in extreme 

event monitoring efforts. (3) It uses XCO2 which integrates all surface CO2 flux sources, the components of which otherwise 

need to be estimated separately in bottom-up approaches. (4) Since it is based mainly on observations that are independent of 

land surface models, it can be used as independent estimate to evaluate global model surface CO2 flux outputs.  

 615 

We recommend that future work further evaluate transport conditions and pixel source mass balance flux estimation in other 

global regions we have identified here. Extensions of the method here should also be developed for regions with more complex 

transport conditions and anthropogenic influences (i.e., Eastern US, Western Europe). Ultimately, these methods should be 

developed for low-latency monitoring in known climate change hotspot regions, as is done here for the Western US hotspot, 

where more frequent and intense climate anomalies are expected in the future. 620 
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5 Code/Data Availability 

All datasets used here are freely availability. CarbonTracker reanalysis data (CT2019B) are available at 

https://gml.noaa.gov/ccgg/carbontracker/. MERRA2 reanalysis wind and pressure fields are available at 

https://disc.gsfc.nasa.gov/datasets/M2T3NVASM_5.12.4/summary. OCO-2 XCO2 retrievals and QFED outputs are available 

at https://disc.gsfc.nasa.gov. The LPJ model code is publicly available at https://github.com/benpoulter/LPJ-wsl_v2.0.  625 
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